Подключение лампы с электромагнитным дросселем
Подключение лампы с электромагнитным дросселем

Электромагнитный дроссель находит применение в цепях коммутации люминесцентной лампы.

Назначение дросселя – формирование импульса для пробоя газонаполненной среды и поддержание необходимого напряжения и тока в схеме и на контактах элементов работающего светильника. Принцип работы дросселя основан на способности катушки индуктивности извлекать энергию из источника тока и сохранять ее в виде магнитного поля.


Чтобы выяснить, как работает дроссель, нужно рассмотреть свойства катушки индуктивности. Она плохо проводит переменный ток или совсем не проводит его. Индуктивность измеряется в Генри (Гн) и ее значение можно увеличить путем применения сердечника, оно таким образом повышается в несколько раз.

Во время замыкания контактов выключателя величина тока на катушке постепенно возрастает, а при размыкании сначала растет многократно, а затем плавно уменьшается. В соленоиде этот параметр не изменяется мгновенно.

Дроссель для люминесцентных ламп – это катушка индуктивности с ферромагнитным сердечником. Он находит применение только в электрических цепях, в которых предусмотрено наличие электромагнитного ПРА.

На картинках показана схема подключения газоразрядной лампы низкого давления с использованием электромагнитного дросселя.

  • 2 – электроды лампы;
  • 1 – колба (трубка);
  • Ст – стартер;
  • С1 – конденсатор, находящийся в одном корпусе со стартером;
  • С2 – конденсатор, повышающий коэффициент мощности;
  • Д – дроссель.
Механизм запуска лампы с электромагнитным балластом
Механизм запуска лампы с электромагнитным балластом

При замыкании выключателя ток протекает по следующему пути: «дроссель – электрод лампы – стартер – второй электрод лампы – сеть».


Величины этого тока очень мало для зажигания лампы. Но его значения хватает для нагревания электродов стартера и появления в нем тлеющего разряда. Напряжение этого разряда меньше напряжения сети, но больше напряжения работающей лампы.

Разогретый биметаллический электрод в стартере замыкается со вторым, после чего тлеющий разряд между ними гаснет, электроды остывают и занимают первоначальное положение.

В момент замыкания электродов в стартере ток в схеме значительно возрастает и электроды люминесцентной лампы начинают нагреваться. В то же время при размыкании цепи на дросселе (в результате самоиндукции) происходит скачок напряжения, который, складываясь с входным напряжением сети, создает условия для включения лампы.

К этому моменту температура на электродах лампы успевает повыситься до значения, необходимого для эмиссии, а дросселирующее устройство создает высоковольтный импульс. Поэтому в лампе создаются условия для возникновения тлеющего разряда, который сначала происходит в аргоновой среде до тех пор, пока ртуть, помещенная в колбу, не перейдет полностью в парообразное состояние. После этого разряд будет происходить в ртутных парах, и лампа войдет в стабильный рабочий режим.


Напряжение на работающей лампе меньше сетевого за счет его падения на дросселе. Поскольку для срабатывания стартера напряжение на нем должно превышать величину напряжения на включенной лампе, повторно разряд в этом приборе не зажжется.

Зажигание лампы происходит при условии совпадения по фазе импульса дросселируемого напряжения и напряжения сети. Но поскольку совпадения этих значений относительно разбросаны по времени, стартер может срабатывать неоднократно перед тем, как лампа войдет в рабочий режим. В этом случае наблюдается мигание лампы в процессе включения. Одновременно в стартере создаются радиопомехи, для подавления которых служит конденсатор, находящийся в общем со стартером футляре.

Так выглядит электромагнитный дроссель
Так выглядит электромагнитный дроссель

Это означает, что кроме зажигания этого осветительного прибора дроссель необходим для ограничения возрастания тока разряда до величины, при достижении которой лампа выходит из строя.

Все, изложенное выше, объясняет, для чего нужен дроссель.

В результате того, что он ограничивает ток в схеме работающей лампы, он представляет собой дополнительную нагрузку (балласт) и на нем теряется какая-то часть мощности. По уровню этих потерь дроссели делятся на следующие классы: D – с обычными; C – с пониженными; B – с особо низкими.


