В данной статье будут приведены примеры тех способов и методов защиты, благодаря которым возможно значительно обезопасить себя и других при выполнении электротехнических работ, тем самым снизив до минимума вероятность несчастного случая.

Применение защитных ограждений

Прикосновение человека к неизолированной токоведущей части, находящейся под напряжением, является опасным — это факт. Даже зная о наличии напряжения в тех или иных местах, существует вероятность случайного прикосновения.

Во избежание подобных случаев для обеспечения электробезопасности рабочего персонала принято делать защитные ограждения вокруг опасных зон (систем, оборудования, частей и т.д.).

Использование защитных блокировок


Блокировки, пожалуй, больше относятся к электротехнической защите от случайного поражения человека электрическим током или от внезапного включения оборудования, что также может повлечь за собой несчастный случай.

При их установке учитываются те случаи, которые могут произойти в случае ошибочного и неправильного поведения людей, работающих либо обслуживающих электрические системы и устройства.

При срабатывании блокировки происходит принудительное отключение и обесточивание электрооборудования с целью предотвращения аварийной ситуации.

Заземлители переносные

Переносные заземлители представляют собой временные средства защиты. Они применяются для обеспечения дополнительной безопасности (защиты рабочего персонала от поражения электрическим током) при работах на отключённых участках электрических систем, оборудования, устройств и т.д. В том случае, когда вдруг появится напряжение на данных участках, где ещё работают люди, эти переносные заземлители (проводники, касающиеся земли) направят электроэнергию в землю.

Использование защитной изоляции

Ещё одним важным способом технической защиты от поражения электрическим током является использования защитной изоляции на своём рабочем месте.

Изолирование рабочего места предполагает некую организацию мероприятий, направленную на предотвращение появления электрической цепи «человек-земля».

Основной задачей этого метода является увеличение сопротивления (переходного) по данной электроцепи.


Этот вариант предполагает использование резиновых ковров, изоляции токоведущих частей электрооборудования в наиболее электрически опасных местах и т.д.

fazaa.ru

7.1. Технические средства защиты

Технические средства защиты от поражения электрическим током делятся на коллективные и индивидуальные. Первые делают невозможным контакт с токопроводящими частями электрических установок, вторые защищают работника в случае, когда касание к токоведущим частям все-таки произошло. Ниже рассмотрены основные технические средства электробезопасности.

Малое напряжение – ограничение применяемого рабочего напряжения для уменьшения опасности поражения электрическим током при работе с переносным инструментом. Максимальное действующее напряжение составляет 12 В в особо опасных помещениях и 42 В – в помещениях с повышенной опасностью, ведь при напряжении в 42 В ток, который проходящий через тело человека, является опасным.

Источниками малого напряжения могут быть понижающие трансформаторы, аккумуляторы, выпрямляющие установки, батареи гальванических элементов, преобразователи частот.

Изоляция токоведущих частей – слой диэлектрика или конструкция из него на проводящей поверхности. Изоляция препятствует прохождению через нее тока благодаря большому сопротивлению, которое должно раняться


clip_image002

где U – действующее напряжение электрической сети

В процессе эксплуатации изоляция постепенно теряет свои диэлектрические свойства из-за старения и местных дефектов, вследствие чего ее сопротивление уменьшается. Это приводит к увеличению тока потерь, возможен пробой изоляции, пожар или поражение электрическим током. Поэтому наиболее надежной является двойная изоляция, которая служит для защиты от поражения током в случае повреждения рабочей изоляции.

Защитное заземление и зануление – наиболее распространенные и надежные средства электрической защиты. Их реализация и принцип действия подробно рассмотрены в п. 7.3.

Недоступность к токоведущим частям оборудования – чаще всего реализуется размещением токоведущих частей на недоступной для прикосновения высоте. В электрических установках напряжением до 1000 В все линии электропередач должны быть на расстоянии не менее 6,5 м от земли. При большем напряжении это расстояние должно увеличиваться.

Другим методом является ограждение токоведущих частей оборудования. В сетях с напряжением более 1000 В опасность представляют даже изолированные провода, кроме того при схеме с заземленной нейтралью опасно даже приближение к токоведущим частям оборудования, поэтому такие установки обязательно должны быть ограждены. Сплошные ограждения используются в установках с напряжением до 1000 В, сетчатые ограждения – с напряжением выше 1000 В.


