Что такое заземление.

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

Сопротивление растекания

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление.

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.


Для чего нужно заземление

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления.

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

 

Устройство заземления

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления.


язательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства. В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена.

Методика измерения сопротивления защитного заземления.

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления.

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя).


Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.
В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.
    Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают  на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.
    Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.

Порядок проведения измерений.

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.
Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме.
рвая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении). В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание: Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.
ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол).

После окончания измерений нужно оформить протокол результата замера.
отокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др. соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

electry.ru

Контур заземления – для защиты от электрического тока


Под защитным заземлением понимают электрическое соединение с землей какой-либо электроустановки. Задача такого контура – предотвращение вероятности поражения человека электротоком при прикосновении к металлическим нетоковедущим элементам (например, к корпусу) электрического устройства. Принцип функционирования описываемой конструкции достаточно прост. ЗК уменьшает показатель напряжения между поверхностью земли и корпусом электроустановки до безопасной для человека величины.

В качестве контура заземления в быту чаще всего применяют обычный стержень, сделанный из металла. Также рассматриваемое приспособление может сооружаться в виде сложной по форме конструкции, включающей в себя несколько металлических деталей.

В случае пробоя изоляционного слоя электропроводки или иной аварийной ситуации напряжение, являющееся потенциально небезопасным для человека, появляется на нетоковедущих поверхностях бытового электрического устройства. Возникает угроза поражения пользователя электротоком. Но за счет наличия контура заземления ничего страшного не происходит – он просто-напросто «уводит» на потенциал земли опасное напряжение.

Если ЗК неисправен, ток не может уйти в почву. В этом случае напряжение будет проходить через тело пользователя той или иной электроустановки, что чревато большими проблемами для человека. Понятно, что к вопросам грамотного обустройства контура заземления следует подходить максимально ответственно. Его также нужно регулярно (ежегодно) проверять на целостность и выполнять замеры сопротивления защитной конструкции. О том, как следует производить измерение ЗК, мы и поговорим далее.


Замер сопротивления – главное о методике

Конкретные параметры и вид защитной заземляющей конструкции зависят от влажности грунта, его типа и состава, а также от мощности эксплуатируемых электрических устройств. Как правило, для обустройства контура составляют предварительный проект, учитывающий особенности монтажа электропроводки на объекте (для защиты бытовых потребителей обходятся и без него). После монтажа защитного устройства выполняют измерение его сопротивления. Процедура осуществляется при помощи специальных приборов. Они дают возможность быстро и на высоком уровне точности установить удельный показатель сопротивления заземляющей конструкции и почвы.

Непосредственно методика измерения предполагает выполнение следующих действий:

  1. Искусственную электроцепь замыкают через смонтированный ЗК и производят на ней замеры снижения напряжения.
  2. Около металлического контура ставят дополнительный электрод. Его подсоединяют к источнику напряжения.
  3. Выполняют на участке нулевого потенциала замер сопротивления основного защитного стержня (либо более сложной конструкции заземления).

Именно по такой схеме осуществляются измерения в быту. На промышленных объектах замеры могут производиться по другим схемам, учитывающим серьезные напряжения от производственного электрооборудования. Величину сопротивления ЗК желательно определяют зимой или летом. Замеры, выполненные в другое время года, могут быть недостоверными из-за большой влажности грунта и иных климатических причин. Описанная методика измерения сопротивления защитного контура реализуется при помощи различных устройств. Для выполнения интересующей нас процедуры может использоваться мегомметр, вольтметр, амперметр. Но чаще применяется специальный прибор М416 (либо его аналог Ф4103-М1). О них и поговорим.

М416 и Ф4103-М1 – измерение заземления без сложностей

Прибор М416 рекомендован к использованию в быту и на промобъектах. Он позволяет узнать активное сопротивление контура заземления и удельное земли. Этот прибор для измерения применяется совместно с так называемым зондом (потенциальным дополнительным электродом) и вспомогательным заземлителем. М416 имеет такие тех. характеристики:

  • масса – примерно 3 кг;
  • интервал замеров – 0,1–1000 Ом (четыре разных диапазона – 100–1000 Ом, 2–200, 0,5–50 и 0,1–10);
  • размеры – 24,5х14х16 см;
  • допустимая температура воздуха для использования М416 – от +60 до -25 °С.