Потери мощности в дросселях


Класс

Потери мощности, Вт

дросселя

С лампой С лампой

С лампой

18 Вт

36 Вт 58 Вт

D

12 10

14

С

10 9

12

В2

8

7

9

В1

6 6

8

В силу физических свойств дросселя на нем происходит сдвиг по фазам между напряжением и током. Ток отстает от напряжения на величину, которую принято обозначать как cos φ. Чем выше его значение, тем экономичнее прибор, и наоборот, при понижении этой величины энергоэффективность снижается.

График изменения тока и напряжения на люминесцентной лампе и на лампе накаливания

На рисунке показан график изменения тока и напряжения на люминесцентной лампе и лампе накаливания.

Основные виды дросселей

  • Электромагнитный дроссель для лампы, который подключается последовательно с лампой и в схеме необходимо наличие стартера.

К его достоинствам можно отнести низкую стоимость, простоту конструкции и достаточную надежность.

Недостатки: возможность появления шума и мерцания во время работы и при запуске; довольно продолжительный процесс включения; необходимость подключения конденсатора для снижения потерь.

Мощность дросселя должна соответствовать мощности лампы.

  • Электронный дроссель, для подключения которого не нужен стартер.

Положительные качества: быстрое включение; обеспечение работы лампы без миганий; компактность, малый вес.

В результате использования этого вида дросселей снижаются мерцания. Пульсаций при запуске лампы не происходит. Снижается вероятность появления шума при работе.

Дроссели можно разделить на две группы по типу сетей, в которых эксплуатируются лампы:

  1. однофазные (для использования в быту) на 220 В;
  2. трехфазные, которые устанавливаются в светильниках, работающих в сетях на 380 В. Это светильники для освещения промышленных предприятий, улиц и объектов сельскохозяйственного профиля.

Все эти виды дросселей также можно разделить по месту их расположения:

  • находящиеся внутри корпуса светильника, который обеспечивает им защиту от неблагоприятных факторов внешней среды и атмосферы;
  • помещенные в специальный кожух. Такое герметичное исполнение позволяет устанавливать эти приборы в осветительных сетях наружного освещения.

Источник: LampaGid.ru


Электрический дроссель 1

 Дроссель (в переводе с немецкого – «сокращать») – это одна из разновидностей катушек индуктивности. Главное предназначение этого элемента электрической схемы – «задерживать» (снижать на определенный период времени) влияние токов определенного диапазона частот. При этом резко изменить силу тока в катушке практически нереально – здесь вступает в силу закон самоиндукции, благодаря которому на выходе формируется дополнительное напряжение. 

Дроссель необходим в электрической цепи в том случае, когда необходимо подавить переменную составляющую тока (например, помехи), существенно снизить пульсации в сети, а также ограничить или разделить в соответствии с поставленной задачей различные частотные сигналы (изоляция или развязка).

В электро – и радиотехнике применяется переменный ток в диапазоне от единиц до сотен миллиардов Гц. (1 герц – это одно колебание в секунду).

Условно такие широкие границы подразделяются на несколько участков:

  1. низкие ( звуковые) частоты (20 Гц – 20 кГц);
  2. ультразвуковые частоты (20 – 100 кГц);
  3. высокие и сверхвысокие частоты (от 100 кГц и выше).

Конструктивно низкочастотный дроссель очень напоминает обычный электрический трансформатор, только всего с одной обмоткой.

Последняя представляет собой витки изолированного провода, навитого на стальной сердечник, набранный из изолированных пластин (чтобы избежать возникновение токов Фуко), и обладает большой индуктивностью. Такая катушка характеризуется сильным противодействием любым изменениям тока в цепи: поддерживает его при убывании, и сдерживает при резком нарастании.

Также дроссели широко используются и при реализации различных высокочастотных электрических схем. В данном случае их исполнение может быть одно – или многослойным, при этом часто сердечники (как стальные, так и ферромагнитные) не используются. Иногда в качестве основы для навивки применяют обычные резисторы или пластмассовые каркасы. В диапазоне длинных и средних волн для обеспечения заданных параметров используется также специальная секционная намотка провода.

Главная техническая характеристика дросселя – индуктивность, которая измеряется в генри (Гн), сопротивление постоянному току, допустимое изменение напряжения, номинальный ток подмагничивания, а также добротность.

Последний показатель широко используется при расчетах колебательных контуров. 

