Действительно ли дроссель для люминесцентных ламп является незаменимым элементом, обеспечивающим запуск прибора и его последующее беспроблемное функционирование? Согласитесь, что лишние приспособления, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. Вы сомневаетесь, нужен ли дроссель в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом — в статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции.

Также приведены тематические фотоматериалы и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, по выбору нужного дросселя в зависимости от типа лампы.

Назначение и устройство дросселя


Разрядные лампы, представителем которых является люминесцентная, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать.

Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя.

Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности.

Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока.

В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется пускорегулирующая аппаратура, которая бывает как электромеханического, так и электронного типа.


Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Правда, имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей.

Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.

Поэтому фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным ЭПРА, вмонтированном внутри корпуса изделия.

Перегрев дросселя и возможные последствия


Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром.

Избежать этой ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

При неправильной эксплуатации может произойти взрыв колбы светильника. Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики.

Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и разрядной лампочки

Выводы и полезное видео по теме


Тонкости сборки схемы из двух ЛЛ с последовательным включением:

Видеоролик о том, что такое дроссель и зачем он нужен:

Проверка дросселя на предмет поломки:

О правилах выбора дросселя в зависимости от типа разрядной лампы:

Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.

В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.

sovet-ingenera.com

Для чего нужен дроссель

Характеристики энергосберегающей лампы предполагают наличие балласта, поглощающего лишнюю мощность в электроцепи. В лампе мощностью 36-40 Вт дроссель забирает около 6 Вт (15%).

Основные функции дросселя:

  • подогрев катодов для их подготовки к эмиссии электронов;
  • создание напряжения, необходимого для стартового разряда;
  • ограничение тока, протекающего по электрической схеме после старта.

В цепи переменного тока дроссель обеспечивает сдвиг фаз между током и напряжением. Величина отставания тока от напряжения, которую вызывает дроссель, указана в его маркировке (cos ϕ). Данная характеристика имеет еще одно название – коэффициент мощности.

Активная мощность определяется по формуле:

P = U х I х cos ϕ, где

U – напряжение,

I – сила тока.

При низком коэффициенте мощности растет потребление реактивной энергии.

Дроссели классифицируются по уровню мощности и шума.

По уровню мощности дроссели делятся на три класса:

  • С – с низким уровнем;
  • В – с супернизким;
  • D – со средним уровнем поглощения.

Технические характеристики дросселя должны соответствовать мощности лампы: в противном случае она быстро придет в негодность.

Различаются дроссели и по уровню шума:

  • С – очень низкий;
  • А – особо низкий;
  • П – пониженный;
  • Н – нормальный.

Принцип работы

Устройство в лампе работает в паре со стартером:


  • при подаче напряжения на лампу ток попадает на стартер – элемент, состоящий из баллона и конденсатора (в баллоне, заполненном инертным газом, размещены контакты из биметалла);
  • под воздействием напряжения происходит ионизация газа, и ток протекает по цепи дросселя. Газ и контакты разогреваются, что приводит к увеличению силы тока до 0,5 А. Следом разогреваются и катоды и освобождаются электроны. Они, в свою очередь, способствуют разогреву ртутных паров, помещенных в трубку лампы;
  • как только контакты замыкаются, завершается ионизация. Температура стартера падает, контакты размыкаются.

Самоиндукция, которая возникает в дросселе, накладывается на амплитудные колебания электрической сети. Это приводит к пробиванию газового наполнения лампы, и ток снова устремляется через дроссельную цепь и катод.

Как подобрать

Выбирая дроссель к люминесцентной лампе, в первую очередь обращайте внимание на его мощность: она должна совпадать с мощностью светильника.

Немаловажную роль при выборе играет и производитель: лучше, если это будет известная компания, продукция которой широко применяется. Покупая дешевые изделия неизвестных изготовителей, вы рискуете напрасно выбросить деньги.

Еще один вопрос, требующий решения: какой дроссель вы хотите купить – электронный или электромагнитный. Цены на них заметно отличаются.

Cтоимость электромагнитного дросселя в зависимости от мощности начинается примерно со 150 рублей (импортный вариант), а
минимальная цена на электронный дроссель составляет около 500 рублей.

Рекомендуем Вам также более подробно ознакомиться с мощностью люминесцентных ламп.

Электронный дроссель не требует установки стартера в лампу.


