И так друзья всем привет. Все началось с того что я как и многие автомобилисты решил заменить по возможности все лампочки на светодиодные, потому как у них огромное количество плюсов. Потребляют меньше, светят ярче и т.д. Но вот проблема я как и многие столкнулся с тем что светодиоды в машине горят через некоторое время. Встал вопрос ПОЧЕМУ и как с этим бороться?
Для начала я приведу цитату, которая неоспоримо верна:
"Светодиод питается ТОКОМ. Нет у него параметра НАПРЯЖЕНИЕ. Есть параметр — падение напряжения! То есть сколько на нем теряется.
Если написано на светодиоде 20мА 3.4В, то это значить что ему надо не больше 20 миллиампер. И при этом на нем потеряется 3.4 вольта.
Не для питания нужно 3.4 вольта, а просто на нем «потеряется»!
То есть вы можете питать его хоть от 1000 вольт, только если подадите ему не больше 20мА. Он не сгорит, не перегреется и будет светить как надо, но после него останется уже на 3.4 вольта меньше. Вот и вся наука.
Ограничьте ему ток — и он будет сыт и будет светить долго и счастливо."


Вроде бы все ясно. Но в то же время непонятно. Почему светодиод должен брать больше тока чем ему положено? ведь обычная лампочка на 220 горит и не увеличивает свое потребление тока и нам не нужно думать над тем что бы ограничивать ей напряжение или ток. Что же происходит со светодиодом что он начинает потреблять больше чем ему нужно?
Ответ достаточно простой:
Светодиод это нелинейный прибор у которого в зависимости от его температуры изменяется сопротивление.
А это означает что чем сильнее нагревается светодиод тем больше тока он начинает потреблять что в свою очередь ведет к еще большему нагреву и т.д. Как вы уже поняли до тех пор пока он не сгорит

Здесь я приведу видео которое наглядно показывает что происходит с потреблением тока светодиодом в зависимости от его нагрева:

в продолжении ролика скажу что в дальнейшем ленточка попросила еще больше тока для себя по мере нагрева.

Встает вопрос что же делать? как с этим бороться? Ответов целых 3))
1. Обеспечить светодиоду должное охлаждение (Этот вариант во многих случаях не подходит, из за отсутствия места. В штатных местах расположения лампочек.
2. Обеспечить светодиоду кратковременную работу (дабы он не успевал нагреваться) Я поставил себе в плафоны дверей светодиоды которые прожили уже 2 года и все пучком.
3. Ограничить светодиоду потребление тока
На 3 пункте остановимся по подробнее.


раничить ток светодиоду можно несколькими способами. Все наверное слышали что можно поставить сопротивление в цепь со светодиодом и все будет хорошо. Но лично я против такого метода. По некоторым причинам. подробно расписывать почему я не буду.
Лучше и правильнее всего применять ДРАЙВЕР для ограничения тока. Драйверов и схем оных в сети полно. Но главное помнить что нам нужно ограничить именно ТОК.
Лично я выбрал для этих целей вот такие драйвера:
Это именно он на первой фотке. Данный драйвер может ограничивать как напряжение так и ток. Для настройки этих параметров на нем есть два переменных резистора (синенькие такие)) в итоге мы стабилизируем как ток так и напряжение. Что приведет к долгой и счастливой жизни наших с вами пересвеченных приборок и всего остального светодиодного в автомобиле. Настраивать данные параметры лучше в машине с заведенным двигателем (!)
Производитель заявляет о том что этот конкретно драйвер может отдавать АЖ до 5 Ампер (для сравнения вы видели в видео как полоска светодиодов в 25 см потребляет лишь 210 МИЛИампер. Для справки 1000 милиампер = 1 амперу) Но как правило китайцы пишут максимальные ПИКОВЫЕ значения (то есть значения которые драйвер может выдать КРАТКОВРЕМЕННО перед тем как отдать концы) Но я лично предполагаю что 3 ампера он сможет отдавать спокойно и не сильно при этом нагреваясь. Так что от одного такого драйвера можно запитать Некислое такое количество светодиодов)
Сразу же приведу ссылочку из всеми нами любимого китайского супермаркета на эти драйвера:ВОТ ОНИ К стати стоят всего 80 рублей.