Прибор является электронезависимым. Он питается от 1,5-вольтных батареек с маркировкой 373 или R20 (разрешается использовать и более современные изделия с аналогичными показателями). Прибор Ф4103-М1 дает возможность выполнять замеры сопротивления защитных конструкций в целых десяти диапазонах (от 0,3 до 15000 Ом). Он имеет следующие характеристики:

  • вес – 2,2 кг;
  • питание – 9 батареек RL20 либо R20;
  • допустимая температура – от +55 до -25°;
  • размеры – 30,5х12,5х15,5 см.

На панелях (лицевых) описываемых приспособлений для измерения сопротивления ЗК имеется шкала, специальные выводы для подсоединения проводов, кнопка запуска устройства, ручка реохорда и переключатель, позволяющий выбирать определенный диапазон замеров. Работать с такими приборами очень просто. Сначала в них устанавливаются (в нужном количестве) батарейки. Затем переключателем вы выбираете требуемый диапазон измерений и начинаете вращать реохорд (специальной ручкой) до момента, когда нулевая отметка приборной шкалы не совместиться с индикаторной стрелкой устройства.

Следующий шаг – подключение медных проводов. Сначала их подсоединяют к самому приспособлению, а затем – к вспомогательным электродам. Последние заранее углубляются в грунт примерно на 50 см. Прибор готов к работе. Вам нужно перевести в положение Х1 переключатель устройства, нажать кнопку запуска и начинать вращать ручку реохорда. Когда индикаторная стрелка приблизится к нулю, замер считается оконченным. Вам нужно всего лишь записать результат проведенного измерения и умножить его на выбранный множитель (Х1, Х20, Х5 и так далее).

Посмотрите видео, которое мы подготовили для вас, чтобы без малейших затруднений произвести замер сопротивления своими руками.

remoskop.ru

Что такое заземление

Прибор ИС-10 на снимке

В первую очередь следует дать определение данному термину. Заземление является специфическим соединением одной точки в электрической сети и с заземляющим контуром, который позволяет стабилизировать напряжение электричества в сети, уведя избыточный ток в землю при подходящем сопротивлении растекания заземлителя. Сама электрическая линия может существовать и без заземления. Это лишь особая защитная мера, которая может предотвратить множество несчастных случаев в жилом помещении.

Используя заземление бытовой техники и электроустановок, можно обеспечить безопасные условия для их пользования человеком, защитив его от поражения током. При подключении заземления в зданиях может быть использовано несколько методов: обычное, заземление на микроэлектронные схемы и на «корпус». Обязательным условием проведения заземления является установка конструкции с электродами, которые заводятся под землю на определенную глубину.

Как выглядит прибор для замера тока

Они должны соответствовать сопротивлению растекания заземлителя, в которое также входит сопротивление самого контакта между ним и землей. Их целью является конечная передача блуждающего тока из системы в землю. В Правилах устройства электроустановок (ПУЭ) есть ряд указаний и методик по подключению защитного заземляющего контура дома. Данной группой нормативных актов пользуются специалисты во время проектирования и составления схем будущей системы.

Качество установки специального оборудования определяется измерением уровня сопротивления. Измерение сопротивления заземления должно проводиться сертифицированными приборами. Среди самых распространенных приборов для измерения принято считать модели типа ИС 10 и ИС 20, а также устройств М416, Ф4103-М1. На сегодняшний день защитные меры заземления считаются весьма эффективными, так как на практике показали свою действенность. В большинстве домов, которые возводятся по стандартам новых образцов, установка защитного заземляющего контура является обязательным условием. Качество и надежность его монтажа проверяет группа специалистов.

Виды измерителей

Варианты приборов для измерения заземления

Так как проверку заземляющего контура в большинстве многоэтажных жилых, промышленных или общественных зданий делают отдельные учреждения, то у многих владельцев частных домов возникает вопрос, как измерить сопротивление заземления самостоятельно. Это необходимо в том случае, если монтаж защитного устройства делался своими руками. Для этого существуют подходящие группы приборов, которые помогут относительно точно провести измерение сопротивления установленного контура.

Рассмотрим приборы, которые хорошо себя зарекомендовали в бытовых условиях. Они отличаются простотой применения, доступностью, удобством в использовании, а также точностью показаний в протоколе после проверки оборудования. Среди них модели М416 и Ф4103-М1, ИС 10 и ИС 20.

