Цель проведения измерений.

Измерения сопротивления заземлителей и заземляющих устройств  проводят с целью проверки соответствия этих устройств требованиям ПУЭ, условиям безопасности людей и защиты электрооборудования в случае повреждения изоляции электроустановок.

2.   Меры безопасности.

2.1 Организационные мероприятия.

Работы по измерениям характеристик заземляющих устройств должны выполнятся в соответствии с действующими Правилами техники безопасности при эксплуатации электроустановок. Работы по измерениям электрических характеристик заземляющих устройств должны выполнятся по нарядам или распоряжениям.

2.2 Технические мероприятия.

При измерениях на действующих РУ с использованием вынесенных токовых и потенциальных электродов должны приниматься меры по защите от воздействия полного напряжения на заземлителе при стекании с него тока однофазного КЗ на землю. Персонал, производящий измерения, должен работать в диэлектрических ботах, диэлектрических перчатках, пользоваться инструментом с изолированными ручками. При сборке измерительных схем следует сначала присоединять провод к вспомогательному электроду (токовому, потенциальному) и лишь затем к соответствующему измерительному прибору.


3.  
Подготовка к измерениям.

4.  

Измерение сопротивления заземляющих устройств должно производиться зимой или  летом, когда сопротивление земли (грунта) принимает наибольшее значение. При испытаниях вновь смонтированных установок результаты измерения сопротивления должны быть скорректированы повышающим коэффициентом, учитывающим высыхание или промерзание грунта.

При небольшом количестве оборудования в испытуемой электроустановке сопротивление заземляющего устройства проверяется непосредственно на корпус заземленного оборудования. При большом количестве оборудования и разветвленной заземляющей сети измерение производится раздельно: сопротивление заземлителя и сопротивление заземляющих проводников, т.е. металлической связи корпусов электрооборудования с контуром заземления. Для этого на некотором расстоянии от него располагается вспомогательный заземлитель,  подключаемый вместе с испытываемым заземлителем  к прибору EurotestXE 2,5 кВ MI 3102H с встроенным источником питания. Для измерения падения напряжения на испытываемом заземлителе  при прохождении через него тока в зоне нулевого потенциала располагается зонд. Точность измерения сопротивления заземлителей зависит от взаимного расположения испытываемого и вспомогательных заземлителей и от расстояния между ними.


За размер Д следует принимать:

·  для заземляющих сеток и для заземлителей, состоящих из контура из вертикальных электродов — длину большей диагонали;

·  для заземлителей, состоящих из вертикальных электродов, расположенных в ряд и объединенных горизонтальной полосой — длину полосы;

·  для заземлителей в виде одиночной горизонтальной полосы — длину полосы.

Если заземлители представляют собой железобетонные фундаменты зданий или стальные полосы, проложенные для выравнивания потенциалов, то в качестве Д следует принимать наибольший размер здания в плане.

Методика измерения сопротивления заземляющих устройств

Рисунок 1: Подключение стандартных измерительных проводов (20 м)

Направление разноса электродов нужно выбирать таким образом, чтобы электроды не оказались ближе 10 м от подземных металлических конструкций ( кабелей с металлическим оболочками, трубопроводов, заземлителей опор ВЛ и др.)

В некоторых случаях при наличии большого количества подземных коммуникаций может потребоваться несколько измерений при различных направлениях лучей и различных расстояниях между зондами. Из нескольких измерений в качестве действительного значения принимают наихудший результат.


Электроды следует забивать в плотный естественный (не насыпной) грунт на глубину не менее 0,5м. В грунтах с большим удельным сопротивлением места, где нужно забить вспомогательные заземлители, уплотняют либо увлажняют водой, раствором соли или кислоты. В качестве вспомогательных заземлителей могут быть использованы отрезки металлических труб, рельсов и другие металлические предметы, находящиеся в земле и не связанные с испытываемым  заземлителем.

4.  
Нормируемые величины.

Сопротивление заземлителя не должно превышать нормируемого значения в любое время года.

Максимально допустимые значения сопротивления заземляющих устройств указаны в ПУЭ 7 таблица 1.8.38 и ПТЭЭП приложении 3.

5.  
Применяемые приборы.

Измерение сопротивления заземлителей производится специальным прибором типа EurotestXE 2,5 кВ MI 3102H, используя 3-х проводный метод измерения.

Во время работы применяют инструмент, с помощью которого электроды забиваются в грунт на глубину не менее 0.5 м, а также обеспечивается надежное присоединение проводников от прибора к электродам.

Подключение прибора к корпусу электроустановки производится при помощи щупа в качестве которого используется квадратный напильник (для создания металлического контакта) с глухоприсоединенным медным проводом сечением 2.5 мм2 сопротивление которого при длине в единицы метров позволяет использовать 3-х зажимную схему измерения.


6.  
Методика проведения измерений.

6.1. При выполнении измерения сопротивления заземления следуйте следующим инструкциям:

􀂉 Потенциальный зонд (S) размещается между заземлителем (E) и вспомогательным токовым зондом (H) на контрольном участке

􀂉 Расстояние от заземлителя (E) до вспомогательного токового зонда (H) должно составлять, по крайней мере, пятикратную величину глубины заземляющего электрода или длины полосового электрода.

􀂉 При измерении сопротивления заземления комплексной системы заземления данное расстояние зависит от длины большей диагонали между отдельными заземлителями. Для получения дополнительной информации относительно измерения сопротивления заземления обратитесь к учебнику Metrel «Guide for testing and verificationoflowvoltageinstallations».

6.2. Порядок проведения измерения сопротивления заземления

Шаг 1 С помощью переключателя функций выберите функцию Заземление.

Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2 Установите следующий параметр измерения:

􀂉 Максимально допустимое сопротивление заземления.

Шаг 3 Для измерения сопротивления заземления подключите прибор к испытываемому объекту. При необходимости воспользуйтесь меню помощи. Измерительные провода подключите следующим образом:


􀂉 L/L1 черный измерительный провод присоединяется к вспомогательному токовому зонду (H).

􀂉 N/L2 синий измерительный провод присоединяется к заземлителю (E).

􀂉 PE/L3 зеленый измерительный провод присоединяется к

потенциальному зонду (S).

Шаг 4 Перед началом измерения проверьте отображаемые на дисплее предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите кнопку TEST. После завершения измерения на дисплее отображаются результаты измерений и оценка результата в виде «Соответствует / не соответствует» (если применяется).

Отображаемые результаты:

R………….сопротивление заземления,

RC ………..сопротивление вспомогательного токового зонда,

RP ………..сопротивление потенциального зонда.

Сохраните отображенные результаты с целью дальнейшего документирования. Примечания:

􀂉 При наличии между измерительными выводами напряжения, превышающего 30 В, измерение сопротивления заземления не будет выполнено.

􀂉 Если между измерительными выводами H и E или S присутствует напряжение шума выше, чем приблизительно 5 В, на дисплее появится предупреждающий символ ” (шум), сигнализирующий о том, что результат может быть некорректным!__


Источник: www.etlpro.ru

1. Вводная часть.