вот собственно и все. Надеюсь что эта информация стала вам полезной. Питайте светодиоды в ваших авто правильно и вам не придется их менять)
Всем спасибо!

Источник: www.drive2.ru

Историческая справка


Исторически изобретателями светодиодов считаются физики Г. Раунд, О. Лосев и Н. Холоньяк, которые по-своему дополняли технологию в 1907, 1927 и 1962 годах, соответственно:

  1. Г. Раунд исследовал излучение света твердотельным диодом и открыл электролюминесценцию.
  2. О. В. Лосев в ходе экспериментов открыл электролюминесценцию полупроводникового перехода и запатентовал «световое реле».
  3. Н. Холоньяк считается изобретателем первого светодиода, применяемого на практике.

Светодиод Холоньяка светился в красном диапазоне. Его последователи и разработчики дальнейших лет разработали жёлтый, синий и зелёный светодиоды. Первый элемент высокой яркости для применения в волоконно-оптических линиях был разработал в 1976 году. Синий светодиод  LED был сконструирован в начале 1990-х трио японских исследователей: Накамура, Амано и Акасаки.

Эта разработка отличалась крайне малой себестоимостью и, по сути, открыла эпоху повсеместного применения LED-светодиодов. В 2014 году японские инженеры получили за это Нобелевскую премию по физике.

В нынешнем мире светодиоды встречаются повсеместно:


  • в наружном и внутреннем освещении светодиодными лампами и лентами;
  • как индикаторы для буквенно-цифровых табло;
  • в рекламной технике: бегущих строках, уличных экранах, стендах и т.п;
  • в светофорах и уличном освещении;
  • в дорожных знаках со светодиодным оснащением;
  • в USB-устройствах и игрушках;
  • в подсветке дисплеев телевизоров, мобильных устройств.

Устройство светодиода

Конструкция светодиода представлена следующими составляющими:

  • эпоксидная линза;
  • кристалл-полупроводник;
  • отражатель;
  • проволочные контакты;
  • электроды (катод и анод);
  • плоский срез-основание.

Устройство простейшего DIP-светодиода

Рабочие контакты закреплены в основании и проходят сквозь него. Другие компоненты лампы находятся внутри неё в герметичном пространстве. Оно образовано спайкой линзы и основания. При сборке на катоде закрепляется кристалл, а на контактах – проводники, которые через p-n-переход подключены к кристаллу.

Что такое OLED?

OLED – это органические полупроводниковые светодиоды, которые производятся из органических компонентов, которые светятся при прохождении электрического тока.
я их производства применяются многослойные тонкоплёночные структуры из различных полимеров. Принцип действия таких светодиодов также базируется на p-n-переходе. Преимущества OLED проявляются в сфере дисплеев – по сравнению с жидкокристаллическими и плазменными аналогами они выигрывают по яркости, контрастности, энергопотреблению и углам обзора. Технология OLED не используется для производства осветительных и индикаторных светодиодов.

Как работает элемент?

Принцип действия светодиода основывается на функциях и свойствах p-n-перехода. Под ним понимается специальная область, в которой имеет место пространственное изменение типа проводимости (от электронной n-области к дырочной p-области). p-полупроводник является носителем положительного, а n-полупроводник – отрицательного заряда (электронов).

В конструкции светодиода положительным и отрицательным электродами выступают анод и катод, соответственно. Поверхность электродов, которая находится снаружи колбы, имеет металлические контактные площадки, к которым припаяны выводы. Таким образом, после подачи положительного заряда на анод и отрицательного – на катод – на p-n переходе начинает протекание электрического тока.

Рекомбинация на p-n переходе

При прямом включении питания дырки из области p-полупроводника и электроны из области n-полупроводника буду направлено двигаться на встречу друг другу. В результате этого на границе дырочно-электронного перехода происходит рекомбинация, то есть обмен, и выделяется световая энергия в виде фотонов.

Для преобразования фотонов в видимый свет материал подбирается таким образом, чтобы длина их волна оставалась в видимых пределах цветового спектра.