Видео “Измерение сопротивления изоляции”

M416

Прибор модели М416 предназначен в первую очередь для проведения замеров уровня сопротивления растекания заземлителя и проводников самой установки. Также М416 может определить активное и удельное сопротивление конкретного вида почвы, куда помещались заземляющие электроды. У данного устройства есть свой спектр действия – от 0,1 Ом до 1кОм, работая в 4 диапазонах. Источником его питания служат три гальванических элемента, которые подключены последовательно. Каждый из этих элементов имеет мощность по 1,5 вольта.

М416 на фото

Прибор М416 включен в единый Государственный реестр на территории РФ. Данное устройство относится к современным прототипам и предоставляет показания с незначительной погрешностью. Хорошей альтернативой измерительного прибора М416 является Ф4103-М1. Ф4103-М1 считается безопасным прибором. Обычно он используется для проведения замеров сопротивления заземляющих устройства или удельного сопротивления почвы грунта с большим количеством диапазонов, а также учитывать существующие помехи, которые влияют на результат полученных данных.

Ф4103-М1 работает от 9 питающих элементов (R20 или RL20). Частота его оперативного тока находится в пределах 265-310 герц. Ф4103-М1 входит в рабочий режим за достаточно короткий промежуток времени – до 10 секунд. Данное устройство предоставляет протокол измерений в режиме «ИЗМ I» до 6 секунд. Протокол данных в режиме «ИЗМII» – за 20-30 секунд. При правильных условиях эксплуатации он может прослужить 10 лет и больше. Имеет вес до 2,2 килограмм и относительно небольшие габариты, что позволяет его транспортировать без особых усилий.

ИС 10 и ИС 20

ИС 10 с проводами

Следующая группа измерительных приборов – ИС 10 и ИС 20. Они имеет небольшую форму, а их базовая комплектация имеет небольшой вес. В наличии комплектов ИС 10 и ИС 20 есть само измеряющее устройство, аккумулятор для питания (12 вольт), адаптер для подзарядки, струбцина для подключения к шине, зажимы, кабеля, инструкция по использованию и чехол. ИС 10 и ИС 20 имеют 5 диапазонов действия от 1 Ом до 9,99 кОм. Имеет вес до 1 килограмма.

При считывании протокола полученных данных нужно учитывать возможную погрешность, которая составляет до 3% от конечного значения сопротивления. Также ИС 10 и ИС 20 являются более универсальными, так как в их комплектах есть наличие клещей для проведения замеров, которые можно подсоединить к сложным и маленьким деталям.

Мультиметр

Обычно мультиметр для измерения защитного контура заземления используется редко, так как в протоколе его измерений обнаруживается низкая точность. После его использования нельзя оформлять подтверждающие документы о правильности работы системы, так как результаты ее испытаний проводились не надлежащим инструментом.
Получить точный протокол сопротивления заземления при помощи мультиметра не является возможным, так как нет возможности подключить к нему необходимее 4 контакта (2 стержневых электрода и 2 щупа).

Мультиметр не обладает необходимыми диапазонами для измерения сопротивления. И специалисты не могут гарантировать точность протокола таких измерений, если они не были получены при помощи специального сертифицированного оборудования. В связи с этим мультиметр рекомендуется использовать для проверки бытовых приборов и устройств.

Порядок проведения работ

Что нужно для замера на фото

Перед тем как указать последовательность действий при снятии показаний сопротивления защитного заземляющего контура, следует обратить внимание, что у каждого типа измерительных приборов существует свой диапазон работы, а также точность предоставляемых показаний. Самые точные показания можно получить при наибольшем значении удельного сопротивления грунта. Так в летний период времени замеры лучше всего проводи в сухую погоду, а в зимний, когда почва промерзнет и погода будет без выпадения осадков.

С учетом таких поправок следует помнить, что уровень сопротивления, которые должны выдавать устройства при правильном монтаже контура должны соответствовать значениям 2, 4 и 8 Ом. Сила сопротивления соответственно относится к линейному напряжению в электрической сети в 660, 380, 220 вольт источника трехфазного тока, а также 380, 220, 127 вольт однофазного тока.

Для начала нужно изучить инструкцию по эксплуатации соответствующей модели оборудования и правила по его подключению. Сначала нужно подключить к измерительному прибору подходящий источник питания (батарей или аккумулятор). Затем необходимо перевести тумблер устройства в положение «контроль 5 Ω», нажать на нужную кнопку для включения, а потом вращать ручку настройки пока стрелка индикатора не будет указывать на нулевую отметку на шкале. После поворота реохода нужно подсоединить провода к прибору, углубить дополнительные электроды в грунт на 50-60 сантиметров и подключить к ним провода. Когда к заземляющему электроду и зонду будут подключены провода нужно будет перевести тумблер переключателя в положение с отметкой «Х1». Затем нужно снова нажать на соответствующую кнопку и, вращая реоход, установить стрелку индикатора на значение «0».

Полученный результат протокола измерений необходимо умножить на множитель, который указан на шкале, куда установлен тумблер. Это может быть «Х1», «Х5» или «Х20».
Данная методика и последовательность действий по проведению замеров подходит для приборов типа М416, Ф4103-М1 и моделей ИС. Проверки должны проходить с некоторой периодичностью, чтобы фиксировать в протоколе изменения, которые могли произойти со временем, после ремонта или реконструкции здания. Установленные нормы о периодичности проведения таких работ указаны в нормативной базе ПТЭЭП. Рекомендуется делать осмотр 2 раза в год.

otoke.ru

Виды приборов

В настоящее время для проведения таких испытаний используется целый ряд современных электронных приборов, среди которых особо выделяются следующие отечественные изделия:

  • измеритель сопротивления заземления типа М416;
  • приборы для измерения сопротивления заземления под заводским обозначением Ф4103-М1;
  • устройства для малых сопротивлений под наименованиями ИС- 10 и ИС-20.

Измеритель заземления

Помимо перечисленных измерителей при проведении обследований действующего заземления используются такие их зарубежные аналоги, как KEW 4105A, 1820 ER и некоторые другие образцы этой техники со схожими рабочими характеристиками.

Каждое измеритель позволяет полностью обследовать рабочее заземление на предмет его соответствия действующим нормативам. Из всех представленных наименований особой популярностью у специалистов пользуются измерители типа М416. По этой причине особенности работы с измерителем сопротивлений компенсационного типа следует рассмотреть подробнее.

Общий порядок работы

Измеритель типа М416 относятся к самой распространённой группе приборов, используемых не только для определения сопротивления заземляющих устройств, но и способных измерять удельную проводимость грунта (ρ).

Измеритель заземленияЭтот измеритель предназначается для определения величин сопротивлений в пределах от 0,1 до 1000 Ом в четырех диапазонах, ограниченных значениями 10, 50, 200 и 1000 Ом соответственно. В качестве источника питания в устройстве используются три соединенные последовательно пальчиковые батарейки напряжением по 1,5 Вольта каждая.

После установки элементов питания в специальный отсек в первую очередь измерительный прибор проверяется на работоспособность. Для этого переключатель режимов работы (пределов измерений) переводится в положение «Контроль 5 Ωm». После этого следует нажать расположенную под табло индикатора красную кнопку и вращением ручки под обозначением «реохорд» добиться, чтобы шкала индикатора установилась на нулевой отметке.

По завершении калибровки измерителя следует подсоединить к нему шнуры, после чего он будет полностью готов к проверке заземления.

Перед тем как замерить искомую величину (сопротивление), прилагаемые к комплекту дополнительный заземлитель и зонд вбиваются в землю на глубину не менее 0,8 метра. Их удаление от конструкции тестируемого заземления должно соответствовать цифрам, указанным на рисунке. Перемычка между клеммами 1 и 2 означает, что измеритель используется для грубого замера сопротивлений (более 5-ти Ом).

Порядок проведения измерительных операций выглядит следующим образом:

  1. Измеритель заземленияк этим элементам измерительной схемы (включая контур заземления) с помощью контрольных шнуров подсоединяются соответствующие клеммы прибора;
  2. по окончании сборки схемы переключатель предела измерений переводится в положение «Х1»;
  3. после этого нажимается кнопка запуска измерений с одновременным вращением ручки «реохорда»;
  4. в процессе замера искомой величины по его шкале фиксируется точное показание измерителя;
  5. на завершающей стадии полученный результат умножается на указатель выбранного вами предела измерений (в данном случае – на единицу).

В результате выполнения приведённой последовательности операций удаётся точно определить искомое сопротивление заземляющего устройства.

Особенности схемы включения для точных измерений

Рассмотренная выше последовательность измерительных операций относится к так называемой «3-х зажимной» схеме включения измерителя М416 (клеммы 1 и 2 соединены перемычкой). В этом случае на результат проведённых операций существенное влияние оказывают параметры самой измерительной цепочки. При их фиксации учитывается сопротивление соединительных проводов и контактов. В результате такого включения защитное заземление оценивается довольно грубо (с большой погрешностью).

Измеритель заземленияПри необходимости более точного определения сопротивления (менее 5 Ом) измеритель включается по 4-х зажимной схеме, что соответствует отсутствию перемычки между клеммами 1 и 2. В этом случае в измерительной цепи используется дополнительный провод, подключаемый согласно схеме, указанной на крышке М416. При 4-х зажимной схеме подключения погрешность, вносимая соединительными проводами и контактами, практически отсутствует.

При организации точных измерений необходимо обратить внимание на следующую деталь. Для конструкции заземляющего устройства сложной конфигурации (так называемое «заземление с протяженными периметрами») могут использоваться уже рассмотренные схемы включения. Однако в этих случаях дополнительный заземлитель должен быть удалён от обследуемой конструкции на расстояние равное её пятикратному максимальному размеру плюс 20 метров.

Другие измерительные приборы

Параметры заземления можно определять и другими измерителями, принцип работы которых основан на том же методе компенсации потенциалов, создаваемых внешним источником на дополнительном заземлителе и в обследуемой конструкции.

Отечественные модели

К образцам таких изделий можно отнести измеритель Ф4103-М1, рассчитанный на питание от источника 12±0,25Вольт и позволяющий организовать замеры в 10-ти диапазонах (от 0-0,3 Ома до 0-15 Килом).

Измеритель заземления

Перед началом проверки заземления или других рабочих операций необходимо побеспокоиться о том, чтобы снизить зависимость прибора от факторов, способствующих появлению дополнительной погрешности измерений. Для этого он должен быть защищён от действия сильных электрических полей или удалён на значительное расстояние от них. Наличие помехи может быть зафиксировано по качаниям стрелки индикатора при настройке прибора в режиме «ИЗМЕРЕНИЕ I» (при вращении ручки «ПДСТ»).

Измеритель Ф4103 является электрически безопасным, так как его корпус изготовлен из непроводящего ток материала.

Померить сопротивление заземления можно и посредством ещё одной разновидности приборов, известных под обозначениями ИС-10 или ИС-20. Это более совершенные и компактные модели измерителей компенсационного типа, имеющие современную электронную «начинку» и ЖК индикатор. Во всем остальном (то есть по принципу работы и в части организации самих измерений) они ничем не отличаются от уже рассмотренных образцов.

Иностранные модели

Не стоит забывать об измерителях сопротивления заземления иностранного производства. Чаще всего применяются при работе в отечественных электросетях такие измерители, как KEW 4105A и 1820 ER. По методу организации и проведения замеров они не имеют принципиальных отличий от уже рассмотренных моделей. Единственным их преимуществом является расширенный функционал, позволяющий измерять не только сопротивление току растекания на землю, но и напряжения шага и потенциал прикосновения.

Измеритель заземления

Важно! Измерение всех этих величин возможно без отключения специального автомата, устанавливаемого в цепях защиты обследуемого устройства.

Необходимо помнить, что периодичность проверок заземления, организуемых с помощью любого измерителя, устанавливается требованиями ПТЭЭП (п.2.7.8.-2.7.15). Помимо этого, такие испытания проводятся и после восстановления конструкции заземления или по окончании её капитального ремонта. Проверка позволяет убедиться в нормальном состоянии заземления и его способности выполнять основные функции.

evosnab.ru

Для чего необходимы измерения

Блестящее решение перечисленных ниже задач достигается идеальным нулевым сопротивлением в заземляющей цепи:

  1. Не допустить появления напряжения на корпусе технологических машин.
  2. Добиться эффективного опорного потенциала электроаппаратуры.
  3. Полностью устранить статические токи.

Правда, электротехнический опыт показывает: результат под идеальный нуль получить невозможно.

В любом случае, заземлённый электрод выдаёт какое-никакое сопротивление. Конкретную величину resistance определяют:

  • сопротивление электрода в точке контакта с проводящей шиной;
  • контактная область между земляным электродом и грунтом;
  • структура грунта, дающая разное сопротивление.

Практика измерений сопротивления контура заземления отмечает, что первыми двумя факторами вполне можно пренебречь, но при соблюдении логичных условий:

  1. Заземляющий электрод сделан из металла с высокой электропроводимостью.
  2. Тело штыря электрода тщательно зачищено и плотно посажено в грунт.

Остаётся фактор третий – резистивная поверхность грунта. Он видится главной расчётной деталью для измерений сопротивления контура заземления.


Вычисляется же благодаря формуле:

R = pL / A

где: p – удельное сопротивление грунта, L – условное заглубление, А – рабочая площадь.

Обзор измерительных способов

Существует несколько вариантов измерения сопротивления контура заземления, каждый из которых вполне точно позволяет определить искомую величину.

3-точечная система определения

Так, например, часто применяется методика 3-х точечной схемы, основанная на эффекте падения потенциала.

Измерения выполняют за три основных шага:

  1. Замер напряжения на электроде Э1 и зонде Э2.
  2. Замер силы тока на электроде Э1 и зонде Э3.
  3. Расчёт (формулой R = E / I) сопротивления заземляющего электрода.

Для этой методики точность замеров логически зависима от места инсталляции зонда Э3. Его рекомендуется внедрять в грунт на удалении — оптимально за пределы так называемой области ЭСЭ (эффективного сопротивления электродов) Э1 и Э2.

Измерения по технологии «62%»

Если структура грунта под размещение заземляющего электрода отличается однородным содержимым, методика «62%» для определения сопротивлений контуров заземления обещает хорошую результативность.

Способ применим под схемы с единственным заземляющим электродом. Точность показаний здесь обусловлена возможностью расположения рабочих зондов  на прямолинейном участке, относительно заземляющего электрода.

Точки инсталляции контрольных зондов

Упрощённый двухточечный метод

Применение этого способа измерений требует наличия ещё одного качественного заземления помимо того, которое будет подвергаться исследованию. Методика актуальна для территорий густонаселённых, где часто нет возможности широко оперировать вспомогательными рабочими электродами.

Метод двухточечного измерения отличается тем, что одновременно показывает результат для двух устройств заземления, включенных последовательно. Этим и объясняются требования к высокому качеству исполнения второго заземления, чтобы не учитывать его сопротивление. При вычислениях также измеряется сопротивление заземляющей шины. Полученный результат вычитывают из результатов общих замеров.

Точность этого способа оставляет желать лучшего по сравнению с двумя вышеизложенными. Здесь существенную роль играет расстояние между заземляющим электродом, сопротивление которого измеряется и вторым заземлением. Стандартно такая методика не применяется. Это своего рода альтернатива, когда нельзя использовать другие способы измерений.

Точные измерения по четырём точкам

Для большинства вариантов измерения сопротивлений наиболее оптимальным способом, помимо 2-х и 3-х точечных, считается 4-х точечная технология. Такой технологией замеров наделены приборы, подобные тестеру 4500 серии. Судя из наименования метода, на рабочей площадке в одну линию и на равных расстояниях размещаются четыре рабочих электрода.

Генератор тока прибора подключается на крайние электроды, в результате чего между ними течёт ток, значение которого известно. На других клеммах прибора подключены два внутренних рабочих электрода. На этих клеммах присутствует значение падения напряжения. Конечный результат по замерам – сопротивление заземления (в Омах), значение которого прибор демонстрирует на дисплее.

Приборами из серии 4500 часто пользуются для измерения напряжения прикосновения. Устройством при помощи специального модуля генерируется в земле напряжение небольшой величины – имитация повреждения кабеля. Одновременно на шкале прибора указывается ток, текущий по цепи заземления. Показания на экране берут за основу и умножают на предполагаемую величину тока в земле. Таким способом вычисляют напряжение прикосновения.

К примеру, максимальное значение ожидаемого тока на участке повреждения равно 4000А. На экране прибора отмечается величина 0,100. Тогда величина напряжения прикосновения будет равна 400В (4000*0,100).

Измерение прибором С.А6415 (6410, 6412, 6415)

Уникальность этого способа – возможность проведения замеров без отключения заземляющей цепи. Также здесь следует выделить преимущественную сторону, когда измерять общее сопротивление устройства заземления допустимо методом включения в цепь заземления резистивной составляющей всех соединений.

Принцип работы примерно следующий:

  1. Специальным трансформатором в цепи создаётся ток.
  2. Ток течёт в образованном контуре.
  3. С помощью синхронного детектора регистрируется измеряемый сигнал.
  4. Полученный сигнал преобразуется АЦП.
  5. Результат выводится на ЖК-дисплей.