Защитная блокировка – автоматическое устройство, с помощью которого предотвращаются неправильные, опасные для человека действия. Устройство блокировки допускает только определенный порядок включения механизма, который устраняет даже возможность попадания человека в зону действия электрического напряжения.

По принципу действия защитная блокировка может быть электрической (разрыв цепи специальными контактами) или механической (рубильники, пускатели, автоматические выключатели).

Предупреждающие средства – стационарные устройства, сигнализирующие о выключении аппаратов, наличии или отсутствии напряжения на определенном участке электрической установки.

Также к предупреждающим средствам относятся плакаты, предназначенные для оповещения работников об опасности приближения к токоведущим частям. Также наряду с ними используются запрещающие, предписывающие и указательные плакаты.

7.2. Электрические средства защиты

Электрозащитные средства – изделия, защищающие людей, работающих с электрическим оборудованием от поражения электрическим током, действия электрической дуги и магнитного поля. Они используются как при обычном, так и при аварийном состоянии электрического оборудования. Такие средства могут быть условно разделены на четыре типа:


1. Изолирующие – служат для изоляции людей от электрического оборудования под напряжением, заземленных частей оборудования, а также от земли. В свою очередь, делятся на:

основные – способны длительное время выдерживать рабочее напряжение электроустановки, поэтому допускают касание к токоведущим частям. В ЭУ с напряжением до 1000 В такими средствами являются диэлектрические перчатки, инструмент с изолированными ручками, указатели напряжения, изолирующие и электроизмерительные клещи. В установках с напряжением выше 1000 В – изолирующие штанги и электроизмерительные клещи, указатели напряжения, средства для ремонтных работ.

— дополнительные – не имеют изоляции, которая могла бы выдерживать рабочее напряжение, поэтому применяются только для усиления действия основных средств. В установках до 1000 В к ним относятся резиновые коврики, изолирующие подставки и диэлектрическая обувь. В установках выше 1000 В – диэлектрические перчатки, боты, коврики и изолирующие подставки.

2. Ограждающие – используются для временного ограждения частей электрического оборудования, находящегося под напряжением, к которым возможно случайное прикосновение или приближение на опасное расстояние. К ним относятся переносные ограждения (ширмы, барьеры, щиты), изолирующие накладки, переносные заземления.


3. Экранирующие – служат для предотвращения вредного воздействия на работников электрических полей промышленной частоты. Это индивидуальные экранирующие комплекты (костюмы, обувь и рукавицы) или переносные экранирующие устройства (экраны и палатки).

4. Вспомогательные – предназначены для защиты персонала от падения с высоты (пояса и канаты), для безопасного подъема на высоту (стремянки и когти), для защиты от тепловых, световых, химических, механических и других действий (специальная одежда, рукавицы, противогазы).

7.3. Методы защиты в аварийных режимах

Защитное заземление – преднамеренное электрическое соединение с землей металлических нетокопроводящих частей, которые могут оказаться под напряжением в аварийной ситуации.

Действие защитного заземления заключается в снижении до безопасной величины напряжения прикосновения, вызванного замыканием фазы на корпус.

Применение заземления является обязательным при напряжении переменного тока 380 В и выше, при напряжении постоянного тока 440 В и выше. В помещениях с повышенной опасностью и особо опасных помещениях, а также в наружных установках заземление обязательно при напряжении 42 В и выше переменного тока и 110 В и выше – для постоянного тока. Допустимые значения сопротивления заземления приведены в Приложении С. Оно эффективно в сетях до 1000 В с изолированной нейтралью и выше 1000 В – как с изолированной, так и с заземленной нейтралью.


Конструктивно защитное заземление представляет собой совокупность заземлителя и проводников, соединяющих с ним заземленные части электрического оборудования (рис. 7.1). Заземлитель размещается в почве для хорошего электрического контакта, он может быть естественным или искусственным. В роли естественных заземлителей используют различные металлические конструкции, одновременно выполняющие строительные или технологические функции.

clip_image004Искусственными заземлителями являются специально сконструиро-ванные металлоконструк-ции. Правилами эксплуа-тации ЭУ в первую очередь предусмотрено использова-ние естественных заземли-телей.