Применение магнитных сердечников позволяет существенно уменьшить габариты дросселей при тех же заявленных параметрах индуктивности. На высоких частотах используются ферритовые и магнитодиэлектрические составы, позволяющие, благодаря небольшой собственной емкости, использовать их в широком диапазоне. 
Электрический дроссель 2

По своему назначению такой вид катушек индуктивности можно подразделить на следующие виды:

  • переменного тока. Используются для токоограничения в сети; например, во время пуска электродвигателя или импульсных ИВЭП.
  • насыщения. Главное область применения – стабилизаторы напряжения.
  • сглаживающие. Предназначены для ослабления пульсаций уже выпрямленного тока.
  • магнитные усилители (МУ). Представляют собой катушки индуктивности, сердечник которой подмагничивается за счет постоянного тока. Меняя параметры последнего, можно изменять индуктивное сопротивление.

Существуют также трехфазные дроссели для использования в соответствующих цепях.

Сегодня разнообразные типы дросселей нашли широкое применение для решения разнообразных инженерных задач.

Интересное видео об электрических дросселях смотрите ниже:


Источник: pue8.ru

Электротехнический вид

По своей конструкции этот вид устройства представляет собой магнитопроводящий сердечник с намотанным на него проводником. При прохождении через него переменного тока возникает магнитный поток в сердечнике, имеющий небольшое временное запаздывание по сравнению с силой тока. В период спадания прохождения электротока магнитный поток еще некоторое время находится на стадии возрастания и индуцирует ток, имеющий направление, противоположное основному.

Иначе говоря, дроссель является индукционным сопротивлением, способным сглаживать пиковые значения силы тока уменьшать амплитуду пульсации. Это свойство используется во многих бытовых и промышленных электроприборах, работающих от сети переменного тока.

Особенности конструкции

Как отмечалось, конструктивно это устройство состоит из проводника, который намотан на сердечник. По форме сердечник может быть любым:

  • линейным;
  • кольцеобразным;
  • овальным;
  • подковообразным.

Выпускаются эти элементы как открытого типа, так и с закрытым корпусом в зависимости от сферы применения и конструкции конкретного прибора.

Сфера применения

Самодельные дросселиВо время включения электродвигателей переменного тока отмечается скачок напряжения. Дроссель в этом случае играет роль токоограничителя и защищает сеть от перегрузки.

В стабилизаторах напряжения такое устройство служит для уменьшения амплитуды переменного тока и сглаживания пульсаций.

В магнитных усилителях устанавливаются особые дроссельные устройства: их сердечник способен подмагничиваться постоянным током. Изменяя параметры последнего, можно изменять параметры самого дросселя, а конкретно — индуктивное сопротивление.

В лампах дневного света (ЛДС) дроссель выполняет две задачи:

  • способствует зажиганию тлеющего разряда после срабатывания стартера;
  • предотвращает мигание лампы из-за перепадов напряжения в сети.

Использование дросселяВ инверторах и импульсных блоках питания применяют дроссельные блоки с целью ограничения резких всплесков тока. Рассматриваемое устройство в этом случае играет роль фильтра.

При выборе сварочного аппарата возникает дилемма: отдать предпочтение качеству или цене. Второе, как правило, побеждает. Более дешевые «сварочники» отличаются тяжелым зажиганием дуги и разбрызгиванием металла во время сварки из-за пульсаций силы тока. Использование дросселя в цепи сварочного аппарата позволяет получить качественный и ровный сварочный шов, упрощает поджиг дуги и ее удержание.

Проверка исправности

Устройство дроссельКонструкция дросселя настолько простая, что он очень редко выходит из строя. Но к сожалению, иногда это случается. Самые распространенные неисправности — межвитковое замыкание и обрыв цепи, причинами которых, как правило, являются внешние воздействия (вибрация, намокание, механическое повреждение и т. п. ).

Обрыв цепи диагностировать проще всего: с помощью прозвонки или тестера проверяется цепь между контактами на входе и выходе. Если мультиметр показывает бесконечное сопротивление или на прозвонке индикатор не горит, значит, где-то есть обрыв.

Замыкание между витками определить при помощи прозвонки не получится. В этом случае необходим прибор, который точно замеряет сопротивление. Используют мультиметр в режиме омметра, замеряют показатели и сравнивают с номинальным значением. При расхождении более 20% однозначно необходима замена дросселя, так как присутствует межвитковое замыкание.