Классификация приборов

В люминесцентных лампах могут использоваться электромагнитные или электронные дроссели. Каждому из видов присущи определенные достоинства и недостатки.

Электромагнитные

Электромагнитный дроссель представляет собой катушку с металлическим сердечником. Для обмотки используются медный и алюминиевый провода. От их диаметра зависит нормальная работа светильника. Потери мощности устройства составляют от 10 до 50%.

Чем мощнее люминесцентная лампа, тем меньше процент потерь мощности.

Люминесцентные лампы с электромагнитными дросселями стоят недорого, не требуют дополнительной настройки. Однако электромагнитный дроссель весьма чувствителен к нестабильности электрической сети. Малейшее колебание приводит к мерцанию лампы и повышению уровня шума: светильник начинает гудеть.

Перед зажиганием лампы из-за несинхронности работы дросселя с частотой сети происходят вспышки. Они приводят к ускоренному износу ПРА.

На разогревание электромагнитного дросселя тратится четверть мощности светильника.

Два класса электромагнитных дросселей – D и С – запрещены Европейской комиссией. На данный момент на рынке можно найти люминесцентные лампы с электромагнитными дросселями только классов В1 и В2. Они характеризуются пониженными потерями электроэнергии.


Электромагнитные дроссели имеют право на жизнь, они обеспечивают достаточную надежность светильников. Но сейчас их активно вытесняют электронные балласты.

Рекомендуем Вам также ознакомиться как сделать своими руками блок питания из энергосберегающей лампы.

Электронные ПРА

Электронный дроссель имеет более сложную конструкцию. В его состав входят:

  1. Фильтр электромагнитных помех. Гасит электромагнитные импульсы самого светильника и устраняет внешние помехи – от сети.
    выпрямитель: служит для преобразования тока.
  2. Схема коррекции коэффициента мощности. Отвечает за контроль сдвига по фазе переменного тока, который проходит через нагрузку.
  3. Фильтр сглаживающий. Снижает уровень пульсации переменного тока.
  4. Инвертор. Отвечает за преобразование постоянного тока в переменный.
  5. Балласт. Индукционная катушка, участвующая в накоплении энергии, подавлении помех и плавной регулировке яркости свечения.

Некоторые модели ЭПРА оснащаются защитой от перепадов напряжения (колебаний напряжения в электрической сети или ошибочного пуска устройства без лампы).

При включении лампы ток из выпрямителя поступает на буфер конденсатора. Там происходит сглаживание частоты пульсации. Высокое напряжение попадает на инвертор и заряжает микросхемы и конденсаторы.

При достижении напряжения 5,5 В микросхема сбрасывается. Зарядка конденсатора обратной связи (компенсационной) регулируется транзисторами. Как только напряжение достигнет 12 В, система входит в следующую фазу – предварительного нагрева.

Поджиг происходит при минимальном значении напряжения 600 В. Этот процесс происходит всего за 1,7 сек.

В отличие от электромагнитного, электронный дроссель не допускает чрезмерного нагревания осветительного прибора, поэтому возникновения пожара можно не бояться.

Схема подключения с люминесцентными лампами 2х18

Для подключения двух ламп мощностью 18W требуется индукционный тип устройства мощностью не менее 36 Вт (подойдет ПРА на 40 Вт) и два стартера S2 на 4-22 Вт.

Читайте также более подробно про люминесцентный светильник 2х36.

Стартеры подключаются параллельно каждой лампе. В результате будут задействованы по одному контакту-штырю с каждой стороны лампы. Остальные контакты подключаются через индукционный дроссель к питающей электрической сети.

Снизить помехи и компенсировать реактивную мощность можно при помощи конденсатора, подключенного параллельно к питающим контактам осветительного прибора.

Присутствие конденсатора не требуется, если в люминесцентной лампе предусмотрена встроенная защита.

Вариантов, подключения ПРА и ЭПРА множество, поэтому далее приведет несколько понятных рисунков-схем с самыми распространенными видами соединений.

Ремонт своими руками

Электромагнитный дроссель можно изготовить и своими руками. Но делается это редко. Гораздо чаще умельцы самостоятельно восстанавливают ПРА, так как приобрести нужную модель не всегда удается (особенно трудно найти ее в «глубинке»).

С устройства снимается защитный чехол и две половинки сердечника (они имеют Г-образную форму). Затем снимается обмотка. Если по каким-то причинам снятие витков провода затруднено, их можно срезать, используя ножовку по металлу.