Рис. 7.1 – Конструкция защитного заземления: 1 – соединительная лента, 2 – заземлитель

Конструкции защитных заземлений должны соответствовать следующим требованиям: корпуса к магистралям присоединяются только параллельно, а магистраль следует присоединять к заземлителю не менее чем в двух точках, присоединения проводов к корпусам оборудования выполняется сваркой или «под болт».

В зависимости от места размещения заземлителя относительно заземляемого оборудования различают два типа заземляющих устройств: выносное и контурное.


clip_image006

Рис. 7.2 – Типы заземляющих устройств: а – контурное заземление, б – выносное заземление; 1 – заземлители, 2 – заземляющие проводники, 3 – оборудование, 4 – производственные здания

При контурном заземлении (рис. 7.2, а) заземлители размещают по периметру и внутри площадки, на которой находится оборудование, подлежащее защите. Во время замыкания на корпус ток стекает в землю, образуя повышенный относительно прилегающих территорий электрический потенциал внутри площадки. Но при контакте работника с корпусом под напряжением ток, проходящий через тело человека, значительно меньше, чем при выносном заземлении.

При выносном заземлении (рис. 7.2, б) заземлители вынесены за пределы площадки, на которой размещено электрическое оборудование, или сосредоточены на некоторой части этой площадки, вследствие чего не вся территория является защищенной. В данном случае защитное заземление защищает от поражения только благодаря малому сопротивлению заземления. Используется выносное заземление только при малых токах замыкания на землю в установках до 1000 В


clip_image008Защитное зануление – преднамеренное электрическое соединение с нулевым электрическим проводом металлических нетокопроводящих частей, которые могут оказаться под напряжением в аварийной ситуации. Применяется в трехфазных четырехпроводных электрических сетях до 1000 В с глухозаземленной нейтралью (рис. 7.3).

Рис. 7.3 – Схема защитного зануления: 1 – оборудование, 2 – плавкие предохранители

Нулевой защитный проводник – это проводник, соединяющий зануляемое оборудование с глухозаземленной нейтральной точкой обмотки источника тока или ее эквивалентом.

Зануление имеет два защитных действия – быстрое автоматическое отключение установки от сети и снижение напряжения зануленных металлических нетоковедущих частей, оказавшихся под напряжением относительно земли в результате замыкания фазы на корпус. Принцип действия зануления – превращение замыкания на корпус в однофазное короткое замыкание, автоматически отключающее поврежденную электроустановку от сети питания.


Пусть при повреждениии изоляции происходит пробой фазы на корпус, что приводит к появлению на нем фазного напряжения. Тогда ток короткого замыкания (Ік) проходит через обмотки трансформатора, фазный провод, плавкий предохранитель, корпус установки, нулевой провод и снова обмотки трансформатора. Поскольку сопротивление цепи прохождения тока при коротком замыкании малое, ток является достаточным, чтобы вывести из строя плавкий предохранитель, отключив поврежденный участок.

Кроме плавких предохранителей для отключения фазы также используются магнитные пускатели с встроенной тепловой защитой или автоматы, осуществляющие защиту одновременно от токов короткого замыкания и перегрузки. Защита может срабатывать на ток или тепло, или и то и другое вместе. Время с момента появления напряжения на корпусе до момента отключения установки от электросети составляет 5 – 7 с при защите установки плавкими предохранителями и 1 – 2 с при защите автоматами.

В сетях, где применяют зануление, нельзя заземлять корпуса электроустановок без их зануления, поскольку в случае замыкания фазы на корпус заземленной, но не зануленной установки под напряжением окажутся корпуса всех других зануленных электроустановок. Однако дополнительное заземление зануленных электроустановок не запрещается, поскольку оно повышает надежность заземления нулевого провода.

7.4. Первая помощь при поражении электрическим током

Важнейшим фактором оказания первой помощи при поражении электрическим током является ее скорость. Чем быстрее оказана помощь, тем выше ее эффективность, поэтому каждый работник должен уметь оказать первую помощь пострадавшему. Промедление или неквалифицированность при оказании первой помощи могут привести к гибели пострадавшего.

Проядок оказания первой помощи:

clip_image0101. Устранить действие опасных факторов, угрожающих жизни и здоровью потерпевшего: освободить от действия электрического тока, вынести на свежий воздух, потушить.