Устройство оснащается модулем (избирательный усилитель), благодаря которому полезный сигнал эффективно очищается от разного рода помех – н.ч. и в.ч. шумов. Лапами клещей в их сочленённом состоянии образуется возбуждаемый контур, охватывающий проводник заземления.

Инструкция измерения прибором С.А6415

Последовательность действий при работе с прибором серии С.А6415 доходчиво описывается в инструкции, прилагаемой к этому уникальному устройству.

Например, есть необходимость провести измерения сопротивления заземления какого-либо электрического модуля (трансформатора, электросчётчика и т.п.). Последовательность действий:

  1. Открыть доступ к заземляющей шине, сняв защитный кожух.
  2. Захватить клещами проводник (шину или непосредственно электрод) заземления.
  3. Выбрать режим измерения «А» (измерение тока).

Максимальное значение тока прибора составляет 30А, поэтому в случае превышения этой цифры выполнять измерение нельзя. Следует снять прибор и повторить попытку измерений в другой точке.

Когда полученная на шкале величина тока укладывается в допустимый диапазон, можно продолжить работу переключением прибора на измерение сопротивления «?». Высвеченный на дисплее результат покажет общее значение сопротивления, включая:

  • электрод и шину заземления;
  • контакт нейтрали с электродом заземления;
  • контакт соединений на линии между нейтралью и заземляющим электродом.

Работая с клещами, следует иметь в виду: завышенные показания прибора по сопротивлению заземления, как правило, обусловлены плохим контактом заземляющего электрода с грунтом. Также причиной высокого сопротивления может быть оборванная токоведущая шина. Высокие цифры сопротивлений в точках соединений (сращиваний) проводников тоже могут влиять на показания прибора.

Общие рекомендации по измерению УСГ

Прежде чем сооружать цепь заземления, следует получить точные сведения о том, в область каких грунтов будет закладываться заземляющий электрод. Часто для определения значений «p» грунта предлагается обращаться к существующим таблицам. Однако этот вариант с таблицами даёт чисто ориентировочные данные. Поэтому полагаться на них не стоит. Истинные значения сопротивления грунта могут отличаться в разы.

Вариант #1: однослойный грунт

Если грунт имеет однородную составляющую, его удельное сопротивление измеряют методикой «пробного электрода».

Метод предполагает выполнение определённой процедуры в два этапа:

  1. Берут стержневой контрольный зонд длиной чуть больше глубины проектной закладки.
  2. Погружают зонд в землю строго вертикально на глубину проектной закладки.
  3. Оставшийся над поверхностью земли конец используют для замера сопротивления растекания (Rr).
  4. Определяют УСГ по формуле p = Rr * Ψ.

Желательно выполнить процедуру несколько раз в различных точках рабочей площадки. Альтернативные замеры помогают достичь точных результатов измерений сопротивления грунта.

Вариант #2: многослойный грунт

Для такой ситуации замер УСГ выполняют методом ступенчатого зондирования. То есть контрольный зонд погружается до рабочей глубины ступенями и в положении каждой ступени выполняются измерения удельного сопротивления.  Вычисления среднего УСГ производятся с помощью формул для каждого отдельного измерения.

Затем, исходя из климатических особенностей местности, находят значения для сезонных изменений. Таким способом (достаточно сложным) получают расчётные значения УСГ верхних слоёв. Нижележащие слои рассматриваются как не подверженные сезонным изменениям и потому расчёт для них ограничивается несколько упрощённым измерением и вычислением.

Требования к исполнению работ

Работы подобного плана, конечно же, выполняются квалифицированным персоналом, представляющим специализированные организации. Так, за эксплуатацию силовых щитков в жилых домах, как правило, отвечают коммунальные службы. Производить какие-либо измерения в этих точках разрешается только через обращение к этим службам.

Электрические цепи относятся к опасным системам. Несмотря на то, что коммуникации бытового сектора рассчитаны под напряжение менее 1000В, это напряжение смертельно для человека. Требуется соблюдать все необходимые меры безопасности при обращении с электрическим оборудованием. Обывателю зачастую такие меры попросту неведомы.

Выводы и полезное видео по теме

Выполнение измерений на практике с помощью прибора:

Исполнение работ, связанных с проверкой сопротивления заземления, требуется обязательно, независимо от сложности электрической схемы и категории объекта, где устанавливается или установлено и эксплуатируется электрооборудование. Многие специализированные организации готовы предоставлять такие услуги.

sovet-ingenera.com



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.