1.1 Область применения.

Настоящий документ устанавливает методику выполнения измерения сопротивления заземляющих устройств и возможность их дальнейшей эксплуата­ции согласно ПУЭ п. 1.8.39., а также измерения удельного сопротивления грун­та.

1.2. Определяемые характеристики и условия измерений.

1.2.1. Определяемые характеристики:

— сопротивление заземляющих устройств;

— удельное сопротивление грунта;

— активное сопротивление.

1.2.2. Условия измерений.

Измерения допускается проводить при температуре окружающей среды от — 25 до +55°С и относительной влажности до 90% при 30°С.

1.2.3. Для правильной оценки качества заземляющих устройств измерение их сопротивления рекомендуется проводить в период наименьшей проводимо­сти грунта: зимой — при наибольшем его промерзании, летом — при наибольшем просыхании. Для учета состояния земли, во время измерения применяют один из коэффициентов, приведенных в табл.2. При разветвленной заземляющей сети измерения производят раздельно: сопротивления заземлителей и сопротивления заземляющих проводников, т.е. металлической связи корпусов электрооборудова­ния с контуром заземления.


2. Средства измерений.

2.1.При выполнении измерений применяют следующие средства измере­ний:

2.1.1. Прибор М416, имеет четыре диапазона измерения:

0,1 -10 Ом;

0,5 -50 Ом;

2-200 Ом;

10 — 1000 Ом.

Основная погрешность прибора не превышает ±[5+ (N/Rх-1)] в про­центах от измеряемой величины при сопротивлениях вспомогательного заземлителя и зонда не более:

500 Ом в диапазоне 0,1 — 10 Ом;

1000 Ом в диапазоне 0,5 — 50 Ом;

2500 Ом в диапазоне 2 — 200 Ом;

5000 Ом в диапазоне 10-1000 Ом.

2.2. Прибор Ф4103-М1. Класс точности 4,0 на диапазоне 0-0,3 Ом и 2,5 на остальных диапазонах. Пределы допускаемой основной приведенной погреш­ности ± 4% на диапазоне 0 — 0,3 Ом и ± 2,5% на остальных диапазонах от ко­нечного значения диапазона измерения.

3. Характеристики погрешности измерений.

3.1. Методика расчета погрешности измерителя Ф4103-М1.

3.1.1. Класс точности 4.0 на диапазоне 0-0.3 Ом и 2.5 на остальных диапазонах.

3.1.2. Время установления показания в положении ИЗМ 1 не более 6с, в по­ложении ИЗМ II не более 30с.

3.1.3. Нормальные условия применения измерителя приведены в разделе 8 паспорта прибора.

3.1.4. Пределы допускаемой основной приведённой погрешности +4% на диапазоне 0-3 Ом и + 2,5% на остальных диапазонах от конечного значения диапа­зона измерения


3.1.5. Пределы допускаемой вариации показаний равны пределам допускае­мой основной погрешности.

3.1.6. Пределы допускаемой дополнительной погрешности, вызванной воз­действием помех, равны:

половине значения допускаемой основной погрешности при воздействии переменного тока синусоидальной формы частотой 50 Гц и её гармоник напряжени­ем до 3 В на диапазоне 0-0.3 Ом и до 7 В на остальных диапазонах;

удвоенному значению допускаемой основной погрешности при воздейст­вии скачкообразных изменений амплитуды однополярных импульсов напряжением от 0 до 1 В, частотой 50 Гц, скважностью 2;

значению допускаемой основной погрешности при воздействии высоко­частотных радиопомех напряжением до 0.3 В.

3.1.7. Пределы допускаемой дополнительной погрешности, вызванной ин­дуктивной составляющей измеряемого сопротивления с постоянной времени не бо­лее 0.0001 с, равны удвоенным значениям допускаемой основной погрешности.

3.1.8. Пределы допускаемой дополнительной погрешности, вызванной изме­нением напряжения питания на плюс 3 В и минус 0.5 В от минимального значения (12В) равны значениям допускаемой основной погрешности.

3.1.9. Пределы допускаемой дополнительной погрешности, вызванной воз­действием переменного магнитного поля частотой 50 Гц напряжённостью до 400 А/м, равны значениям допускаемой основной погрешности.

3.1.10. Пределы допускаемой дополнительной погрешности, вызванные от­клонением измерителя от горизонтального положения на угол 10 ° равны пределам допускаемой основной погрешности.


3.1.11. Пределы допускаемой дополнительной ‘погрешности, вызванной из­менением температуры окружающего воздуха равны пределам допускаемой основ­ной погрешности на каждые 10° С изменения температуры.

3.1.12. Пределы допускаемой дополнительной погрешности вызванной воз­действием повышенной влажности воздуха равны удвоенным значениям пределов допускаемой основной погрешности.

3.1.13. Приведённая погрешность измерения D в общем случае вычисляется по формуле (1)

Методика измерения сопротивления заземляющих устройств
(1)

где Dо — предел допускаемой основной приведённой погрешности;

Dcn — предел допускаемой дополнительной приведённой погрешности от n-го воздействующего фактора.

3.1.14. Перед проведением измерений необходимо по возможности умень­шить количество факторов, вызывающих дополнительную погрешность, например, устанавливать измеритель практически горизонтально, вдали от мощных силовых трансформаторов, использовать источник питания напряжением (12+0.25) В, индук­тивную составляющую учитывать только для контуров, сопротивление которых меньше 0.5 Ом, определять наличие помех и т.п.

ПРИМЕЧАНИЕ. Помехи переменного тока выявляются по качаниям в режиме ИЗМ II, стрелки при вращении ручки ПДСТ 1.Г.

Помехи импульсного (скачкообразного характера) и высокочастотные радиопомехи выявляются по постоянным непериодическим колебаниям стрелки.


3.2. Методика расчета погрешности измерителя М 416.

3.2.1.Основная погрешность прибора М416 не превышает величины ±[5+(N/Rх — 1)] в процентах от измеряемой величины при сопротивлениях вспо­могательного заземлителя и зонда не более:

500 Ом в диапазоне 0,1 — 10 Ом;

1000 Ом в диапазоне 0,5 — 50 Ом;

2500 Ом в диапазоне 2 — 200 Ом;

5000 Ом в диапазоне 10-1000 Ом.

3.2.2. Проверка основной погрешности производится в нормальных усло­виях на всех оцифрованных отметках остальных диапазонов.

3.2.3.Погрешность определяется путем сравнения показаний прибора с известными сопротивлениями, включенными согласно рис.1.

Методика измерения сопротивления заземляющих устройств

Рис. 1.

где R1 — магазин сопротивлений класса 0,2;

R2, RЗ сопротивления вспомогательного заземлителя и зонда, вели­чины которых для каждого диапазона выбирается согласно таблице 1:

Таблица 1.