Рис. 7.4 – Методы освобождения от действия тока

Наиболее безопасным способом освобождения потерпевшего является отключение напряжения. В случае, когда невозможно быстро отключить систему, применяют закорачивания фаз с помощью металлической перемычки, оттягивание пострадавшего от места поражения (рис. 7.4, слева) или обесточивание сети путем разрыва фазных проводов (рис. 7.4, справа). В двух последних случаях следует пользоваться средствами защиты, чтобы не попасть под действие тока.

2. Оценить состояние пострадавшего, характер и тяжесть травм, определить наличие угрозы для жизни и последовательность мероприятий по оказанию помощи.

3. Осуществить необходимые мероприятия первой помощи (восстановить проходимость дыхательных путей, произвести искусственное дыхание и внешний массаж сердца, остановить кровотечение, зафиксировать место перелома, наложить повязку).

Основными мерами по спасению пострадавшего при тяжелых электрических травмах являются:

искусственное дыхание – резкое вдыхание воздуха пострадавшему каждые 5…6 секунд по схеме «рот в рот» или «рот в нос».

массаж сердца – ритмичное надавливание на переднюю стенку грудной клетки пострадавшего для искусственной поддержки кровообращения. Нажатия делаются примерно один раз в секунду.

Искусственное дыхание и непрямой массаж сердца следует проводить до прибытия скорой медицинской помощи или до появления явных признаков оживления (появление самостоятельного дыхания, наличие пульса). Имели место случаи, когда пострадавшие оживали через несколько часов, в течение которых непрерывно оказывалась помощь.

7.5. Контакт токоведущих частей с землей

При замыкании на землю токоведущих частей электрического оборудования имеет место растекание тока. В результате на поверхности земли возникает электрический потенциал, который создает опасность шагового напряжения для человека (рис. 7.5).

Шаговое напряжение – напряжение между двумя точками поверхности на расстоянии человеческого шага, на которых человек стоит одновременно.clip_image012

Рис. 7.5 – Шаговое напряжение

Величина шагового напряжения зависит от силы тока в проводнике, сопротивления грунта в месте замыкания и расстояния до него, а также длины человеческого шага. Точки поверхности, равноудаленные от места замыкания, имеют идентичный электрический потенциал, то есть эквипотенциальные поверхности имеют форму концентрических окружностей.

Под действием шагового напряжения ток идет относительно безопасным путем «нога-нога», но может вызвать судороги ног или падение, которое приводит к образованию других путей тока и росту напряжения шага.

Тяжесть поражения шаговым напряжением зачастую объясняется незнанием элементарных правил поведения в данном случае. Если нужно выйти из зоны напряжения шага или войти в нее для оказания первой помощи, это следует делать маленькими шагами, не превышающими длину стопы. Запрещается приближаться к месту замыкания на землю ближе, чем на 4 м в закрытых помещениях и на 8 м – на открытой местности.

Самостоятельная работа № 7

РАСЧЕТ ЗАЩИТНОГО ЗАЗЕМЛЕНИЯ ДЛЯ УСТАНОВОК С НАПРЯЖЕНИЕМ ДО 1000 В

Цель работы: освоить алгоритм расчета защитного заземления для электрических установок напряжением до 1 000 В.

Задача 1. Методом коэффициентов использования провести расчет защитного заземления электрической установки до 1000 В, выполненного уголковым прокатом № 5 длины l = 3 м с глубиной заложения h = 0,8 м в глинистой почве.

Решение

Среднегодовая низкая температура в Луганской области составляет -5°С, тогда по Приложению Т находим коэффициент сезонности для стержневых заземлителей

φ = 1,3.

По табл. 7.1 определяем удельное сопротивление грунта в месте установки заземлителей

ρгр = 40 Ом·м.

Расчетное удельное сопротивление грунта в месте установки заземлителей находим по формуле

clip_image014Ом·м.

По сортаменту прокатных профилей находим ширину полки равностороннего уголка № 5

b = 50 мм,

тода диаметр заземлителя

d = 0,95·b = 0,95·50 = 47,5 мм = 0,0475 м.

Таблица 7.1 – Удельное электрическое сопротивление грунтов ρгр

Тип грунта

Расчетное значение, Ом·м

Возможные пределы, Ом·м

Глина

40

8…70

Суглинок

100

40…150

Песок

700

400…700

Супесок

300

150…400

Торф

200

Чернозем

20

9…53

Садовая земля

40

30…60

clip_image016Находим расстояние t от поверхности земли до середины заземлителя (рис. 7.6)

clip_image018(м).