Источник: tokar.guru

Назначение

Многих интересует, что такое дроссель и как он выглядит. Устройство выполнено в виде железного трансформатора, единственным отличием является наличие одной обмотки. Катушка накручена на сердечник из трансформаторной стали, при этом пластины разделены и не контактируют друг с другом с целью снижения вихревого тока.

Электронный дроссель характеризуется высоким уровнем индуктивности до 1Гн, катушка эффективно противодействует изменениям тока в электроцепи. При снижении силы тока катушка его поддерживает, а в случае резкого повышения катушка обеспечивает ограничение и предотвращение резкого скачка.

Рассматривая, для чего нужен дроссель, следует назвать такие цели:

  • снижение помех;
  • сглаживание пульсаций электрического тока;
  • накапливание энергии в магнитном поле;
  • отделение частей схемы по высокой частоте.

Зачем же нужен дроссель? Основным его назначением в электросхеме является задержка на себе тока конкретного частотного диапазона или накопление энергии  в магнитном поле.

Важность дросселя объясняется тем фактом, что люминесцентные газоразрядные лампы (к примеру, бытовые светильники, фонари на улицах) не функционируют без дросселя. Он выступает в роли ограничителя напряжения, подающегося на электроды газоразрядной лампы.

Также дроссельные устройства формируют пусковое напряжение, требуемое для создания электрического разряда между электродами. Благодаря этому обеспечивается включение люминесцентной лампы. Пусковое напряжение рассчитано всего на доли секунды. Таким образом, дроссель – это устройство, отвечающее за включение лампы и ее стабильное функционирование.

Принцип работы

Электронный дроссель имеет простую конфигурацию и понятный принцип функционирования. Он представляет собой катушку из электропровода, которая намотана на сердечник из специального ферромагнитного материала. Принцип работы базируется на самоиндукции катушки. При рассмотрении конструкции дросселя, становится понятным, что она работает как электрический  трансформатор, только с одной обмоткой.

Сердечник и ферромагнитные пластины изолированы с целью предотвращения токов Фуко, создающих существенные помехи. Катушка имеет большую индуктивность, причем непосредственно выступает защитным ограждением при резких скачках напряжения в сети.

Однако данная конструкция считается низкочастотной. Переменный ток в бытовых сетях колеблется в широком диапазоне, поэтому колебания разделяются на три категории:

  • низкие частоты в пределах 20Гц-20кГц;
  • ультразвуковые частоты от 20 кГц до 100 кГц.;
  • сверхвысокие частоты более 100 кГц.

В высокочастотных устройствах не предусмотрен сердечник, вместо него применяются каркасы из пластика или стандартные резисторы. А сам дроссель в таком случае имеет конфигурацию многослойной навивки.

В процессе расчетов и составления схем, как подключить дроссель учитываются его параметры и характеристики сети, в которой необходимо поддерживать работу ламп. Особенное внимание при подключении необходимо уделять этапу начала свечения лампы, когда требуется пробивание газовой среды при помощи разряда. В этот момент необходимо высокое напряжение, а после этого прибор выступает в качестве сдерживающего напряжение элемента.

Основные характеристики

В большинстве своем дроссели имеют существенные габариты. Чтобы сделать приборы компактными без ухудшения технических характеристик, катушка индуктивности заменяется стабилизатором, который по сути является мощным транзистором. В результате получается электронный дроссель. Однако прибор такого типа является полупроводником, поэтому его нецелесообразно использовать в высокочастотных приборах.

Электронный дроссель необходимо выбирать по нескольким параметрам, основной из которых считается индуктивность, измеряемая в Гн. Также важными техническими характеристиками приборов выступают:

  • сопротивление, которое принимается во внимание при постоянном токе;
  • изменение напряжения в допустимых рамках;
  • ток подмагничивания – используется номинальный показатель.

Выбирая устройство, в первую очередь необходимо ориентироваться на цели и задачи, для чего нужен дроссель в схемах электроцепей. Применение в электрических дросселях магнитных сердечников дает возможность обеспечить компактность приборов при сохранении  прежних показателей индуктивности. Ферритовые и магнитодиэлектрические составы, благодаря низкой емкости, могут использоваться в широких диапазонах частот.