Диапазон измере­ния, Ом

Величина сопротивления, Ом

R1

R2

0,1-10

0,1-10

500 ±25

1000 ±50

0,5-50

0,5-50

1000 ±50

2500 ± 25

2-200

2-200

2500 ±125

500 ±25

10-1000

10-1000

5000 ±250

5000 ±250

3.2.4.Поверку основной погрешности производить в следующем порядке:

а)переключатель установите в положение, соответствующее поверяемому диапазону:

б)вращая ручку «РЕОХОРД», установите соответствующую оцифрован­ную отметку (с учетом множителя ) против риски;

в)нажмите кнопку и подбором величины сопротивления на магазине К.1 установите стрелку индикатора на нулевую отметку.

По разности между показанием шкалы реохорда (с учетом множителя) и величиной сопротивления КЛ определите основную погрешность.

4. Метод измерения.

Измерение основано на компенсационном методе с применением вспомо­гательного заземлителя и зонда.

4.1. Методические указания при работе с измерителем Ф4103-М1.

4.1.1. Описание измерителя Ф4103-М1 и подготовка его к работе.

Измеритель выполнен в пластмассовом корпусе, имеющем съемную крышку и ремень для переноски. Съемная крышка в снятом состоянии может быть закреплена на боковой стенке корпуса. В нижней части корпуса имеется отсек для размещения сухих элементов. На лицевой панели расположены отсчетное устройство, зажимы для подключения токовых и потенциальных элек­тродов, органы управления, розетка для подключения внешнего источника тока.

4.1.2. Установить сухие элементы в отсек питания с соблюдением поляр­ности. При отсутствии их подключить измеритель к внешнему источнику с помощью шнура питания.

4.1.3. Установить измеритель на ровной поверхности и снять крышку, при необходимости закрепить её на боковой поверхности корпуса.

4.1.4. Проверить напряжение источника питания. Для этого закоротить зажимы Т1, Г11, П2, Т2, установить переключатели в положения КЛБ и «0.3»‘, а руч­ку КЛБ — в крайнее правое положение. Нажать кнопку ИЗМ. Если при этом лам­па КП не загорается, напряжение питания в норме.

4.1.5. Проверить работоспособность измерителя. Для этого, в положении КЛБ переключателя, установить ноль ручкой УСТО, нажать кнопку ИЗМ, ручкой КЛБ установить стрелку на отметку «30».

ВНИМАНИЕ! Не забывайте устанавливать переключатель в положение ОТКЛ после окончания работ для предотвращения разряда внутреннего источни­ка питания. Для блокировки включения измерителя закрывайте крышку!

4.1.6. После пребывания измерителя, в предельных температурных условиях

(-50°С; +55°С) или длительной повышенной влажности (95% при 30°С) время выдержки в нормальных условиях не менее, соответственно 3 ч и 23 ч.

4.2. Последовательность проведения работ измерителем Ф4103-М1

4.2.1. Измерение сопротивления заземляющих устройств.

Методика измерения сопротивления заземляющих устройств

4.2.1.1. Измерение сопротивления заземляющих устройств ЗУ выполнять по схеме, приведённой на рис.2.

Методика измерения сопротивления заземляющих устройств

Рис.2.

4.2.1.2.Направление разноса электродов Rп1 и Rт1 выбирать так чтобы со­единительные провода не проходили вблизи металлоконструкций и параллельно трассе ЛЭП (линий электропередач). При этом расстояние между токовым и потен­циальным проводами должно быть не менее 1 м. Присоединение проводов к ЗУ вы­полнять на одной металлоконструкции, выбирая места — подключения на расстоя­нии (0.2-0.4) м друг от друга.

4.2.1.3.Измерительные электроды размещать по однолучевой или двухлучевой схеме. Токовый электрод (К.т1) установить на расстоянии 1 зт =2Д (предпочти­тельно 1зт =ЗД) от края испытуемого устройства (Д — наибольшая диагональ зазем­ляющего устройства), а потенциальный электрод (Кп1) — поочерёдно на расстояниях (0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8) 1зт.

4.2.1.4.Измерения сопротивления заземляющих устройств проводить при ус­тановке потенциального электрода в каждой из указанных точек. По данным изме­рений построить кривую «б» зависимости сопротивления ЗУ от расстояния по­тенциального электрода до заземляющего устройства. Пример такого построения приводится на рис.3.

Методика измерения сопротивления заземляющих устройств

Рис.3.

1зт — расстояние от края заземляющего устройства до токового электрода.

4.2.1.5.Полученную кривую «б» сравнить с кривой «а», если кривая «б’; имеет монотонный характер (такой же, как у кривой «а») и значения сопротивлений ЗУ, измеренные при положениях потенциального электрода на расстояниях 0.4 1зт и 0.6 1зт, отличаются не более, чем на 10%, то места забивки электродов выбраны правильно и за сопротивление ЗУ принимается значение, полученное при распо­ложении потенциального электрода на расстоянии 0.5 1 зт.

4.2.1.6. Если кривая «б» отличается от кривой «а» (не имеет монотонного характера, см. рис.3), что может быть следствием влияния подземных или назем­ных металлоконструкций, то измерения повторить при расположении токового электрода в другом направлении от заземляющего устройства.

4.2.1.7.Если значения сопротивления ЗУ, измеренные при положениях по­тенциального электрода на расстоянии 0.4 1зт и 0.6 1зт, отличаются более, чем на 10%, то повторить измерения сопротивления ЗУ при увеличенном в 1.5 — 2 раза рас­стоянии от ЗУ до токового электрода.

4.2.1.8. Измерения проводить в следующей последовательности.

4.2.1.9. Проверить напряжение источника питания по п.4.1.4.

4.2.1.10. Подключить провода от Кп1 и ЗУ соответственно к зажимам 111 и 112 (рис.1).

4.2.1.1 1. Проверить уровень помех в поверяемой цепи. Для этого установить переключатели в положение ИЗМ II и «0.3» и нажать кнопку ИЗМ. Если лампа КПм не загорается, то уровень помех не превышает допустимый и измерения можно про­водить. Если лампа КПм загорается — уровень помех превышает допустимый для диапазона 0-0.3 Ом (3 В) и необходимо перейти на диапазон 0-1 Ом, где допусти­мый уровень помех 7 В. Если в этом случае лампа не загорается, можно проводить измерения, на всех диапазонах (кроме 0-0.3 Ом).

ВНИМАНИЕ! Запрещается подключать провода к зажимам Т1, Т2 проводить измерения, если лампа КПм загорается на диапазоне 0-1 Ом, во избежание выхода

измерителя из строя. При кратковременном повышении уровня помех выше допус­тимого провести повторный контроль по истечении некоторого времени.

Методика измерения сопротивления заземляющих устройств

Рис.4

4.2.1.12. Измерение сопротивления потенциального электрода по двухзажимной схеме (рис.4). Для этого установить диапазон измерения, ориентировочно соот­ветствующий измеряемому сопротивлению электрода, затем установить ноль и откалибровать измеритель. Перевести переключатель в положение ИЗМ II и отсчитать значение сопротивления. Если оно превышает допустимое значение сопротивления. Если оно превышает допустимое значение, указанное в табл.2 для выбранного диа­пазона измерения, его необходимо уменьшить.

4.2.1.13.Подключить измеритель в схему измерения в соответствии с рис.2.

4.2.1.14.Установить необходимый диапазон измерений, затем провести уста­новку нуля и калибровку. Если при проведении калибровки стрелка находится левее отметки «30» — уменьшить сопротивление токового электрода, либо провести изме­рение по п.4.5. Перевести переключатель РОД РАБОТ в положение ИЗМ II и отсчи­тать значения сопротивления. Если стрелка под воздействием помех совершает ко­лебательные движения, устранить их вращением ручки ПДС г».

4.2.1.15.При необходимости перейти на более высокий диапазон измерения, переключить ПРЕДЕЛЫ, 0, в необходимое положение.

Установить ноль и откалибровать измеритель по п.4.2.1.11-4.2.1.14. Затем перевести переключатель РОД РАБОТ в положение ИЗМ II и отсчитать значение сопротивления. При переходе на более низкий диапазон отключить провод от зажи­мов Т1 и Т2 и провести контроль помех и сопротивлений электродов, а затем изме­рение в соответствии с пп 2.6.-2.9.

4.2.1.16. Измерение сопротивления точечного заземлителя проводить при 1 тг не менее 30 м.

4.3. Измерение удельного сопротивления грунта.

Измерение удельного сопротивления грунта проводить по симметричной схеме Веннера (рис.5).

4.3.1. Измерения проводить в следующей последовательности.

4.3… 2. Проверить напряжение питания по п.4.1.4.

4.3.3. Подключить к измерителю потенциальные электроды по двухзажимной схеме (рис.4) и измерить их сопротивления по методике п. 4.2.1.12. Оно должно соответствовать указанному в табл. 1 паспорта прибора для выбранного диапазона измерения. При необходимости уменьшить его одним из известных способов.

4.3.4. Подключить измеритель в схему измерения в соответствии с рис. 5.

4.3.5. Провести измерение по методике п. 4.2.1.14. Кажущееся удельное сопротивление грунта rкаж на глубине, равной расстоянию между электродами «а», определить по формуле (1).

rкаж = 2pRa,

где R — показание измерителя Ом.

Примечание. Расстояние «а» следует принимать не менее, чем в 5 раз больше глубины погружения электродов.

4.3.6. Измерения на каждом из диапазонов проводить в соответствии с п. 4.2.14…

Методика измерения сопротивления заземляющих устройств

Рис. 5.

4.4. Измерение активного сопротивления.

4.4.1. Измерение активного сопротивления проводить по схеме, изображён­ной на рис.6, выполняя операции по пп.4.1.3; 4.2.1.14. Отсчёт измеряемого сопро­тивления проводить в положении переключателя ИЗМ П.4.5. Измерения при повышенных сопротивлениях электродов.

4.5.1. Измерителем допускается измерять сопротивление ЗУ при повышен­ных сопротивлениях электродов, при этом погрешность измерений определяется по формуле (2), приведенной ниже. Измерение сопротивлений ЗУ допускается прово­дить до десятикратного увеличения сопротивлений потенциальных и токовых элек­тродов, приведённых в табл.1, паспорта прибора.

Порядок работы.

4.5.2. Выполнять операции по пп.4.4. — 4.5.5.

4.5.3. Установить переключатель ПРЕДЕЛЫ, 0 на тот диапазон измерения, на котором отклонение стрелки максимальное, и отсчитать показания А в отделени­ях верхней шкалы.

4.5.4. Установить переключатель в положение КЛБ и отсчитать показания Iх в делениях верхней шкалы.

4.5.5. Измеряемое сопротивление Ро определить по формуле (2)

Методика измерения сопротивления заземляющих устройств
, (2)

где N — показание переключателя диапазонов, Ом;

А — показание измерителя в положении ИЗМ II, дел;

Iх — показание измерителя в положении КЛБ, дел.

При этом относительная погрешность измерения 8 (%) определяется ори­ентировочно по формуле (3).

Методика измерения сопротивления заземляющих устройств
(3)

где у — относительная погрешность, g = (N/Rх)D.

4.5.6. Для ускорения процесса измерений можно вместо режима ИЗМ — II пользоваться режимом ИЗМ I, если стрелка не колеблется под воздействием помех.

ВНИМАНИЕ! В режиме ИЗМ I возможна остановка стрелки и её после­дующее перемещение к отметке шкалы, соответствующей измеряемой величине.

4.6. Методические указания при работе с прибором М-416.

4.6.1.Описание прибора и подготовка его к работе.

4.6.1.1. Прибор выполнен в пластмассовом корпусе с откидной крыш­кой и снабжен ремнем для переноски. В отсеке нижней части корпуса разме­щены сухие элементы. На лицевой панели прибора расположены органы управления, ручка переключателя диапазона и реохорда. кнопка включения. Для подключения измеряемого сопротивления, вспомогательного заземлителя и зонда на приборе имеется четыре зажима, обозначенных цифрами 1,2, 3,4. Для грубых измерений сопротивления заземления и измерения больших сопротив­лений зажимы 1 и 2 соединяют перемычкой и прибор подключают к измеряе­мому объекту по трехзажимной схеме (рис. 7,9)

Методика измерения сопротивления заземляющих устройств

Рис.7 Подключение прибора по трехзажимной схеме.

При точных измерениях снимают перемычку с зажимов 1и 2 и прибор подключают к измеряемому объекту по четырехзажимной схеме (рис.8,10)

Методика измерения сопротивления заземляющих устройств

Рис. 8. Подключение по четырехзажимной схеме.

4.6.1.2 Установить сухие цилиндрические элементы типа 373, соблю­дая полярность, в отсек питания, расположенный в нижней части прибора.

4.6.1.3.Установить прибор на ровной поверхности. Открыть крышку.

4.6.1.4. Установить переключатель в положение «КОНТРОЛЬ 5» нажать кнопку и вращением ручки «РЕОХОРД» добиться установления стрелки индикатора на нулевую отметку. На шкале реохорда при этом должно быть показание (5_+0,3)Ом.

4.6.1.5. Прибор рассчитан для работы при напряжении источника пи­тания от 3,8 до 4,8 В.

4.7. Последовательность проведения работ прибором М-416.

4.7.1. Измерение сопротивления заземляющих устройств.

4.7.1.1.Для проведения измерения подключите измеряемое сопротив­ление Rх, вспомогательный заземлитель и зонд забейте в грунт на расстоя­ниях, указанных на рисунках 7-10. Глубина погружения не должна быть менее 500 мм.

Методика измерения сопротивления заземляющих устройств

Рис.9.Подключение прибора 3 — зажимной схеме к сложному (контурному) заземлителю.

Методика измерения сопротивления заземляющих устройств

Сложный

(контурный) заземлитель

Рис. 10. Подключение по 4-зажим. схеме к сложному (контурному) заземлителю.