Для новой обмотки можно использовать медный провод диаметром 0,64-0,8 мм. Тысячу витков наматывают без межслойной изоляции внавал.

Чем больше мощность дросселя, тем проще его восстановить. Маломощные (следовательно, и малогабаритные) дроссели заливаются компаундом, что делает процесс их восстановления весьма проблематичным.

На перемотку дросселя уходит не более двух часов.

Сравнение двух видов дросселей позволяет сделать вывод, что несомненное преимущество имеют ЭПРА. Они легче и меньше по габаритам. Такие характеристики облегчают создание миниатюрных осветительных приборов, потребность в которых неуклонно возрастает.

finelighting.ru

Где еще применяется?

Дроссель используется все реже, быть может, со временем он выйдет из употребления за ненадобностью. Ведь подключение газоразрядной лампы таким способом является основной сферой применения данного прибора. Дроссель играет решающую роль в работе люминесцентной лампы, так как создает приемлемые условия для работы осветительного прибора данного вида: сдерживает возрастающий ток на определенном уровне, что позволяет поддерживать достаточное значение напряжения на электродах в колбе.

Эта особенность переводит дроссель в разряд балласта. Кроме того, схема подключения люминесцентной лампы содержит еще один элемент – стартер. Он ответственен за размыкание цепи.

Это приводит к возникновению ЭДС самоиндукции в дросселе, что, в свою очередь, способствует повышению напряжения до уровня 700-1000В. Результатом данных процессов является пробой и включение люминесцентной лампы.

Принцип работы и обзор видов

Устройство дросселя для газоразрядных ламп довольно простое: по сути, это катушка индуктивности с ферромагнитным сердечником. Такой прибор используется, только если схема предусматривает подключение лампы с помощью электромагнитного пускорегулирующего аппарата. Электронный ПРА содержит в своей конструкции стабилизатор и преобразователь частоты, эти элементы позволяют зажечь свет, так как реализуют функции дросселя и стартера.

Чтобы ответить на вопрос, зачем нужен дроссель, рекомендуется сначала понять принцип его работы. При включении в цепь происходит сдвиг фаз между основными электрическими параметрами: напряжением и током. Это отставание определяется такой характеристикой, как cosφ (коэффициент мощности). При определении расчетного значения активной составляющей нагрузки учитывается данная величина. Если показатель коэффициента мощности небольшой, возрастает уровень нагрузки. Поэтому в схему включают еще и конденсатор с компенсационной функцией.

Схема подключенияИспользуя данный элемент (3-5 мкФ) при подключении люминесцентных ламп, мощность которых достигает 36 Вт, можно добиться увеличения cosφ до 0,85. Минимальный предел мощности люминесцентных ламп в данном случае – 18 W. Емкость конденсатора для источников света 18 W и 36 W может быть одинаковой. Уровень выдерживаемой дросселем нагрузки должен соответствовать мощности источника света.

Различают несколько исполнений таких приборов, каждое из которых отличается по величине потери мощности:

  • D (обычный);
  • В (пониженный);
  • С (самый низкий).

Принцип действия дросселя предполагает расход части мощности не по прямому назначению, а на нагрев прибора. Полезная работа при этом не выполняется, а значит, уровень потерь определяет эффективность функционирования: чем выше эта величина, тем больше греется дроссель для подключения люминесцентной лампы.

Основные плюсы

Несмотря на то, что сегодня популярность ЭмПРА заметно снизилась, такие приборы все равно используются. Это обусловлено рядом преимуществ:

  • обеспечение безопасной работы люминесцентной лампы, для чего нужен еще и стартер;
  • возможность сдерживать ток на определенном уровне;
  • частичная стабилизация светового потока, но принцип работы ЭмПРА таков, что полностью убрать мерцание газоразрядных ламп невозможно;
  • доступная цена.

Именно благодаря последнему фактору из вышеназванных, пускорегулирующее устройство электромагнитного типа с дросселем сегодня еще используется. Кроме того, эти приборы отличаются простотой монтажа и несложной эксплуатацией.

Если есть проблемы в работе ламп, подключенных через дроссель (например, они не включаются), проверяется схема на предмет ошибок и качество соединения (подключение, обрывы проводов).

В случае, когда видимых причин нет, следует проверить исправность дросселя. Сделать это можно, подключив рабочую лампу накаливания. При обрыве источник света не горит, при витковом замыкании – светит в полную силу. Нормальный режим работы – вполнакала.