Рис. 7.6 – Схема вертикального заземлителя

Определяем сопротивление растекания тока в земле одного вертикального заземлителя по формуле

clip_image020 Допустимое значение сопротивления защитного заземления (согласно Приложения С) для установок напряжением до 1000 В принимаем равным

Rнорм = 4 (Ом),

тогда ориентировочное количество вертикальных заземлителей

clip_image022

Расстояния между заземлителями берем одинаковые и равные

а = 3 м,

а отношение расстояния между заземлителями к их длине

clip_image024

Из Приложения Е по найденому коэффициенту К определяем коэффициент использования вертикальних электродов

ηв = 0,74.

Окончательное число вертикальних заземлителей

clip_image026

Окончательно принимаем п = 5 электродов.

Длину горизонтального заземлителя, соединяющего расположенные в ряд вертикальные заземлители, находим по формуле

clip_image028м.

Горизонтальный заземлитель выполняем в виде стальной ленты толщины b1 = 30 мм, проложенной на глубине h1 = 80 см. Сопротивление горизонтального заземлителя

clip_image030Ом.

Коэффициент использования ηг горизонтального заземлителя при расположении в ряд вертикальных заземлителей определяем по табл. 7.2

Таблица 7.2 – Коэффициент использования горизонтального заземлителя

Коэффициент К

Количество заземлителей в ряду

4

10

20

30

1

0,77

0,62

0,42

0,31

2

0,89

0,75

0,56

0,46

3

0,92

0,82

0,68

0,58

В нашем случае К = 1 и п = 5, по этому приблизтельно получаем

ηг = 0,77.

Тогда общее сопротивление заземляющего устройства

clip_image032Ом.

Полученное значение сопротивления искусственного заземлителя не превышает допустимого значения сопротивления защитного заземления по ПУЭ

R < Rнорм = 4 Ом,

поэтому заземляющее устройство расчитано верно.

kursak.net

Что такое УЗО?

Как мы уже говорили, УЗО расшифровывается как «устройство защитного отключения». Их, так же как и автоматические выключатели, относят к электрическим аппаратам защиты. Но в чем же разница? Как проверить работу УЗО?

Дело в том, что УЗО срабатывает при малейших утечках тока, в то время как автоматические выключатели просто игнорируют маленькие заряды. Они реагируют только на токи перегрузки или при коротком замыкании. Например, если ребенок захочет изучить устройство розетки металлическим предметом, то его может ударить током небольшого разряда. Он пройдет через тело и уйдет в землю. На такую утечку тока автоматический выключатель даже не отреагирует. Свое действие они начинают при утечке от 30А.

Для обеспечения дополнительной защиты человека от поражения электрическим током или от возникновения возгорания из-за повреждения изоляции электропроводки в бытовых электросетях устанавливают УЗО с чувствительностью от 10 до 300мА.

Как оно работает?

Если никаких проблем с электричеством нет, токи в фазном и нулевом проводах будут равны, но противоположно направлены. Это будет создавать в сердечнике трансформатора магнитные потоки, которые будут направленны навстречу друг другу, а следовательно будут компенсировать друг друга. В таком случае магнитный поток будет равен нулю.

В том случае, когда происходит, например, пробой изоляции, возникает различие в токах проводов. В фазном проводе появится ток утечки, который для трансформатора будет разностным. То есть магнитный поток будет отличен от нуля, потому что в сердечнике возникнут разные по значению магнитные потоки.

Затем в работу вступает закон электромагнитной индукции. В следствие этого будет возникать ток в обмотке управления. Если этот ток будет достигать определенного значения, то сработает электромагнитное реле. Оно задействует расцепитель, и силовые контакты УЗО разомкнутся. Конечным итогом станет обесточивание находящихся под защитой УЗО электрических элементов.

Но как проверить исправность УЗО? Вдруг оно вообще не работает? Для этого прямо на устройстве есть кнопка «Тест». Время от времени рекомендуется ее использовать. При нажатии на эту кнопку происходит ток утечки, созданный искусственно. Если с устройством все в порядке и оно работает исправно, то оно должно сработать и обесточить подконтрольные ей электроприборы.

Инструменты, необходимые для проверки УЗО

Прежде чем узнать, как проверить УЗО, давайте разберемся с помощью каких инструментов можно это осуществить в домашних условиях.

Практически каждый человек может осуществить проверку с помощью подручных средств, и быть уверенным в исправности устройства защитного отключения. Итак, для осуществления данной проверки нам может понадобится:

  • провод с вилкой, для того, чтобы подать напряжение на УЗО;
  • провод с патроном, для того, чтобы подключить электрическую лампу;
  • электрические лампы разной мощности;
  • электроинструмент, например, нож или отвертка.

Во время проведения проверки УЗО рекомендуется замерять показатели сетевого напряжения. Обычно оно находится в пределах 180-240 В. Это может иметь важное значение в ходе проведения проверки.

Что мы проверяем?

Для того чтобы проверить УЗО в домашних условиях, как мы указали выше, необходим набор простых подручных материалов. С их помощью мы сможем исследовать 2 аспекта работы УЗО.

Для начала мы убедимся в том, что купленное УЗО исправно и его можно подключать к сети. А также мы оценим правильность и скорость работы УЗО при возникновении утечек.

Самый простой способ проверки

Для осуществления этого способа проверки нам не потребуются перечисленные инструменты. Нам нужна будет всего лишь обычная батарейка и кусок провода. Их можно сразу прихватить с собой в магазин, когда вы соберетесь приобретать устройство защитного отключения.

В квалифицированных магазинах вы можете также потребовать, чтобы УЗО проверил продавец в вашем присутствии.

Итак, как проверить УЗО батарейкой? Все очень просто. Для этого нужно всего лишь включить УЗО, то есть перевести кнопку в положение «Вкл.», подключить батарейку между вводом заземления и выводом фазы. Когда устройство работает правильно и батарейка заряжена, устройство должно сработать и отключиться самостоятельно. Вы должны услышать щелчок, а кнопка — перейти в положение «Откл.»

Может быть такое, что с первого раза у вас проверка не получится. Попробуйте снова, просто перевернув батарейку.

Этот способ проверки является самым простым, поскольку его можно провести без подключения УЗО в электрическую сеть и не отходя от кассы.

Проверяем однофазное УЗО чувствительностью 30мА

Перед тем как проверить УЗО на срабатывание, его необходимо собрать. Для этого на верхние клеммы присоединяем концы провода с вилкой, а на нижние — концы провода с патроном.

Для проверки УЗО с такой чувствительностью нам будет достаточно лампочки с мощностью в 20 Вт. Ввинчиваем ее в патрон и включаем вилку в розетку.

Затем включаем устройство. Для этого переводим клавишу «Откл.» на устройстве в положение «Вкл.» Если вы все правильно собрали и подключили, то лампочка должна загореться. Эту процедуру рекомендуется повторить 3-4 раза. То есть включить и отключить устройство.

Затем, оставляя УЗО включенным, а лампочку горящей, нажимаем на устройстве кнопку «Тест». Если устройство работает правильно, оно должно отключиться, погасив при этом лампочку. Повторяем процедуру 3-4 раза, предварительно снова включив устройство.

Теперь нам нужно проверить, будет ли УЗО самостоятельно отключаться при образовании тока утечки. Искусственно создаем эту утечку. Берем не зафиксированный в клеммнике свободный конец от лампы и отсоединяем его от УЗО. Лампа погаснет, но устройство останется включенным. Затем касаемся отсоединенным проводом, например, заземленной рамы от циркулярной пилы. Можно также использовать любое другое заземленное место, чтобы утечка была, но не навредила никакому прибору, а ушла в землю. В норме УЗО отключается.

Проверяем трехфазное УЗО чувствительностью 300мА

Основные моменты того, как проверить УЗО на работоспособность, мы описали выше. Таким образом, начало проверки будет идентичным. Собираем устройство так, как описано выше.

Особенность состоит только в том, что верхние клеммы подключаем шлейфом от одного сетевого провода, а второй провод — к клемме N. Нижние клеммы подключаем следующим образом: один конец провода — к клемме N, а второй остается свободным.

Далее мы будем проверять каждый фазный полюс УЗО тем самым свободным концом провода. Включаем вилку в розетку, включаем УЗО и по очереди проверяем все фазы. Если они все исправны, то лампочка будет гореть.