Разновидности светодиодов

Последовательное совершенствование открытой в 1962 году технологии привело к созданию разнообразных базовых элементов и моделей светодиодов на их основе. На сегодняшний день классификация проводится по расчётной мощности, типу соединения и типу корпуса.

В первом случае различаются осветительные и индикаторные варианты. Первые предназначены для использования в осветительных целях. Их уровень мощности приблизительно соответствует аналогичным вольфрамовым и люминесцентным лампам. Индикаторные светодиоды не излучают сильный поток света и используются в электронном оборудовании, приборных и навигационных панелях и т.д.

Индикаторные светодиоды между собой различают по типу соединения на тройные AlGaAs, тройные GaAsP и двойные GaP. Аббревиатуры, соответственно, означают алюминий-галлий-мышьяк, галлий-мышьяк-фосфор и галлий-фосфор. AlGaAs светят жёлтым и оранжевым в пределах видимого спектра, GaAsP- красным и жёло-зелёным, а GaP – зелёным и оранжевым.

По типу корпуса представленные в широком применении светодиодные светильники сейчас делятся на:


  • DIP. Это старый форм-фактор из линзы, пары контактов и кристалла. Такие светодиоды применяются в световых табло и игрушках для подсветки;
  • «Пиранья» или Superflux. Это доработанная модель DIP, которая имеет не два, а четыре контакта. Выделяет меньше тепловой энергии и, соответственно, меньше греется. Сейчас применяется в автомобильной подсветке;
  • SMD. Самая популярная технология на современном рынке LED-светильников. Это универсальный чип, монтаж которого был произведён непосредственно на плате. Используется в большинстве источников света, осветительных линий, лент и т.п;
  • COB. Это результат совершенствования технологии SMD. У таких светодиодов есть несколько чипов, монтированных на одной плате на алюминиевом или керамическом основании.

Типы корпусов светодиодов

Технические характеристики и их зависимость друг от друга

Основными функциональными и эксплуатационными параметрами светодиодных светильников являются:

  • интенсивность светового потока (яркость);
  • рабочее напряжение;
  • сила тока;
  • цветовая характеристика;
  • длина волны.

Светодиодное напряжение и яркость выступают прямо пропорциональными величинами – чем выше одна, тем выше другая. Но это не напряжение питающего тока, а величина падения напряжения на приборе. Кроме того, от напряжения зависит и цвет светодиода. Таким образом, между собой связаны яркость, длина волны, напряжение и цвет светодиода, а их соотношение представлено в следующей таблице.

Цвет

Длина волны

Напряжение

Белый Широкий спектр 3,0-3,7 В
Ультрафиолетовый 10-400 нм 3,1-44 В
Фиолетовый 400-450 нм 2,8-4 В
Синий 450-500 нм 2,5-3,7 В
Зелёный 500-570 нм 2,2-3,5 В
Жёлтый 570-590 нм 2,1-2,2 В
Оранжевый 590-610 нм 2,3-2,1 В
Красный 610-760 нм 1,6-2,03 В
Инфракрасный >760 <1,9 В

Принцип действия микроэлемента так устроен, что для стабильной работы в соответствии с номинальными характеристиками необходимо отслеживать не напряжение питания, а силу тока. Светодиоды работают от пульсирующего или постоянного тока, регулируя интенсивность которого можно изменять яркость излучения. Индикаторные светодиоды работают при токе в пределах 10-20 мА, а осветительные – от 20 мА и выше. Так, к примеру, элементы типа COB с четырьмя чипами требуют 80 мА.

Цветовая характеристика

Цвет свечения светодиодного элемента зависит от длины волны, которая измеряется в нанометрах. Для изменения цвета свечения в материал полупроводника на этапе производства добавляются активные вещества:

  • полупроводники обрабатываются аллюминий-индий-галлием (AlInGaP) для получения красного цвета;
  • оттенки зелёного и сине-голубого спектра получаются с использованием индий-нитрида галлия (InGaN);
  • для получения белого свечения на базе синего светодиода его кристалл покрывают люминофором, который преобразует синий спектр в красный и жёлтый свет;
  • для фиолетового свечения применяется индий-галлия нитрид;
  • для оранжевого – галлия фосфид-арсенид;
  • для синего – селенид цинка, карбид кремния или индий-галлия нитрид.

Цветовые характеристики

Аналогично методу получения белого свечения можно использовать люминофоры разных цветов для получения дополнительных оттенков. Так, красный люминофор позволяет выпускать розовые и пурпурные светодиоды, а зелёный – салатных оттенков. В обоих случаях люминофор наносит на основу в виде синего светодиода.

Преимущества


Особенности того, как работает светодиод, дали ему несколько важных эксплуатационных и функциональных достоинств перед другими видами преобразователей электрической энергии в световую:

  • современные светодиоды не уступают по параметрам светоотдачи металлогалогенным и натриевым газоразрядным лампам;
  • конструкция практически полностью исключает выход из строя каких-либо компонентов из-за вибрации и механических повреждений;
  • LED-светильники малоинерционные, то есть моментально достигают полной яркости после включения;
  • современный ассортимент позволяет выбирать модели со спектром от 2700 до 6500 K;
  • внушительный рабочий ресурс – до 100 000 часов;
  • ценовая доступность индикаторных светодиодов;
  • светодиодное освещение, как правило, не требует большого напряжения и сохраняет пожарную безопасность,;
  • температуры ниже 0˚С почти не сказываются на работоспособности устройств;
  • строение светодиода не предусматривает использование фосфора, ртути, других опасных веществ или ультрафиолетового излучения.

Источник: simplelight.info

Что влияет на цвет светодиода?

Может, цвет зависит от окрашенности пластиковой оболочки? А как тогда обстоят дела с SMD-светодиодами, у которых кристалл можно увидеть невооруженным глазом и там уж точно никакой цветной оболочки нет. Давайте же узнаем, почему компонент светится по-разному и от чего это зависит?

Начнем с самого простого варианта. Различный цвет свечения можно получить, просто окрасив его оболочку. Такие встречаются довольно часто, а в их основе находится обычный белый светодиод.

Кстати, устройство обычного белого светодиода не такое уж и простое. В их основе находятся бирюзовые или ультрафиолетовые диоды, в которых для белого свечения применяют специальный состав — люминофор.

Из чего состоят кристаллы?

А как быть с теми, у которых прозрачная оболочка, или же с SMD-светодиодами? В них применяются особые материалы для создания светоизлучающего кристалла.

Наиболее распространенным материалом для производства кристаллов являются различные соединения галлия. В основном используются соединения галлий фосфида трехвалентного, в которые добавляют различные примеси. С помощью этих соединений получают свечение красного, оранжевого, желтого и зеленого цвета. Но из текста мало понятно, давайте рассмотрим графические материалы.

Как видим, для обеспечения определенного свечения используются различные соединения химических материалов. Обратите внимание, некоторые соединения применяются в компонентах с различным окрасом светимости. Это означает, что в них материал-основа дополнительно обрабатывается различными химическими соединениями.

Цвет, получаемый совмещением.Почему светится светодиод

Несколько иначе обстоят дела с инфракрасными и ультрафиолетовыми диодами, так как они излучают свет соответственно в инфракрасном и ультрафиолетовом спектрах. А вот бирюзовый состоит из двух кристаллов — синего и красного.

Кстати, двух- и трехцветные светодиоды довольно распространены. Зачем изобретать новые материалы, дающие определенное свечение, если можно просто подобрать несколько цветных диодов и объединить их в одном корпусе? Таким образом устроены RGB-светодиоды. Вот только в них применяется сразу три кристалла — красный, синий и зеленый соответственно.

Теперь вы знаете ответ на вопрос. Как видим, все довольно просто — есть несколько основных видов, которые дают основные цвета, а уже с помощью различных комбинаций этих кристаллов можно получить новый окрас свечения.

Источник: electronoff.ua

Конструкция светодиодной лампы

Для того чтобы выяснить причину свечения устройства после выключения, нужно внимательно рассмотреть устройство LED-прибора, а также выяснить принцип его работы.

Конструкция такой лампы достаточно сложна; она состоит из следующих элементов:

  • Чипы (диоды). Основной элемент лампы, обеспечивающий излучение потока света.
  • Печатная алюминиевая плата на теплопроводной массе. Этот компонент предназначен для отвода излишнего тепла в радиатор, благодаря чему в приборе поддерживается температура, которая необходима для корректной работы чипов.
  • Радиатор. Устройство, на которое подается теплоэнергия, отведенная от других узлов LED-лампы. Обычно эта деталь выполняется из анодированного сплава алюминия.
  • Цоколь. Основание лампы, предназначенное для соединения с патроном светильника. Как правило, этот элемент выполняется из латуни, покрытой сверху слоем никеля. Нанесенный металл противодействует коррозии, одновременно содействуя контакту прибора с патроном.
  • Основание. Нижняя часть, прилегающая к цоколю, выполняется из полимера. Благодаря этому корпус защищается от пробивания электротоком.
  • Драйвер. Узел, обеспечивающий стабильную бесперебойную работу прибора даже в случае резкого изменения показателей перепадов напряжения в электросистеме. Функционирование этого узла происходит аналогично гальванически развязанного модулятора стабилизатора электротока.
  • Рассеиватель. Стеклянная полусфера, покрывающая прибор сверху. Как следует из названия, деталь предназначена для максимального рассеивания светового потока, который излучают диоды.

Все узлы прибора связаны друг с другом, что обеспечивает его надежное функционирование.

Принцип работы оборудования

Конкретные схемы LED-приборов, выпускаемых различными производителями, могут значительно отличаться друг от друга. Однако все они основаны на общем принципе работы, который схематично можно отобразить следующим образом.

При включении светодиодной лампы, подсоединенной к электросети, внутри баллона начинается хаотичное движение электронов. Сталкиваясь между собой и дырами в области p-n-перехода, — контакта двух полупроводников с разными типами проводимости — частицы преобразуются в фотоны, благодаря которым и происходит световое излучение.

Для оптимизации процесса могут также применяться дополнительные устройства, например, разные типы резисторов или токоограничивающие элементы.

Плюсы и минусы работы светодиодов

Подобные изделия завоевали популярность у населения, благодаря ряду положительных качеств. Главным их достоинством является экономичность: лампы имеют долгий срок службы, что подтверждается гарантийными обязательствами на три года. К тому же для их функционирования требуется минимальное количество энергии.

Важным преимуществом является и экологическая безопасность. Светодиодные устройства не излучают ультрафиолетовых волн, которые могут нанести вред живым организмам. В их конструкции не используются опасные материалы, что облегчает утилизацию.

К недостаткам LED-устройств в первую очередь можно отнести высокую стоимость. Следует также учесть, что их работа имеет специфические черты: порой светодиоды мигают или не отключаются даже после того, как выключен коммутатор.

Эти недостатки вызываются сохранением заряда, который накапливается в конденсаторе. Слабый пульсирующий ток приводит к миганию, а более сильный – создает продолжительное свечение.

Насколько вредны горящие лампы?

Как сказано выше, одним из часто встречающихся нарушений в работе светодиодов является невозможность полного отключения источника света. Лампы продолжают гореть, используя примерно 5% от обычной мощности в течение нескольких минут или даже часов.

Порой тусклое освещение утомляет обитателей квартир, однако некоторые используют приглушенно горящие светильники в качестве ночников.

Стоит добавить, что дефект не оказывает вредного влияния на состояние проводки, а расход энергии повышается крайне незначительно, так как светодиоды потребляют малое количество электричества.

Тем не менее, специалисты советуют как можно раньше устранить проблему, поскольку остаточное свечение светодиодов значительно сокращает срок их службы. Кроме того, причины, вызывающие это явление, могут привести к серьезным неприятностям.

Основные причины остаточного свечения

Причины, провоцирующие горение светодиодов, могут быть различны.

К числу наиболее распространенных можно отнести:

  • Проблемы, связанные с электропроводкой, которая проложена в квартире. Это может быть неработающий участок электроцепи или нарушение изоляции одного из проводов.
  • Неправильная схема подключения прибора к коммутатору или электрощитку.
  • Применение выключателя с подсветкой, а также использование других сложно совместимых приборов: датчиков, модулей, таймеров, прочих.
  • Низкое качество используемых устройств либо индивидуальные особенности моделей.