Варианты включения люминесцентных источников света

Схема подключения ламп данного вида через стартер и дроссель выглядит следующим образом:

Можно выбрать вариант с компенсационным конденсатором или без него, все зависит от коэффициента мощности. От того, какой тип стартера используется, будет зависеть количество подключаемых последовательно ламп:

Схема подключения последовательная

Принято считать, что без ПРА невозможно включить газоразрядный осветительный прибор. Это не совсем так. Если изменить схему, то бездроссельное подключение выполнить вполне реально. Чтобы обеспечить нормальные условия работы люминесцентного источника света, напряжение сети должно быть удвоенным и выпрямленным, для чего в схему вводится выпрямитель. А вместо балласта используется миниатюрная лампа накаливания, резистор или конденсатор для этой цели не подходит.

Непосредственно, схема подключения через источник света с нитью накаливания и выпрямителем:

Подключения через лампу с нитью накаливания и выпрямителем

Таким образом, газоразрядные лампы, в частности, люминесцентные исполнения, будут работать, если предусмотреть для них пускорегулирующее устройство. В зависимости от его типа (электронный или электромагнитный вариант) можно обеспечить разный уровень эффективности освещения. ЭмПРА включает в себя дроссель и стартер.

Первый из элементов создает нормальные условия для функционирования источника света (сдерживает рабочий ток на определенном уровне), поэтому считается, что без него освещение работать не будет. Но альтернатива есть – схема питания без дросселя, но с удвоенным напряжением источника питания.

proosveschenie.ru

Назначение стартеров и дросселей

  • Стартеры. Как и на автомобиле, на люминесцентной лампе стартер играет роль пускового механизма. Стартер нужен для зажигания лампы. Обычно напряжение зажигания в стартере выше рабочего напряжения в сети. Стартер смыкает и размыкает электрическую цепь во время работы лампы, на короткое время, прогревая рабочий электрод.
  • Дроссели. Они играю роль трансформатора и стабилизатора для правильной работы лампы. Дроссель предохраняет лампу от перегрева и перепадов напряжения и берет всю нагрузку на себя.

Устройство стартеров и дросселей и принцип их работы

Стартер состоит из небольшой стеклянной колбы, заполненной газом. Колба размещается внутри металлического или пластикового корпуса. На нижней стороне стартера имеются два электрода, которые непосредственно вступают в контакт с проводами лампы во время работы. Сверху стартера иногда бывает окошко. Стартеры часто выходят из строя, но их очень легко заменить, потому что они съемные.

Дроссель представляет собой катушку в металлической оболочке. По мощности устанавливается такой же, как и сама лампа. Без дросселя лампа не будет работать. Дроссель поджигает находящиеся в лампе пары ртути и ограничивает подачу тока. Дроссель стабилизирует напряжение в сети, если оно выше номинального.

Принцип работы стартера и дросселя заключается в том, что один элемент (стартер) запускает в работу электроды, а дроссель поддерживает эту работу. При включении тока в цепи первым включается стартер. Он прогревает электроды, увеличивается подача тока на прибор, нагревается биметаллическая пластина стартера. После того, как электроды прогрелись, контакт размыкается, и ток передается на дроссель. Некоторое время дроссель накапливает напряжение, газ в колбе пробивается, и лампа загорается.

При работе ток равномерно распределяется между дросселем и лампой, что обеспечивается стабильную работу даже при условии повышенного напряжения. Дроссель не расходует энергию на себя, он всего лишь накапливает ее и преобразовывает.

Устройство дросселя для люминесцентных лампБез стартера, в основном, невозможно включение лампы, использующей определенные дроссели. Она просто не загорится. Тогда как при дальнейшей работе лампы стартер не нужен. Можно даже вытащить его, если необходимо, и проверить его или заменить во время работы лампы. Но последующее включение потребует наличия стартера. Также возможна работа лампы без стартера, напрямую. В таком случае лампа зажигается путем холодного старта, что значительно снижает срок ее службы. Дроссель обеспечивает работу лампы. Без него лампа работать не будет.

Разновидности стартеров

  • Стартеры тлеющего ряда – лампа с биметаллическими электродами. Такие стартеры чаще используются, так как у них упрощенная конструкция и сравнительно небольшое время зажигания.
  • Тепловые стартеры – характеризуются увеличенным временем зажигания, за счет чего электроды нагреваются дольше, что положительно сказывается на работе лампы. Однако такие стартеры имеют более сложное строение, дополнительно потребляют энергию на себя, схема их подключения имеет сложное строение.
  • Полупроводниковые стартеры. Их работа построена по принципу ключа. После нагревания электродов напряжение размыкается, и в колбе происходит возникновение импульса.

Разновидности дросселей для люминесцентных ламп

  • Электромагнитные дроссели – подключаются последовательно с лампой. Для работы электромагнитного дросселя необходим стартер, то есть, холодный запуск уже будет невозможен. У них очень большой недостаток – во время работы лампа мерцает.
  • Электронные дроссели – сравнительно недавнее изобретение. Его несравненное преимущество – упрощенная схема подключения, так как для его работы не нужен стартер. Благодаря таким дросселям снижается мерцание лампы, при запуске лампа не пульсирует. Снижается шум при работе лампы.

Какой производитель лучше?

Устройство дросселя для люминесцентных лампЗдесь нельзя дать однозначного ответа. Каждый производитель элементов для работы люминесцентных ламп старается выпускать хорошую продукцию. Поэтому, выбор будет основан на результатах личного опыта или опыта знакомых. Наиболее известные производители дросселей – Chilisin, Luxe, Vossloh schwabe, Navigator, стартеров: пожалуй, наиболее востребованный производитель, — Philips. В основном, дроссели и стартеры идут в комплекте с лампой. Если же потребуется купить запасные элементы, или заменить перегоревшие, можно выбрать что-нибудь из этих производителей.

Сроки службы стартеров и дросселей

Как заявляют производители, стартер должен выдержать не менее 6 тысяч включений лампы. При этом рабочий диапазон должен быть от + 5° С до + 55 ° С. Дроссели при нормальных условиях эксплуатации должны проработать около 3-х лет. Опять же, все зависит от производителя и вероятность попадания брака.

Как выбрать стартер и дроссель

Для начала нужно решить, какой тип запуска у вас будет. Если вы воспользуетесь электронными дросселями, то стартер будет не нужен. При выборе электромагнитных дросселей нужно задуматься о покупке стартера, ведь без него лампа гореть не будет.

  • Выбирайте проверенного производителя, не гонитесь за дешевизной.
  • Берите сразу с запасом – вдруг попадется бракованная или плохо работающая деталь.
  • Если вы ничего не понимаете в электричестве, доверьте это дело профессионалам. Или посоветуйтесь с людьми, которые имели опыт работы с люминесцентными лампами.

Как заменить стартер

Пожалуй, с этой работой легко сможет справиться даже новичок. Иногда случается так, что лампа горит некоторое время и гаснет. Значит, нужно проверить стартер. Чтобы заменить стартер, нужно выключить лампу и снять плафон. Испорченный стартер вытаскивается из лампы поворотом против часовой стрелки. Чтобы подключить новый стартер, достаточно вставить его в пазы и повернуть по часовой стрелке. Вот и все – стартер прочно стоит на своем месте.

Как заменить дроссель

Большинство умельцев предпочитают отремонтировать дроссель, но для этого потребуются технические навыки. Поэтому проще дроссель заменить. Перед заменой дросселя нужно отключить электричество во всем доме, так как простое выключение светильника не избавит от напряжения на лампе. После этого можно демонтировать вышедший из строя дроссель. Снимаем крепеж и отсоединяем провода, по которым ток идет к лампе. Теперь остается подсоединить провода в том порядке, каком они были подсоединены изначально, и поставить дроссель на свое место.

Можно ли обойтись без электромагнитного дросселя для работы люминесцентных ламп?

Потребность люминесцентных ламп в пусковых устройствах обусловлена особенностями конструкции. Лампа представляет собой герметично запаянную трубку, наполненную ртутными парами. Для того чтобы она начала светиться, необходимо получить достаточной силы электрический разряд. Под воздействием ртути разряд начинает излучать ультрафиолет, на который реагирует люминофор, покрывающий внутреннюю поверхность трубки – в итоге получаем свечение в пределах видимого человеческим глазом спектра.

Слабое место такой лампы при всех её остальных достоинствах вроде долгосрочной работы – отрицательное внутреннее сопротивление. Без пускорегулирующего аппарата светиться она не сможет. Для этих целей и служит электромагнитный балласт для люминесцентных ламп.

Принцип работы электромагнитного дросселя для люминесцентных ламп

  • в подготовке катодов к эмиссии электронов, то есть, их подогреве;
  • в создании напряжения для стартового разряда;
  • в ограничении тока, протекающего по устройству, после старта.

Схема дросселя для люминесцентных ламп выглядит следующим образом.
Устройство дросселя для люминесцентных ламп

  1. После включения лампы ток попадает в стартер, представляющий собой группу из баллона и конденсатора, запаянную в отдельный кожух. Баллон заполнен инертным газом. Внутри него размещены биметаллические контакты. Конденсатор прикреплён к выходам этих контактов. Его основное предназначение – подавление помех.

Устройство дросселя для люминесцентных ламп В точечных светильниках для подвесного потолка используются галогенные, светодиодные или обычные лампы накаливания. От выбранного вида источника света будет зависеть порядок установки светильников в потолок.

В аналогичном порядке, но со своими особенностями, проводят монтаж точечных светильников в гипсокартон.

  • Газ внутри баллона ионизируется. Ток протекает по цепи дросселя. Контакты разогреваются вместе с газом — сила тока увеличивается до 0,5 Ампера. Затем нагреваются катоды и электроны, высвободившиеся в процессе, подогревают ртутные пары в трубке лампы.
  • Ионизация завершается вместе с замыканием контактов. Стартер охлаждается и контакты размыкаются. Происходит это мгновенно. Ток перестаёт проходить через цепь стартера и катод.

    Возникающая в ПРА самоиндукция накладывается на амплитудные колебания сети – происходит пробивание газового наполнения трубки – ток вновь устремляется через цепь дросселя и катод.

  • Возникший в ртутных парах разряд вызывает свечение в ультрафиолетовом спектре. Под его воздействием люминофор производит видимый человеку свет.
  • Сопротивление работающей лампы снижается. Это вызывает понижение напряжения на обмотке ПРА (до 110 Вольт).
  • Стартер отключается (его рабочее напряжение 220 Вольт) и остывает.
  • Недостатки ПРА — анализируем особенности конструкции

    У электромагнитных ПРА немало приверженцев. Люминесцентные светильники с этим устройством просты в использовании и стоят недорого. После покупки не требуется никакой дополнительной настройки. Лампа подключается к питанию и начинает работать. А «маленькие недостатки» хозяева ей прощают, так как ценят такие осветительные приборы, прежде всего, за бюджетную цену.

    Но, если проанализировать качество работы лампы с дросселем, выясняется – экономия для домашнего бюджета с таким приобретением весьма сомнительная.

    Устройство дросселя для люминесцентных ламп Подключают терморегулятор для инфракрасного обогревателя с целью контроля и поддержания в автоматическом режиме установленных пользователем температур. Порядок монтажа зависит от количества обогревательных приборов.

    Для защиты постоянно включенного в сеть холодильника применяют стабилизаторы напряжения. О способах подключения другого бытового электроприбора — плиты — можно прочитать тут.

    Дроссельный пусковой механизм очень чувствителен к нестабильности сети. Малейшее колебание напряжения тут же сказывается на лампе. Она начинает мерцать, раздражая зрение и потреблять больше электроэнергии. А ещё в этот момент явственно слышится характерное гудение.

    При такой работе срок эксплуатации оказывается меньшим, чем был заявлен производителем изначально.

    Не меньшее влияние на продолжительность службы оказывают и другие технические особенности конструкции:
    Устройство дросселя для люминесцентных ламп

    • При вспышках перед зажиганием лампы, происходящих из-за несинхронной с частотой сети работы дросселя, его изнашиваемость ускоряется в несколько раз.
    • Четверть мощности осветительного прибора расходуется на разогревание электромагнитного балласта для люминесцентных ламп, что помимо потерь электроэнергии повышает опасность возникновения пожара. Ведь греется стартер иногда до 100 и больше градусов.
    • Вышедший из строя конденсатор ПРА невозможно определить на глаз. Внешне всё выглядит как прежде, хотя коррекция коэффициента мощности в лампе уже не происходит.

    В таком случае потребуются дополнительные знания — как проверить дроссель люминесцентной лампы.

    Факт запрета Европейской комиссией двух классов ПРА из четырёх весьма красноречив. Класс D запрещён в 2004, C – в 2006 году. Сейчас на рынке можно встретить только класс B1 и В2. Это классы с пониженными потерями электроэнергии.

    Конечно, каждый решает для себя сам, отдать ли предпочтение такой классике, как электромагнитный ПРА, или не пожалеть денег и найти ему альтернативу — электронный балласт для люминесцентной лампы. Без сомнения, в определённых случаях технология, отработанная в течение десятилетий, обеспечивает достаточную надёжность и является заслуженно востребованной.

    Электронный и электромагнитный дроссель для люминесцентных ламп

    Несмотря на повышение спроса на светодиодные источники света, люминесцентные лампы все еще остаются на пике популярности. Во многом это объясняется относительно небольшой стоимостью осветительного устройства и пускорегулирующего аппарата (далее ПРА), необходимого для его работы. Рассмотрим функциональное назначение и принцип работы последних.

    Основные функции

    Люминесцентные источники света не представляется возможным напрямую включить в электрическую сеть. На это имеются следующие причины:

    • чтобы создать стойкий разряд в лампе люминесцентного типа, необходимо предварительно разогреть ее электроды и подать на них стартовый импульс;
    • поскольку источники света газоразрядного типа обладают отрицательным дифференциальным сопротивлением, для них характерно после выхода в рабочий режим возрастание силы тока. Его необходимо ограничивать, чтобы не допустить выхода источника света из строя.

    Исходя из описанных выше причин, необходимо использовать ПРА.

    Устройство дросселя для люминесцентных ламп

    ПРА электромагнитного типа

    Принцип работы

    Рассмотрим принцип работы электромагнитного дросселя на примере типичной схемы подключения для ламп газоразрядного типа .

    Устройство дросселя для люминесцентных ламп

    Типичная схема подключения

    На схеме обозначены:

    • EL – лампа газоразрядного (люминесцентного) типа;
    • SF – стартер, он представляет собой устройство состоящее из колбы, наполненной инертным газом, внутри нее находятся контакты из биметалла. Параллельно к колбе установлен конденсатор;
    • LL –дроссель (электромагнитный);
    • спирали лампы (1 и 2);
    • C – конденсатор (компенсирует реактивную мощность), его емкость зависит от мощности лампы, ниже показана таблица соответствия.

    Мощность газоразрядного источника (Вт)

    Емкость конденсатора (мкФ)

    Встречаются устройства, в схемах которых отсутствует компенсирующий конденсатор, это недопустимо, поскольку реактивная нагрузка приводит к следующим негативным последствиям:

    • происходит увеличение потребляемой мощности, что приводит к повышенному расходу электроэнергии;
    • существенно сокращается ресурс оборудования.

    Теперь перейдем непосредственно к принципу работы, приведенной выше типовой схемы. Условно ее можно разделить на следующие этапы:

    • при подключении к электросети, через цепь дроссель «LL» – спираль « 1» – стартер «SF» – спираль «2» начинает проходить ток, сила которого от 40 до 50 мА;
    • под воздействием этого процесса в колбе стартера ионизируется инертный газ, что приводит к повышению силы тока и разогреву биметаллических контактов;
    • нагревшиеся электроды в стартере замыкаются, это вызывает резкое повышение силы тока, примерно до 600 мА. Дальнейший его рост ограничивает индуктивность дросселя;
    • за счет увеличившейся силы тока в цепи происходит разогрев спиралей (1 и 2), в результате чего ими излучаются электроны, разогревается газовая смесь, что приводит к разряду ;
    • под воздействием разряда возникает ультрафиолетовое излучение, которое попадает на покрытие из люминофора. В результате он светится в видимом спектре;
    • когда источник света «зажигается», его сопротивление уменьшается, соответственно, понижается напряжение на дросселе (до 110 В);
    • контакты стартера остывают и размыкаются.

    Тандемное подключение

    Ниже показана схема, где две лампы люминесцентного типа включены последовательно.

    Устройство дросселя для люминесцентных ламп

    Схема тандемного подключения

    Принцип работы у представленной схемы не отличается от типового подключения, единственная разница — в параметрах стартеров. При двухламповом подключении применяются стартеры, у которых «пробивное» напряжение 110 В (тип S2), для однолампового – 220 В (тип S10).