При отсутствии комплекта принадлежностей для проведения измере­ний заземлитель и зонд могут быть выполнены из металлического стержня или трубы диаметром не менее 5 мм.

4.7.1.2.Во избежание увеличения переходного сопротивления заземлителя и зонда стержни следует забивать в грунт прямыми ударами, стараясь не раскачивать их.

4.7.1.3.Сопротивления вспомогательного заземлителя и зонда не должны превышать величин, указанных в разделе «Технические характеристики».

4.7.1.4.Практически для большинства грунтов сопротивление вспомо­гательных заземлителей не превышает указанных значений. При грунтах с высо­ким удельным сопротивлением для увеличения точности измерений рекоменду­ется увлажнение почвы вокруг вспомогательных заземлителей и увеличение их

количества.

4.7.1.5.Дополнительные стержни при этом должны забиваться на рас­стояниях не менее 2-3 метров друг от друга и соединяться между собой про­водами.

4.7.1.6.Измерение производите по одной из схем рис. 7-10 в зависи­мости от величин измеряемых сопротивлений и требуемой точности измерений. При измерениях по схемам рис. 7 и 9 в результат измерений входит сопротив­ление провода, соединяющего зажим 1сКх. Поэтому такое включение допусти­мо при измерении сопротивлений выше 5 Ом. Для меньших значений изме­ряемого сопротивления применяйте включение по схемам рис.8 и 10.

4.7.1.7. Для сложных заземлителей, выполненных в виде контура с протяженным периметром или электрически соединенной системы таких конту­ров, расстояние между вспомогательным заземлителем и ближайшим к нему заземлителем контура или системы контуров должно быть не менее пятикратного расстояния между двумя наиболее удаленными заземлителями контура или сис­темы контуров плюс 20 м.

4.7.1.8. Независимо от выбранной схемы измерение проводите в следующем порядке:

а) переключатель В1 установите в положение «XI»;

б) нажмите кнопку и, вращая ручку «РЕОХОРД», добейтесь макси­мального приложения стрелки индикатора к нулю.

в) результат измерения равен произведению показания шкалы рео­хорда на множитель. Если измеряемое сопротивление окажется больше 10 Ом, переключатель установите в положение «Х5», «Х20» или «XI00» и повторите операцию б).

4.8. Определение удельного сопротивления грунта.

4.8.1. Измерение удельного сопротивления грунта производится анало­гично измерению сопротивления заземления. При этом к зажимам 1 и 2 вместо Rх присоединяется дополнительный электрод в виде металлического стержня или трубы известных размеров.

4.8.2. Вспомогательный заземлитель и зонд расположите от дополни­тельного электрода на расстояниях, указанных на рис. 7-8.

4.8.3. В местах забивки стержня, вспомогательного заземлителя и зонда растительный или насыпной слой должен быть удален.

4.8.4. Удельное сопротивление грунта на глубине забивки трубы под­ считывается по формуле:

Методика измерения сопротивления заземляющих устройств
.

где Rх — сопротивление, измеренное измерителем сопротивления грунта, Ом;

Е — глубина забивки трубы (стержня), м; 6 — диаметр трубы ( стержня ), м;

4.8.5. Второй способ определения удельного сопротивления заключает­ся в следующем: на испытуемом участке земли по прямой линии забейте че­тыре стержня на расстоянии «а» друг от друга (см. рис. 11).

Методика измерения сопротивления заземляющих устройств

Рис.11.Схема измерения уд. сопротивления грунта по 4-зажим. схеме.

Глубина забивки стержней не должна превышать 1/20 расстояния «а». Зажимы 1 и 4 подсоедините к крайним стержням, а зажимы 2 и 3-к средним, перемычку между зажимами 1 и 2 разомкните и произведите измерение. Удельное сопротивление грунта определите по формуле:

R=2pRа,

где R показа­ния измерителя заземления, Ом; а — расстояние между стержнями; p = 3.14

4.8.6. Приближенно можно считать, что при этом способе измеряется среднее удельное сопротивление грунта на глубине, равной расстоянию между забитыми стержнями «а».

4.9. Измерение активных сопротивлений.

4.9.1.Измерение активных сопротивлений осуществляется подключе­нием их к прибору в соответствии с рис. 12.

Методика измерения сопротивления заземляющих устройств

Рис. 12. Схемы измерения активных сопротивлений.

а) — схема измерения без исключения погрешности, вносимой соедини­тельными проводами;

б) — схема измерения с исключением погрешности, вносимой соедини­тельными проводами.

5. Меры по технике безопасности.

5.1. Перед началом работ провести все организационные и технические мероприятия, согласно главе 5. «Межотраслевых Правил по охране труда (Правил безопасности) при эксплуатации электроустановок», для обеспечения безопасного проведения работ.

6. Требования к квалификации персонала.

6.1. К выполнению измерений допускается персонал, знающий требования НД на производимые измерения. Измерения выполняет бригада, состоящая не менее чем из 2-х человек. Руководитель испытаний должен иметь группу по электробезопасности не ниже III, а член бригады — не ниже П.

7. Обработка результатов измерений.

7.1. После окончания измерений выбрать из таблицы 2 поправочный коэффициент k., исходя из состояния грунта, метеорологических условий, характеристик заземляющего устройства.

7.2. Затем определить расчетное сопротивление заземлителя из выражения R= Rизм ´ k.

7.3. Полученный результат сравнить с проектным значением, с пре­дыдущими замерами (если таковые проводились), с требованиями нормативных документов.

8. Оформление результатов измерений.

8.1. Результаты измерений оформляются протоколом установленной формы.

Таблица 2.

Поправочный коэффициент к значению измеренного сопротивления заземлителя для средней полосы России.

Тип

заземлителя

Размеры

t = 0,7 — 0,8м

t = 0,5м

t = 0 м

К1

К2

КЗ

К1

К2

КЗ

К1

К2

КЗ

Горизонтальная

полоса

l = 5м

4,3

3,6

2,9

8,0

6,2

4,4

1 = 20м

3,6

3,0

2,5

6,5

5,2

3,8

Заземляющая

сетка или контур

S» = 400 м2

S» = 900 м2

2,6

2,2

2,3 2,0

2,0 1,8

4,6 3,6

3,8 3,0

3,2 2,7

S» = 3600 м2

1,8

1,7

1,6

3,0

2,6

2,3

Заземляющая

сетка или контур

с вертикальными

электродами

S = 900 м2

1,6

1,5

1,4

1,9

1,8

n = 1 0 шт.

S” = 3600 м2

1,5

1,4

1,3

2,0

1,9

1,7

n = 1 5 шт.

Одиночный

вертикальный

заземлитель

1 = 2,5 м

2,0

1,75

1,5

3,8

3,0

2,3

1 = 3,5 м

1,6

1,4

1,3

2,1

1,9

1,6

1 = 5,0 м

1,3

1,23

1,15

1,6

1,45

1,3

Примечание: t: — расстояние от поверхности земли до верхней точки заземлителя.

К1 применяется, когда измерение проводится при влажном грунте или к моменту измерения предшествовало выпадение большого количества осадков;

К2 — когда измерение проводится при грунте средней влажности или к моменту измерения предшествовало выпадение небольшого количества осадков;

КЗ — когда измерение проводится при сухом грунте или к моменту измерения предшествовало выпадение незначительного количества осадков;

1: — глубина заложения в землю горизонтальной части заземлителя или верхней части вертикальных заземлителей;

1 — длина горизонтальной полосы или вертикального заземлителя;

S — площадь заземляющей сетки;

п — количество вертикальных электродов.

Руководитель ЭТЛ

Источник: etl86.ru

Испытания заземления

Существует множество споров по поводу монтажа заземления и норм растекания тока по нему. Но в одном специалисты сходятся абсолютно единогласно — проверять качество установленного контура должен проверять специалист. Эта процедура позволит быть уверенным с правильном монтаже заземления в доме и позволит обезопасить себя и близких от опасного воздействия электрического тока. Испытания проводятся как на предприятиях, где часто работают генераторы и двигатели высокой мощности, так и в частных домах — измерение сопротивления заземления делается одним и тем же способом.

Измерение сопротивления2

Существует две основных разновидности испытаний: приемо-сдаточные и эксплуатационные. Первые проводятся в случаях, когда установка (или участок сети) уже полностью смонтированы и готовы к непосредственному использованию. Перед тем, как измерить сопротивление заземления, определяют, готов ли контур к поглощению токов в случае необходимости и соответствуют ли его параметры заявленным требованиям. Помимо всего прочего, необходимо регулярно контролировать, чтобы установленное заземление не теряло своих свойств с течением времени. Для этого проводятся эксплуатационные испытания — специалист проверяет готовый участок сети, который уже используется. Для осуществления такой процедуры нужно освободить сеть от потребителей, так что весь процесс требует небольшой подготовки.

Чем измеряют заземление

Для измерения этой величины применяется омметр — прибор, который изменяет сопротивление. При этом устройств для определения сопротивления заземления должны иметь определенные характеристики. Самая главная: очень низкая проводимость на входе. Диапазон измерений у таких приборов крайне небольшой: обычно он составляет от 1 до 1000 Ом. Точность измерения в аналоговых приборах не превышает 0.5–1 Ом, а в цифровых — до 0.1 Ома.

Измерение сопротивления3

Несмотря на повальное распространение китайских и европейских приборов, самым популярным остается М416, разработанный еще в СССР. Устройство имеет четыре диапазона измерения: от 0 до 10 Ом, от 0.5 до 50, от 2 до 200 и от 100 до 1000. Работает прибор от трех «пальчиковых» батареек. Несмотря на это, мобильным его назвать трудно — размеры корпуса не слишком комфортны.

Более продвинутой версией является Ф4103 — промышленный омметр с большим входным сопротивлением. Он еще менее транспортабельный, но имеет большее количество диапазонов измерения. Большой плюс такого прибора: работа с огромным диапазоном сигналов (от постоянного и пульсирующего тока — до переменного с частотой 300 Гц). Также порадует пользователя и диапазон рабочих температур: от –25 до 55 градусов по Цельсию.

Измерение сопротивления4

Как нужно измерять сопротивление

Существует два документа, которые регламентируют нормы сопротивления заземления в контуре и другие показатели. Первый — ПУЭ (Правила устройства электроустановок), на которые опираются при проведении приемо-сдаточного контроля. Эксплуатационные замеры же должны соответствовать Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП).

Измерение сопротивления5

В обеих сводах правил существует разделение контуров на несколько типов — их нужно учесть до того, как измерить сопротивление заземления. Они отличаются в зависимости от напряжения, которое используется в сети и разновидности цепи. Всего имеется три типа контуров:

  1. Для подстанций и пунктов распределения, в которых напряжение не превышает 1000 вольт (вне зависимости от того, используется в сети переменный ток или постоянный).
  2. Для воздушных ЛЭП (линий электропередач), которые передают ток напряжением менее 1000 вольт.
  3. Для электроустановок с таким же максимально допустимым напряжением, использующимся в промышленных или бытовых целях.

Измерение сопротивления6

Нормы для каждого из типов

Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

  1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
  2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
  3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
  • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
  • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
  • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
  • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.

Измерение сопротивления7

Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

От чего зависит сопротивление заземления

Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

  1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
  2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
  3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

Измерение сопротивления8

Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

Формула расчета

Формула расчета сопротивления заземления одиночного вертикального заземлителя:

Формула

где:
ρ — сопротивление грунта на единицу длины (Ом×м)
L — протяженность заземлителя (в метрах)
d — ширина заземлителя (в метрах)
T — расстояние от поверхности земли до середины заземлителя (в метрах)

Для электролитического заземления:

Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

Формула2

где:

ρ — сопротивление грунта на единицу длины (Ом×м);
L — протяженность заземлителя (в метрах);
d — ширина заземлителя (в метрах);
T — расстояние от поверхности земли до середины заземлителя (в метрах);
С — относительное содержание электролита в окружающем грунте.

Коэффициент C варьируется от 0.5 до 0.05. Со временем он уменьшается, так как электролит проникает в грунт на больший объем, при это повышая свою концентрацию. Как правило, он составляет 0.125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0.5–1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

Измерение сопротивления9

Расчетное удельное электрическое сопротивление грунта (Ом×м) — параметр, определяющий собой уровень «электропроводности» земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Итоги и выводы

Заземление — важный элемент электрической цепи, который обеспечивает защиту от коротких замыканий, поражения током или попадания молнии в один из ее участков. Ключевым показателем здесь является сопротивление: чем оно меньше, чем больше тока «уведет» контур и тем ниже будет вероятность серьезного удара или повреждения оборудования. Сопротивление заземления регламентируется двумя документами: ПУЭ и ПТЭЭП. Первый используется для приема только что сданного участка сети, второй — для контроля уже эксплуатируемого участка.

Измерение сопротивления10

Нельзя пренебрегать нормами контроля, которые призваны проверить качество заземления и работу контура в условиях полной нагрузки. Процедуры производятся как непосредственно после создания цепи, так и в процессе ее использования. Частота проверок зависит от нагрузки на сети и целей, для которых используется контур. Нормы сопроивления при этом вовсе не отличаются. Различают три типа норм: для линий электропередач, трансформаторов и электрических установок. С повышением рабочего напряжения по экспоненте возрастает максимальная величина сопротивления. Также учитывается и ряд специфических показателей (например, удельная проводимость грунта). Исходя из нее можно получить максимальное регламентированное сопротивление.

Основными способами для увеличения эффективности работы заземлителя является использование разных конфигураций проводника. Ключевая задача заключается в том, чтобы предельно повысить площадь прямого контакта контура с землей. Для этого используется один или несколько проводников. В последнем случае их могут соединять как последовательно, так и параллельно.

Также для замера сопротивления контура заземления важно знать и поправочные коэффициенты — например, при вычислении минимально допустимого сопротивления заземления учитывается также удельное содержание материала в грунте и сопротивление повторного заземления. Для получения этого показателя нужно использовать специальное оборудование.

Источник: ProFazu.ru

Электролаборатория » Услуги электролаборатории » Методики измерений » Методика измерения сопротивления заземляющих устройств

1. Общие положения

Данная методика предназначена для производства измерений сопротивлений заземляющих устройств с целью оценки качества заземляющих устройств сравнением измеренных величин сопротивлений с нормами по пункту 1.7.101 ПУЭ (7 изд.) и пункту 26.4 ПТЭЭП. По данной методике выполняются также измерения сопротивлений заземляющих устройств молниезащиты. Методика распространяется и на измерения удельного сопротивления грунта, которое по пункту 1.7.56. ПУЭ следует определять в качестве расчетного значения, соответствующего сезону года, когда сопротивление контура заземления принимает наибольшие значения.
Для получения как можно более реальных результатов пунктом 26.4 ПТЭЭП рекомендуется измерения производить в период наибольшего удельного сопротивления грунта. При завышенных результатах сопротивлений заземляющих устройств, приведенных в таблице № 36 приложения 3.1 ПТЭЭП, они сопоставляются с данными измерений удельного сопротивления грунта.

2. Методы измерений

2.1. Метод измерения прибором MRU-101.

2.1.1 Условия проведения измерений и получения правильных результатов

Для правильного выполнения измерений необходимо выполнить несколько условий. Измеритель автоматически останавливает процедуру измерения в случае обнаружения следующих внештатных ситуаций:

Ситуация Символы дисплея Пояснения
Напряжение шума превышает 24В LIMIT и UN
Напряжение шума превышает 40В LIMIT и OFL издается издается продолжительный звуковой сигнал
Нет измерения текущего тока -r- вместе с символом измерительного гнезда Отсутствие подключения измерительных щупов требуемого сопротивления или измерительные провода не подключены к щупам
Сопротивление измерительных щупов превышает 50кОм LIMIT вместе со значением сопротивления измерительного щупа в дополнительном поле дисплея Уменьшить величину сопротивления измерительного щупа или увеличить влажность грунта вблизи щупа
Измерители вышли за диапазон OFL

Дополнительно измеритель сообщает о ситуациях, в которых результат измерения не может быть признан правильным:

Ситуация Символы дисплея Пояснения
Ошибка измерений из-за отклонения сопротивления щупов более 30% LIMIT
Элементы батареи разрядились BAT
После включения измерителя клавишей R, а также после выбора функции поворотным переключателем на дисплее отображается величина напряжения шума.
Если напряжение шума превышает 24 В, то нет возможности выполнить измерение; в этой ситуации необходимо проверить подключены ли измерительные провода к прибору, подсоединен ли кабель питания к сети, нет ли короткого замыкания или нарушения электрической изоляции измерительных проводов, что может мешать измерениям.
ВНИМАНИЕ! Измеритель предназначен для работы при напряжении шумов меньше чем 40 В. Подача на любые измерительные гнезда напряжения больше чем 40 В может повредить измеритель.

Измерение начинается после нажатия клавиши START.
Прибор выполняет цикл измерений, и если нет ни одной из причин для блокировки, описанной ранее. При измерении основное поле дисплея отображает символы Д-Д — передача сигналов версии данной стадии измерения, а в поле текущие значения параметров, измеряемых в данном режиме измерителя. После окончания измерения отображаются значения величины сопротивления и сопротивления измерительного щупа или удельного сопротивления грунта. Остальные параметры измерителя могут отображаться, при нажатии клавиши SEL.
Измеритель автоматически выбирает диапазон измерения для каждой функции.

Трехполюсная схема — основная схема измерения сопротивления устройств заземления. Процедура такова:
1. Соединить заземлитель с измерительным гнездом измерителя, обозначенным как „Е» (Рис.8);
2. Вбить токовый измерительный щуп в грунт на расстоянии, превышающем 40 м. от исследуемого заземлителя, и соединить измерительным проводом с измерительным гнездом «Н» измерителя;
3. Вбить потенциальный измерительный щуп в фунт на расстоянии, превышающем 20 м от исследуемого заземлителя и соединить с измерительным гнездом „S». Исследуемый заземлитель, токовый щуп и потенциальный щуп необходимо выстроить в одну линию;
4. Поворотный переключатель функций установить в положение RE Зр;
5. Нажать клавишу START;
6. Снять показание сопротивления устройства заземления RE, а также сопротивления измерительных щупов Rs и Rh. Специфические величины могут быть считаны с основного поля дисплея после нажатия клавиши SEL.
7. Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м к измеряемому заземлителю. Если результаты измерения отличаются больше чем 3 %, расстояние от токового щупа до исследуемого заземлителя должно быть увеличено значительно, а измерения следует повторять. Оптимальное положение потенциального щупа — 62 % от расстояния между токовым щупом и исследуемым заземлителем.

Трехполюсная схема для измерения сопротивления заземления

Рис. 8. Трехполюсная схема для измерения сопротивления заземления

Особое внимание должно быть уделено качеству соединения исследуемого заземлителя с измерительными проводами. Место контакта должно быть очищено от краски, ржавчины, и т. п.
Если сопротивление щупов измерителя слишком высоко, измеренное сопротивление заземления будет иметь дополнительную ошибку.
Особенно большая ошибка измерения наблюдается, когда измеряется малая величина заземляющего устройства, которое имеет свободный контакт с грунтом (такая ситуация наблюдается тогда, когда заземлитель сделан как хороший электрод, в то время как верхний уровень фунта сухой и имеет плохую проводимость).
При этом условии отношение сопротивления измерительных щупов к сопротивлению исследуемого заземлителя очень большое, и, как следствие, ошибка находится в зависимости от этого отношения.
Затем, согласно формуле, данной в приложении „Технические данные » могут быть выполнены вычисления для оценки влияния сопротивления измерительных щупов, что обеспечивается использованием диаграммы, данной в том же приложении.
Контакт измерительных щупов с грунтом может быть улучшен, например, увлажнением водой места, где установлен щуп в грунт или перестановкой щупа в другое место поверхности грунта.
Измерительный провод должен быть также проверен: нет ли повреждений изоляции или не нарушен ли контакт с клеммой щупа, подключен ли зажим к измерительному щупу, не разрушен ли коррозией контакт.
В большинстве случаев точность измерений достаточна. Однако, нужно сознавать величину ошибки, возникающей в результате измерения.

В случае, если, когда необходимо выполнить измерение, без дополнительной ошибки из-за сопротивления измерительных проводов, используют четырехполюсную схему.
ВНИМАНИЕ:
для измерения удельного сопротивления грунта рекомендуется четырехполюсная схема.
Для измерения сопротивления заземления необходимо:
1. Соединить заземлитель с измерительными гнездами измерителя, обозначенными как „Е» и „ES» соответственно (Рис.9).
2. Установить токовый щуп в грунт на расстоянии больше 40 м от заземлителя и соединить с гнездом „Н».
3. Установить потенциальный щуп в грунт на расстоянии 20 м от измеряемого заземлителя, соединенного с гнездом „S». Заземлитель (токовый и потенциальный) и измерительные щупы должны быть выстроены в одну линию.
4. Поворотный переключатель функций должен быть установлен в положение RE 4р.
5. Нажать клавишу START.
6. Снять показание значения сопротивления заземления, а также сопротивлений измерительных щупов Rs и RH. Специфические величины можно считать с основного поля дисплея нажатием клавиши SEL.
7. Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м далее к измеряемому заземлителю. Если результаты измерений отличаются больше чем 3 %, то расстояние токового измерительного щупа до исследуемого значительно увеличивают и повторяют измерения. Оптимальное положение потенциального измерительного щупа — 62 % от расстояния между токовым щупом и исследуемым заземлителем.

Четырехполюсная схема измерения сопротивления заземления

Рис.9. Четырехполюсная схема измерения сопротивления заземления

2.1.4 Измерение суммарного сопротивления заземлителя по трёхполюсной схеме (с использованием измерительных клещей)

Измерители серии MRU-100 могут быть использованы для измерений параметров многоэлементных заземлителей (совокупность заземляющих электродов соединена в систему устройства заземления) без необходимо­сти их рассоединения.
Измерительные клещи используются для инструментального определения токов, текущих через отдельные электроды устройства заземления, при этом используется следующая процедура:

Использование измерителя для измерения сопротивления многоэлементногоустройства заземления по трёхполюсной схемеРис.10. Использование измерителя для измерения сопротивления многоэлементного устройства заземления по трёхполюсной схеме

1. Соединяют исследуемый заземлитель с измерительным гнездом измерителя, обозначенным символом „Е» (Рис.10).
2. Токовый измерительный щуп вбивают в грунт на расстоянии, превышающем 40 м от исследуемого заземлителя, и соединяют измерительным проводом с измерительным гнездом „Н».
3. Потенциальный щуп устанавливают в грунт на расстоянии 20 м от измеряемого заземлителя, соединенного с гнездом „S». Заземлитель (токовый и потенциальный), измерительные щупы должны быть выстроены в одну линию.
4. Подключить измерительные клещи через кабель к разъему и охватить захватом измерительных кле­щей измерительный провод, подключенный к измерительному гнезду „Е»
5. Поворотный переключатель функций [У] установить в положение RE Зр Я.
6. Нажать клавишу START.
7. Снять показания значения сопротивления заземления RE, а также значения сопротивлений измерительных щупов Rs и RH . Значения специфических параметров могут быть сняты с основного поля дисплея после на­жатия на клавишу SEL.
8. Повторить измерения (по п.п. 5 и 6) после перемещения потенциального измерительного щупа на 1 м далее к измеряемому заземлителю.
Если результаты измерений отличаются больше чем на 3 %, то значительно увеличивают расстояние токового измерительного щупа до исследуемого и повторяют измерения. Оптимальное положение потенциального измерительного щупа — 62 % от расстояния между токовым щупом и исследуемым заземлителем.
При измерениях сопротивления заземлителей, состоящих из системы электродов, соединенных с мачтой линии электропередачи, иногда возникает потребность в определении не только сопротивления отдельных элементов заземлителя, но и общего сопротивления всей его системы электродов. Измерив значения сопротивлений отдельных элементов заземлителя RE1, RE2, RE3, RE4, определяют общую величину сопротивления системы по формуле:

Использование измерителя для измерения сопротивления многоэлементногоустройства заземления по трёхполюсной схеме

Для измерений удельного сопротивления грунта — измерители используют сопротивления отдельных электродов системы заземлителя, для чего в геологии были разработаны специальные приборы.
В данных приборах аналогичная функция измерения задается простым выбором положения поворотного переключателя функций.
Эта функция с метрологической точки зрения идентична четырехполюсной схеме измерений сопротивления заземления, но содержит дополнительную процедуру ввода в прибор взаимного расстояния между измерительными щупами и электродами заземлителя.
Результат измерения — величина удельного сопротивления фунта определяется автоматически согласно формуле r= 2pd RE, которая применяется в Методике измерения Вернера.

Вышеупомянутая методика предполагает равные расстояния между электродами.

Схема для измерения удельного сопротивления грунта

Рисунок 11. Схема для измерения удельного сопротивления грунта

Процедура, применяемая для измерения удельного сопротивления грунта, следующая:
1. Измерительные щупы устанавливают в грунт по прямой линии через равные взаимные расстояния и
соединяют с измерительными гнездами обозначенными символами „Н», „S», „ES» и „Е»
2. Поворотный переключатель устанавливают в положение „р».
3. Нажимают клавишу START.
4. Используя клавиши управления стрелками и изменяют величину расстояния между электродами, индицируемую на дисплее так, чтобы она лучше всего с согласовывалась с фактическим расстоянием.
5. Нажимают клавишу START.
6. Снимают показания значения сопротивления заземления RE, а также значения сопротивлений измери­тельных щупов Rs и RH. Значения специфических параметров могут быть сняты с основного поля дисплея после нажатия на клавишу SEL.
ВНИМАНИЕ: в вычислениях принято, что расстояния между отдельными измерительными щупами равны (методика Вернера). Если это не так, то измерения сопротивлений отдельных электродов и последующие вычисления должны выполняться независимо.

2.1.6 Безопасные приемы работы

Работы по измерению выполняется по наряду-допуску или по распоряжению. Вид оформле­ния работ определяет сотрудник электролаборатории, имеющий право выдачи нарядов и распоряжений. К работе допускаются лица из электротехнического персонала не моложе 18 лет, обученные и аттестованные на знание ПТБ, ПЭЭБ и данной методики, обеспеченные инструментом, индивидуальными защитными средствами, спецодеждой.
Состав бригады должен быть не менее двух человек:
— производитель работ с группой по электробезопас­ности не ниже III;
— член бригады с группой по электробезопасности не ниже III.
Металлические стержни не должны иметь заусениц. Молоток должен быть плотно насажен на рукоять и не иметь люфта.
При подаче напряжения от постороннего источника питания должны быть оформлены и выполнены организационные и технические мероприятия, как в месте подключения, так и на рабочем месте.
Соединительные провода, питающий кабель, понижающий трансформатор должны иметь двойную изоляцию.
Приборы в схемах измерений должны быть установлены на изолированном основании.
Запрещается выполнять работы при высокой влажности, а также в огне-, пожаро- и во взрывоопасных средах и помещениях.
По результатам измерений составляется протокол установленной формы. Лица, допустившие нарушения ПТБ или ПТЭЭП, а также допустившие искажения достоверности и точности измерений, несут ответственность в соответствии с законодательством и положением о передвижной электролаборатории.

Источник: www.MegaOmm.ru



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.