Ниже мы подробно рассмотрим каждую из причин, указав также меры, способствующие решению неполадок в различных случаях.

Причина #1 — выключатель с опцией подсветки

При возникновении проблемы постоянно горящих ламп следует прежде всего взглянуть на выключатель. По мнению электриков, наиболее частой причиной этого феномена является использование коммутатора с подсветкой.

В этом случае устройства вступают в конфликт: даже выключенный выключатель не может полностью разомкнуть электроцепь из-за подсветки, которая запитывается через сопротивление. Поскольку система остается незамкнутой, небольшое напряжение доходит до лампы, что и вызывает тусклое свечение.

Подобные же проблемы могут вызываться и при использовании других электрических приборов: фотоэлементов, таймеров, подключаемых к лампам датчиков движения и света.

Способ решения этой проблемы. Поскольку такой дефект со светодиодными лампами, которые горят даже при выключенном выключателе, довольно часто встречается, специалисты-электрики накопили большой опыт в исправлении ситуации.

Это могут быть следующие варианты:

  • замена выключателя;
  • отключение подсветки;
  • монтаж дополнительного резистора;
  • замена одной из ламп в люстре на более слабый аналог;
  • использование сопротивления с большим показателем мощности.

Наиболее простым способом является замена имеющего выключателя с подсветкой на стандартную модель выключателя без дополнительной функции. Однако такое решение связано с добавочными денежными затратами, а также с переустановкой прибора.

Если наличие подсветки на коммутаторе не принципиально, можно просто перекусить кусачками сопротивление, которое задает подачу питания для нее. Добиться выключения светодиода с сохранением подсветки поможет добавление шунтирующего резистора. Прибор с сопротивлением, превышающим 50 кОм, и мощностью 2-4 Вт можно приобрести в специализированном магазине.

Для его подключения требуется снять плафон со светильника, после чего прикрепить отходящие от устройства провода к клеммнику с сетевыми жилами, что позволит выполнить подключение параллельно лампе.

В этом случае ток, проходящий через светодиод, будет протекать не через конденсатор драйвера, а через вновь подсоединенный узел. В результате прекратится подзарядка реактивного сопротивления и светодиоды погаснут при выключении коммутатора.

Если проблема выявлена в многорожковой люстре, можно установить в одном из отделов лампу накаливания с минимальной мощностью, которая соберет весь поступающий из конденсатора ток.

Подобное решение можно применить для однорожковой люстры, установив переходник с одного на два патрона. В то же время при использовании этого метода все же будет сохраняться слабое свечение одной лампочки.

Желаемый результат также даст замена обычного сопротивления в выключателе на его аналог с большим количеством Ом. Однако для выполнения подобной манипуляции потребуется консультация электрика.

Причина #2 — неисправности электрической проводки

Довольно часто источником невыключающихся ламп является вышедшая из строя проводка. При подозрении нарушения изоляции нужно на несколько минут подать на прибор высокое напряжение, чтобы имитировать условия, вызывающие пробои в электросети.

Для поиска места повреждения скрытого кабеля можно использовать также самодельные или профессиональные изделия, предназначенные для этой цели.

Если проблема действительно заключается в износившейся изоляции, в квартире необходимо частично или полностью заменить электропроводку. При открытой прокладке кабеля процесс займет минимум времени и сил. Более сложная работа предстоит, если в жилье была смонтирована скрытая проводка, замурованная в стенах.

В этом случае с вертикальных поверхностей придется убрать декоративную отделку, например, обои, а также штукатурку. После вскрытия штроб, где размещаются провода, производится замена всего кабеля или поврежденного участка. В заключение необходимо заделать каналы гипсом, а затем оштукатурить и заново отделать стены.

Альтернативным временным решением может стать подключение к сети прибора, например, резистора или реле, дающего дополнительную нагрузку. Подобные аппараты, сопротивление которых слабее, чем у светодиодов, подсоединяются параллельно к светящимся лампам.

При этом происходит перенаправление тока, из-за чего регулируется работа LED-приборов: свет гаснет сразу же после выключения коммутатора. Вновь подключенный элемент также не будет функционировать из-за низкого показателя сопротивления.

Причина #3 — неправильное подключение светильника

Причина непрекращающегося горения лампы может скрываться в ошибках подключения. Если при монтаже коммутатора вместо фазы был подсоединен ноль, он будет отключаться при размыкании цепи.

В то же время, из-за сохранившейся фазы, проводка по-прежнему будет находиться под напряжением, из-за чего прибор будет светиться при выключенном коммутаторе.

Подобная ситуация достаточно опасна для обитателей квартиры: поскольку устройство находится под напряжением, даже если оно выключено, можно случайно получить удар электрическим током. Для исправления ситуации необходимо отключить подачу электроэнергии, после чего отсоединить провода, а затем смонтировать их правильным образом.

Причина #4 — низкое качество лампочки

Достаточно часто причиной неисправности является низкое качество используемого светодиода, который необходимо заменить на исправный. Чтобы как можно реже сталкиваться с подобными проблемами, лучше покупать сертифицированную продукцию таких марок как Philips, Gauss или ASD,

Хорошо зарекомендовала себя российская продукция марки JAZZway и Эра.

Правда сохранение свечения может наблюдаться также в устройствах, изготовленных авторитетными производителями. Оно может быть вызвано функциональными особенностями в работе резисторов ламп.

Так, при подаче электротока в устройстве может накапливаться тепловая энергия, из-за чего светодиод будет гореть и после выключения, правда, непродолжительное время. Компании борются с подобным явлением, используя при изготовлении оборудования резисторы, выполненные из материалов, препятствующих накоплению избытков теплоэнергии.

Рекомендации по выбору электроприборов

Одним из важных факторов бесперебойной работы светодиодных ламп является выбор изделий надлежащего качества. При этом следует учесть особенности, при которых им придется функционировать устройствам, а также их совместимость с иным оборудованием, подключенным к электросети.

Перед покупкой рекомендуется тщательно прочитать приложенную к LED-приборам инструкцию, где указываются правила эксплуатации. Следует учесть, что ряд популярных приспособлений, таких как диммеры для светодиодок, таймеры, фотоэлектрические модули могут вызвать неполадки в работе светодиодов.

Важно также внимательно осмотреть внешний вид лампочки, обращая внимание на стык между корпусом и цоколем, который должен надежно и без каких-либо дефектов примыкать к основной детали. При наличии царапин, вмятин или неаккуратного шва вероятность возникновения проблем со свечением значительно возрастает.

Важное значение имеет такой элемент, как радиатор. Лучше всего выбрать светодиод, в которых он выполнен из алюминия, однако высокие характеристики имеют также керамические и графитовые аналоги. Немаловажен и размер этой детали, несущей ответственность за отвод тепловой энергии, выделение которой может происходить и при выключенном свете.

Для корректной работы светодиода большой мощности необходимо использовать крупный радиатор, тогда как для слабого устройства достаточно будет и компактного.

Как правило, в специализированных магазинах продавцы проводят тестовое включение лампы. В этом случае нужно постараться проверить уровень мерцания: осветительный прибор должен испускать ровный световой поток без какой-либо пульсации.

Поскольку невооруженным глазом оценить этот фактор достаточно сложно, лучше заснять включенное устройство на видеокамеру мобильного телефона. Запись позволит лучше оценить его работу.

Выводы и полезное видео по теме

Видеоролик раскрывает две наиболее распространенных причины горения светодиодных ламп даже после выключения электропитания. Предложены также подробные инструкции по их устранению:

Свечение ламп при выключенном коммутаторе не только неприятно для глаз, но и резко сокращает срок работы светодиодов. Для устранения проблемы нужно установить причину, которая вызывает нарушение в функционировании приборов, а затем устранить ее.

В большинстве случаев для исправления ситуации понадобится минимум времени и сил. Необходимые работы можно выполнить самостоятельно, используя элементарные инструменты.

Оставляйте, пожалуйста, комментарии в расположенном ниже блоке. Поделитесь полезной информацией, которая может пригодиться посетителям сайта. Задавайте вопросы, расскажите о личном опыте в устранении сведения светодиодок после выключения, публикуйте фото по теме статьи.

Источник: sovet-ingenera.com


Categories: Свет

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.