Также для каждого фазного полюса проверяем работоспособность кнопки «Тест».

При проверке на срабатывание в аварийных ситуациях необходимо использовать лампочки от 40 до 100 Вт. На лампу мощностью 20 Вт УЗО сработать не должно, так как ток утечки не входит в диапазон реагирования УЗО такой чувствительности. Если устройство не срабатывает и на других лампах, то оно неисправно, и использовать его нельзя.

Вот мы с вами и узнали, как проверить УЗО перед его подключением в сеть.

Соблюдение техники безопасности

При осуществлении проверок УЗО мы имеем дело с электричеством. Это может быть чревато неприятными последствиями. Поэтому перед тем, как проверять УЗО, нужно ознакомится с мерами предосторожности и соблюсти их со время работы:

1. Все операции по подключению и отключению цепей обязательно делать при снятом напряжении (убирать вилку из розетки).

2. Голыми руками нельзя касаться никаких оголенных проводов.

3. Защищать себя от поражения электрическим током с помощью защитных и вспомогательных средств (для работы должно быть сухое место, под ноги лучше постелить резиновый коврик или деревянный настил, работать изолированным монтажным инструментом, при необходимости использовать резиновые перчатки и т.д.).

4. Если у вас нет ни малейшего представления об электричестве, то самому лучше не проводить работы по проверке и установке оборудования.

fb.ru

Для обеспечения электробезопасности применяют отдельно или в сочетании один с другим следующие технические способы и средства:

1.защитное заземление, зануление;

2.защитное отключение;

3.выравнивание потенциалов;

4.малое напряжение;

5.изоляцию токоведущих частей;

6.электрическое разделение сети;

7.оградительные устройства;

8.блокировка;

9.предупредительную сигнализацию;

10.знаки безопасности;

11.предупредительные плакаты;

12.электрозащитные средства.

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением при замыкании на корпус и по другим причинам.

Зануление – преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам. Задача зануления состоит в устранении опасности поражения током в случае прикосновения к корпусу и другим нетоковедущим частям электрической установки, оказавшейся под напряжением вследствие замыкания на корпус. Решается эта задача быстрым отключением поврежденной электроустановки от сети. Принцип действия зануления состоит в превращении замыкания на корпус в однофазное короткое замыкание с целью вызвать большой ток, способный вызвать срабатывание защиты.

Защитное отключение – быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. При применении этого вида защиты безопасность обеспечивается отключением аварийного участка в течение 0,1-0,2 секунды.

Выравнивание потенциалов – это метод снижения напряжения прикосновения и шага между точками электрической цепи, к которым возможно одновременное прикосновение или на которых может одновременно стоять человек. Для выравнивания потенциала в землю укладывают стальные полосы в виде сетки по всей площади, занятой оборудованием.

Малое напряжение – это номинальное напряжение не более 42 В, примененное в цепях для уменьшения опасности поражения электрическим током.

Для изоляции токоведущих частей применяют следующие изоляции:

— рабочую – это электрическая изоляция токоведущих частей электрооборудования, обеспечивающая его нормальную работу и защиту от его поражения электрическим током;

— дополнительную – предусматривается дополнительно к рабочей в случае ее повреждения (пластмассовый корпус);

— двойную – это электрическая изоляция, состоящая из рабочей и дополнительной;

— усиленную – это улучшенная рабочая изоляция, обеспечивающая такую же степень защиты от повреждения электрическим током, как и двойная изоляция.

Электрическое разделение сети – разделение сети на отдельные, электрически несвязанные между собой участки с помощью разделяющего трансформатора. Разделяющий трансформатор изолирует электрические приемники от первичной сети и сети заземления. Вторичная обмотка трансформатора и корпус электрического приемника не должны иметь ни заземления, ни связи с сетью зануления.

Предупредительная сигнализация выполняется световой или звуковой. Для световых сигналов применяются следующие цвета: красный – запрещающие и аварийные сигналы; желтый – для привлечения внимания, сигнализирует о достижении предельных значений, о переходе на автоматическую работу; зеленый – для сигнализации безопасности, сообщает о нормальном режиме работы, разрешение о начале действия; белый – для обозначения включенного состояния, используется когда нерационально использование красного, желтого и зеленого цветов; синий – используется в специальных случаях, когда не могут быть применены остальные цвета.

studfiles.net



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.