    Устройство дросселя для люминесцентных ламп

    Стартеры S10 и S2 на 220 и 110 В соответственно

    Особенности дросселей электромагнитного типа

    Говоря об особенностях электромагнитных ПРА, необходимо заметить, что единственные преимущества этих устройств – относительно невысокая цена, простая эксплуатация и несложный монтаж. Недостатков у классической схемы подключения значительно больше :

    • наличие громоздкого и «шумного» дросселя;
    • стартеры, к сожалению, не отличаются надежностью;
    • наличие эффекта стробирования (лампа мерцает с частотой 50 Гц) вызывает повышенную утомляемость у человека, что приводит к снижению его работоспособности;
    • при вышедших из строя стартерах проявляется фальстарт, то есть лампа, перед тем как «зажечься», несколько раз мигает, это снижает рабочий ресурс источника света;
    • примерно около 25% мощности расходуется на электромагнитный балласт, в результате существенно снижается КПД.

    Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков.

    Пускорегулирующий аппарат электронного типа (ЭПРА)

    Массово ЭПРА появились не так давно, около тридцати лет назад, в настоящее время они практически вытеснили электромагнитные устройства. Этому способствовали многочисленные преимущества перед классической схемой включения, назовем основные из них:

    • повышение световой отдачи ламп люминесцентного типа благодаря высокочастотному разряду;
    • отсутствие шума, характерного для низкочастотных электромагнитных дросселей;
    • снижение эффекта стробирования значительно расширило сферу применения;
    • отсутствие фальстарта увеличивает срок эксплуатации люминесцентных источников;
    • КПД может достигать 97%;
    • по сравнению с ПРА электромагнитного типа, энергопотребление снижено на 30%;
    • нет необходимости компенсировать реактивную нагрузку;
    • в некоторых моделях электронных устройств предусмотрено управление мощностью источника освещения, это производится регулировкой частоты в преобразователе напряжения.

    Устройство дросселя для люминесцентных ламп

    ЭПЛА внешний вид и внутренне устройство

    Стоит также отметить: благодаря отсутствию громоздкого дросселя, стало возможным уменьшить размеры электронного балласта, что позволило разместить его в цоколе. Это существенно расширяет сферу применения, делая возможным использование в осветительных приборах вместо источников, в которых используется нить накала.

    Устройство дросселя для люминесцентных ламп

    ЭПРА, размещенный в цоколе

    В качестве примера приведем схему простого электронного балласта, типичную для большинства недорогих устройств.

    Устройство дросселя для люминесцентных ламп

    Схема типичного ЭПРА

    • номиналы резисторов: R1 и R2 -15 Ом, R3 и R4 – 2,2 Ом, R5 – 620 кОм, R6 – 1,6 Мом;
    • используемые конденсаторы: C1 – 47 нФ 400 В, С2 – 6800 пФ 1200 В, С3 – 2200пФ, С4 – 22 нФ, С5 – 4,7 мкФ 350 В;
    • диоды: VD1-VD7 – 1N400;
    • транзисторы: Т1 и Т2 – 13003;
    • диодный симистор VS – DB3.

    Завершая тему ЭПРА, необходимо заметить — их существенным недостатком является относительно высокая стоимость качественных устройств. Что касается недорогих моделей, надежность таковых оставляет желать лучшего.

    Подключение без балласта

    При необходимости газоразрядные источники света возможно включить в сеть питания без электромагнитного или электронного балласта. Схема такого включения показана ниже.

    Устройство дросселя для люминесцентных ламп

    Бездроссельный способ подключения

    Для реализации такого подключения понадобится:

    • лампа люминесцентного типа – 40 Вт и накаливания – 60 Вт (последняя будет работать как балластное сопротивление);
    • два конденсатора 0,47 мкФ 400 В (играют роль умножителя);
    • диодный мост КЦ404А или аналогичный, можно использовать четыре диода, рассчитанных под ток не менее 1 А и обратное импульсное напряжение 600 В.

    Данная схема проигрывает по своим параметрам подключению при помощи электромагнитного дросселя и ЭПРА. Она приведена для ознакомления.

    Источники: http://www.komfortek.com/e-lektrosnabzhenie/osveshhenie/startery-i-drosseli-dlya-lyumenestsentnyh-lamp.html, http://elektrik24.net/osvetitelnye-pribory/lampy/energosberegayushhie/lyuminescentnye/drossel.html, http://www.asutpp.ru/osveshhenie/drossel-dlya-lyuminescentnyx-lamp.html

    electricremont.ru


    Categories: Свет

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.