Разновидности дросселей

Выделяют следующие виды электрических дросселей, на основании видов ламп, в которых они используются:

  • однофазные – подходят для бытовых и офисных систем освещения, которые работают от сети 220 Вольт;
  • трехфазные – рассчитаны на сети 220 и 380 Вольт. Такие дроссели подойдут для ламп ДРЛ и ДНАТ.

Электронный дроссель может принадлежать к одной из категорий в зависимости от места установки:

  • встраиваемые или открытые. Они монтируются в корпус светильника, который обеспечивает защиту от внешних факторов;
  • закрытые – отличаются герметичностью и влагозащищенностью. Такие устройства можно устанавливать в уличных условиях на открытых участках.

Для чего нужен дроссель

В зависимости от назначения дроссели разделяют на виды:

  • переменного тока. Применяются с целью ограничения напряжения в сети, к примеру, в момент запуска электромотора или импульсных ИВЭП;
  • насыщения. В основном устанавливаются в стабилизаторах напряжения;
  • сглаживающие – для снижения пульсаций выпрямленного тока;
  • магнитные усилители. Такие катушки индуктивности предполагают наличие подмагничивающегося сердечника благодаря наличию постоянного тока в сети. При регулировке его параметров можно менять значения индуктивного сопротивления.

Дроссели могут сохранять работоспособность на протяжении длительного срока эксплуатации при правильном использовании. Прибор предназначен для ограничения резких скачков напряжения, что позволяет обезопасить как приборы, так и всю сеть.

Похожие статьи

Источник: odinelectric.ru

Принцип работы

Необходимо сразу оговориться, что в основе принципа работы этого прибора лежит самоиндукция катушки. Если рассмотреть устройство дросселя, то это обычная катушка, которая работает по типу электрического трансформатора. То есть, можно смело применять в разговоре термин дроссель трансформатор. Хотя в конструкции лежит всего лишь одна обмотка.

По сути, катушка – это сердечник из стальных или ферромагнитных пластин, которые изолированы друг от друга. Это делается специально для того, чтобы не образовались токи Фуко, которые создают большие помехи. У такой катушки очень большая индуктивность. При этом она на самом деле выступает мощным сдерживающим барьером при снижении напряжения в сети, а особенно при его сильном росте.

Схема подключения
Схема подключения

Но именно эта конструкция считается низкочастотной. Почему такое у нее название? Все дело в том, что переменный ток, который протекает в бытовых сетях – это широкий диапазон колебаний: от единицы до миллиарда герц и выше. Пределы диапазона очень велики, поэтому чисто условно колебания разделяют на три группы:

  • Низкие частоты, их еще называют звуковые, имеют диапазон колебаний от 20 Гц до 20 кГц.
  • Ультразвуковые частоты: от 20 кГц до 100 кГц.
  • Сверхвысокие частоты: свыше 100 кГц.

Так вот вышеописанная конструкция – это низкочастотный дроссель трансформатор. Что касается высокочастотных приборов, то их конструкция отличается отсутствием сердечника. Вместо них, как основа навивки медного провода, используются пластиковые каркасы или обычные резисторы. При этом сам дроссель трансформатор представляет собой секционную (многослойную) навивку.

По устройству дроссель - это обычная катушка, которая работает по типу электрического трансформатора
По устройству дроссель – это обычная катушка, которая работает по типу электрического трансформатора

Дроссели очень тщательно рассчитываются по задаваемым параметрам, которые будут поддерживать работу ламп дневного света. Особенно это касается начала свечения, где необходимо разрядом пробить газовую среду. Здесь требуется высокое напряжение. После чего прибор, наоборот, становится сдерживающим устройством. Ведь для того, чтобы лампа светилась, большого напряжения не надо. Отсюда и экономичность светильников данного типа.

Сердечник для дросселя

Материал для сердечника также представлен несколькими позициями. Его выбор лежит в основе габаритов самого дросселя. К примеру, магнитный сердечник – это возможность уменьшить размеры дросселя до минимума. При этом показатели индуктивности не изменяются.

Оптимальный вариант для высокочастотных приборов – это сердечники из магнитодиэлектрических сплавов или феррита. Кстати, именно сплавы позволяют использовать сердечники данного типа практически во всех диапазонах.

Сердечники из разных сплавов

Характеристики

Выбирать дроссель трансформатор надо по нескольким характеристикам, главная из которых – индуктивность (измеряется в генри Гн). Но кроме этого еще есть и другие:

  • Сопротивление. Учитывается при постоянном токе.
  • Изменение напряжения (допустимого).
  • Ток подмагничивания, применяется номинальное значение.

Разновидность дросселей

Люминесцентные лампы представлены на рынке большим ассортиментом. И у каждого вида ламп дневного света свой дроссель трансформатор. К примеру, лампа ДРЛ и ДНАТ не могут зажигаться от одного вида дросселя. Все дело в различных параметрах пуска и поддержания горения. Здесь и напряжение отличается, и сила тока.

А вот лампа МГЛ может работать и от дросселя лампы ДРЛ, и от ДНАТ. Но тут есть один момент. Яркость свечения данного источника света будет зависеть от подаваемого напряжения. Да и цветовая температура будет разной.

Внимание! Любой дроссель трансформатор по сроку эксплуатации «переживет» несколько ламп. Конечно, при оговорке, что эксплуатация светильника проводится правильно.

Разновидности дросселей
Разновидности дросселей

Но учитывать приходится тот факт, что лампа с годами «стареет». На вольфрамовые электроды люминесцентных ламп дневного света наносится специальная паста из щелочных металлов. Так вот эта паста постепенно испаряется, электроды оголяются, а, значит, повышается напряжение, что приводит к перегреву дросселя. Конечный результат может быть двух вариантов:

  1. Произойдет обрыв обмотки катушки, что приведет к отключению подачи напряжения на электроды.
  2. Произойдет замыкание катушки. А это подключение лампы напрямую к сети переменного тока. Лампа перегорит – это точно, а может и взорваться, что приведет к порче светильника в целом.

Поэтому совет – не стоит ждать, когда лампа сама перегорит. Есть специальный график замены, который определяет производитель, и которого необходимо строго придерживаться. Опытные электрики при проведении профилактических работ обязательно проверяют эти осветительные приборы на параметр напряжения. Если он подходит к пределу нормы, то лампу меняют еще до срока эксплуатации. Лучше заменить недорогую лампу, чем дорогой дроссель трансформатор.

Схема подключения к лампе
Схема подключения к лампе

Добавим, что производители сегодня предлагают усовершенствованные системы защиты люминесцентных светильников. В их конструкцию добавили предохранительные автоматы, которые срабатывают при повышении напряжения внутри газоразрядного источника света.

Разделение по назначению

По сути, все дроссели делятся на две основные группы, как и лампы, в которых они устанавливаются.

  1. Однофазные. Их используют в светильниках бытовых и офисных с подключением к сети в 220 вольт.
  2. Трехфазные. Подключаются к сети 380 вольт. К ним относятся лампы ДРЛ и ДНАТ.

По месту установки эти приборы делятся также на две группы:

  1. Встраиваемые. Их еще называют открытыми. Такие дроссели устанавливают в корпус светильника, который защищает его и от влаги, и от пыли, и от ветра.
  2. Закрытые (герметичные, влагозащищенные). У этих приборов есть специальный короб, защищающий их. Такие модели можно устанавливать на улице под открытым небом.
Электронный дроссель
Электронный дроссель

Электронные аналоги

Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.

По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.

Полезные советы

Как и многие электронные приборы, дроссели маркируются в зависимости от своих параметров. Это достаточно сложная аббревиатура, которая неопытным электрикам будет непонятна. Поэтому была введена цветовая маркировка. То есть, на приборе нанесено несколько цветных колец, которые определяют индуктивность устройства. Первых два кольца – это номинальная индуктивность, третье – это множитель, четвертое – это допуск.

Внимание! Если на дросселе всего три цветных кольца, то по умолчанию принимается, что его допуск составляет 20%.    

Цветовая маркировка
Цветовая маркировка

Цветовая маркировка удобна, особенно для тех, кто начинает разбираться в области электрики. С ее помощью можно точно подобрать параметры устанавливаемых приборов (транзистор, электронный дроссель, резистор и так далее).

Источник: OnlineElektrik.ru


Categories: Свет

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector