О компании » Электролаборатория » Контур заземления » Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Норма сопротивления контура заземленияНачну с того, что поясню, какие бывают испытания.  Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.


И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

Норма сопротивления контура заземления1. Контур заземления для электроустановки напряжением до 1000 Вольт:


ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:


Норма сопротивления контура заземленияПУЭ, п. 1.8.39, таблица 1.8.38, п. 2
гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.


Подведём итог

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

Источник: www.MegaOmm.ru

Нормативное регулирование электробезопасности на железнодорожном транспорте

Обеспечение электробезопасности объектов железнодорожного транспорта регламентируется требованиями и нормами Федеральных законов, Постановлений Правительства Российской Федерации, нормативно-технических документов ОАО «РЖД» и других отраслей относительно защиты от перенапряжений зданий, сооружений и технических средств.
рубежная нормативная база представлена стандартами Международной электротехнической комиссии (МЭК), межгосударственными и национальными стандартами, корпоративными документами ведущих зарубежных фирм, которые конкретизируют требования стандартов МЭК применительно к специфике железнодорожного транспорта. К основным нормативным актам по молниезащите объектов железнодорожной инфраструктуры относят:

  1. ГОСТ Р МЭК 60050-195-2005. Заземление и защита от поражения электрическим током. Термины и определения.
  2. ГОСТ Р МЭК 62305-1-2010 Менеджмент риска. Защита от молнии. Часть 1. Общие принципы.
  3. ГОСТ Р МЭК 62305-2-2010 Менеджмент риска. Защита от молнии. Часть 2. Оценка риска.
  4. ГОСТ Р МЭК 62305-3-2010 Менеджмент риска. Защита от молнии. Часть 3. Физическое повреждение зданий (сооружений) и виды опасности для жизни людей.
  5. ГОСТ Р 50571.3-2009. Электроустановки зданий. Требования по обеспечению безопасности. Защита от поражения электрическим током.
  6. ГОСТ Р 50571.5.54-2011. Электроустановки низковольтные. Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и проводники уравнивания потенциалов.
  7. ГОСТ 12.1.030-81 Система стандартов безопасности труда. Электробезопасность. Защитное заземление, зануление.
  8. ГОСТ 2990-78 Кабели, провода и шнуры. Методы испытания напряжением.

  9. ГОСТ Р 53685-2009. Электрификация и электроснабжение железных дорог. Термины и определения.
  10. Защита систем железнодорожной автоматики и телемеханики от атмосферных и коммутационных перенапряжений. Характеристики импульсных воздействий на системы ЖАТ. Временные нормы. Утверждены ЦШ 22.03. 2007 г.
  11. Защита кабелей от ударов молнии железнодорожных кабельных линий связи. Методические указания. И 84-77.С-Пб,ГТСС,1977 г.
  12. Инструкция по заземлению устройств электроснабжения на электрифицированных железных дорогах. Утверждена МПС РФ от 10.06.93 г. ЦЭ-191.
  13. Инструкция по устройству молниезащиты зданий и сооружений. Ведомственные строительные нормы. РД 34.21.122-87.
  14. Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций. СО 153-34.21.122-2003.
  15. Методические указания по защите от перенапряжений устройств автоблокировки и электрической централизации, И-247-97, ГТСС, 1999 г.
  16. Методические указания по контролю состояния заземляющих устройств электроустановок. РД 153-34.0-20.525-00. РАО «ЕЭС России».
  17. МЭК 62305 (Ч. 1-5). Защита от молнии
  18. Нормы устройства сетей заземления. 2002.
  19. Правила технической эксплуатации электроустановок потребителей. Утверждены Минэнерго России 13.01.2003 г.
  20. Правила устройства электроустановок (ПУЭ). Издание седьмое.
  21. Правила устройства и технической эксплуатации контактной сети электрифицированных железных дорог. Утверждены 11.12.2001 г. ЦЭ-868.
  22. Руководство по защите оптических кабелей связи от ударов молнии, 1996 г.
  23. Свод правил СП 153.13130.2013 «Инфраструктура железнодорожного транспорта. Требования пожарной безопасности». Введен 1 января 2013 г.
  24. Федеральный закон РФ N 384-ФЗ. Технический регламент о безопасности зданий и сооружений.
  25. Федеральный закон от 27 декабря 2002 г. N 184-ФЗ. О техническом регулировании.

Требования отраслевых документов, государственных и межгосударственных стандартов прямого влияния на регулирование защиты от перенапряжений объектов железнодорожного транспорта не оказывают, так как носят рекомендательный характер.

Общие требования по заземлению на железнодорожном транспорте

В целях обеспечения электробезопасности на сети железных дорог, защитное заземление должно выполняться на всех доступных для прикосновения пользователем металлических частях конструкций и устройств. Сопротивление защитного заземления не должно превышать значений, нормируемых для данного типа электроустановок. Так, сопротивление заземления контура заземления тяговых подстанций постоянного тока должно быть не более 0,5 Ом. Сопротивление контура заземления КТП питания нетяговых потребителей по схеме ДРП должно быть не более 5 Ом, а КТП, питаемых от линий продольного электроснабжения, проложенных по опорам контактной сети не более 4 Ом. Собственное сопротивление заземлителей не подлежит нормированию в случаях, когда с помощью использования контуров и выравнивающих сеток на заземленных объектах достигаются допустимые значения напряжения прикосновения см.
3.5, п. 3.6, п. 4.4 «Норм устройства сетей заземления».
Заземление необходимо выполнять способом, при котором отключается режим короткого замыкания, с обязательным соблюдением нормируемых значений напряжения на заземляемых электроустановках для соответствующей продолжительности срабатывания защиты см. п. 3.2, 4.2 «Норм устройства сетей заземления».
В обычном режиме допускается создавать разрыв в цепи заземления посредством включения в нее защитных устройств, при условии обеспечения ими замыкания цепи, в случае возникновения опасных напряжений на объектах защиты. Значение напряжения, при котором сработает защитное устройство, должно быть не более 1200 В.
Для защиты от перенапряжений объектов на участках переменного тока, выполняют заземление двумя глухими проводниками, на участках постоянного тока — используют диодные заземлители. Выбор схемы заземления объектов железнодорожной инфраструктуры следует делать исходя из данных таблицы 2.4 Инструкции ЦЭ-191 от 10.06.93 г.


Глухое Глухое с дополнительной изоляцией от земли Через защитное устройство Комбинированное с нейтральной вставкой Комбинированное с дополнительной изоляцией между конструкциями Без заземления на рельсовую сеть
I II III IV V VI
Rз>=Rнорм Rз>Rнорм По особым условиям
Условие применения
Глухое заземление обязательно Глухое заземление не обязательно Глухое заземление конструкции А обязательно

Электрические схемы замещения для различных видов заземления на рельсовую сеть

Преимущественным с точки зрения электробезопасности и надежности защиты от токов короткого замыкания является выполнение глухого заземления. Поэтому при молниезащите объектов первоначально оценивают возможность его организации с соблюдением требований СЦБ и защиты от электрокоррозии.

Объекты железнодорожной инфраструктуры, подлежащие заземлению

Согласно требованиям Инструкции ЦЭ-191 от 10.06.93 г. заземлению подлежат следующие объекты железнодорожной инфраструктуры:


  1. Тяговые подстанции.
  2. Опоры контактной сети.
  3. Опоры питающих и отсасывающих линий.
  4. Опоры с разрядниками и секционными разъединителями контактной сети.
  5. Посты секционирования и пунктов параллельного соединения контактной сети.
  6. Пункты группировки переключателей контактной сети станций стыкования.
  7. Автотрансформаторные пункты системы электроснабжения 2 х 25 кВ.
  8. Отсасывающие трансформаторы и обратных проводов.
  9. Установки компенсации реактивной мощности.
  10. Комплектные трансформаторные подстанции, питаемые по системе ДПР.
  11. Комплектные трансформаторных подстанции, питаемые от ВЛ 6 (10) кВ, проложенные по опорам контактной сети.
  12. Пункты подготовки пассажирских поездов с электрическим отоплением.
  13. Напольные устройства СЦБ.
  14. Мосты и путепроводы.
  15. Тоннели.
  16. Волноводы и линии связи, проложенные по опорам контактной сети.
  17. Протяженные воздухопроводы систем пневмоочистки стрелок и пневмопочты.
  18. Отдельно стоящие объекты вблизи электрифицированных путей.
  19. Передвижные тяговые подстанции.
  20. Светильники, прожекторные мачты, ВЛ электроснабжения и линии освещения, проложенные по опорам контактной сети, отдельно стоящих опор освещения.

Рассмотрим подробнее особенности заземления некоторых из перечисленных объектов.

Заземление тяговых подстанций

 Тяговая подстанция

Защитное заземление тяговых подстанций выполняется с использованием шины заземления, к которой присоединяют распределительные устройства внутренних установок, электрооборудование закрытых распределительных устройств. Шину заземления не менее чем в двух местах соединяют с контуром заземления. К нему же монтируют и распределительные устройства наружных установок и конструкции открытых распределительных устройств.
Электроустановки распределительных устройств заземляют внутренним контуром заземления, соединяя его в двух местах с внешним контуром (заземлителем) таким образом, чтобы обеспечить отсутствие постоянного электрического соединения с шиной отрицательной полярности, отсасывающей линией и рельсами подъездного пути подстанции.
Сопротивление заземления внешнего контура тяговых подстанций постоянного тока не должно превышать 0,5 Ом, включая сопротивление естественных заземлителей. Контур заземления тяговых подстанций переменного тока выполняют как выравнивающий, его собственное сопротивление не нормируют. Все металлические корпуса оборудования, конструкции, расположенные на тяговых подстанциях переменного тока заземляют присоединяя их к искусственному заземлителю (контуру заземления).
Напряжение на контуре заземления по отношению к удаленной земле при стекании с него тока замыкания на землю в соответствии с требованиями ПУЭ не должно превышать 10 кВ. При напряжении на контуре свыше 5 кВ должны предусматриваться меры по защите изоляции отходящих кабелей связи и телеуправления. Перечень оборудования и конструкций тяговых подстанциях постоянного тока, подлежащих заземлению на внутренний и внешний контуры заземления, приведен в п. 3.1.7 Инструкции ЦЭ-191 от 10.06.93 г.

Заземление опор контактной сети

 Заземление опоры контактной сети

Защитное заземление опор контактной сети выполняется индивидуальным или групповым присоединением заземляющих спусков к тяговой рельсовой сети. На участках постоянного тока максимальная длина провода группового заземления не должна превышать при Т-образной схеме подключения 1200 м (2 х 600) для железобетонных и 600 м (2 х 300) для металлических опор, а при Г-образной схеме — соответственно 600 и 300 м.
При переменном токе максимальная длина провода группового заземления независимо от типа опор для Т-образной схемы составляет 400 м (2 х 200), для Г-образной схемы — 200 м. Для групп чередующихся металлических и железобетонных опор наибольшую длину провода группового заземления определяют как для металлических опор. Заземление опор контактной сети на электрифицированных участках переменного тока выполняют наглухо или через искровые промежутки согласно п. 3.2.5 Инструкции ЦЭ-191 от 10.06.93 г.
На участках постоянного тока при заземлении опор устанавливают искровые промежутки, диодные заземлители или диодно-искровые заземлители согласно п. 3.2.6 Инструкции ЦЭ-191 от 10.06.93 г.
Места присоединения спусков групповых заземлений с диодными и диодно-искровыми заземлителями к рельсам должны быть удалены от мест присоединения к рельсам разрядников контактной сети не менее чем на 100 м.

Заземление мостов и путепроводов

 Железнодорожный мост

Металлические мосты, путепроводы, пешеходные мосты, металлические конструкции железобетонных мостов и путепроводов, на которых крепится контактная подвеска, усиливающие и отсасывающие провода, провода ВЛ напряжением выше 1000 В, должны быть заземлены на тяговую рельсовую сеть посредством соединения с ней ферм моста или деталей крепления контактной подвески.
Металлические части мостов (металлических и железобетонных) и других искусственных сооружений заземляют двумя заземляющими спусками на тяговую рельсовую сеть. При постоянном токе в цепь заземления включают диодно-искровой заземлитель, при переменном — два искровых промежутка по одному в каждом спуске. Металлические и железобетонные опоры, установленные на мостах, а также конструкции крепления контактной сети должны быть соединены наглухо с конструкцией металлического моста или с цепью заземления железобетонного моста.

Защита от первичных воздействий ударов молнии

В целях нахождения оптимального решения по организации молниезащитной системы, методы защиты от молнии объектов железнодорожной инфраструктуры необходимо выбирать еще на стадии их проектирования.
Надежная молниезащита объекта обеспечивается при условии организации защитного заземления для всего здания или сооружения, учитывая все относящиеся к нему конструкции.
Любая неизолированная система защиты от молнии должна иметь не менее двух токоотводов, равномерно расположенных по периметру сооружения, для прохождения тока молнии от молниеприемников к заземлителям. Для эффективной молниезащиты прямолинейно проложенные токоотводы должны быть минимальной длины.
Элементы строений, отвечающие требованиям Инструкции СО 153-34.21.122-2003, используют в качестве естественных токоотводов.
Искусственное заземление объектов выполняют при помощи заземляющих электродов с использованием различных типов их расположения. Тип конфигурации А подразумевает, присоединение к каждому токоотводу горизонтальных или вертикальных электродов.
В состав конфигурации типа Б входит заземляющий проводник фундамента или расположенный снаружи сооружения кольцевой контур, контактирующий с землей практически по всей своей длине. Рекомендуется к использованию при заземлении конструкций и сооружений электросвязи, железнодорожной автоматики и телемеханики с обеспечением глубины закладки не меньше 0,5 м при расположении на расстоянии 1 м от внешних стен. В точках примыкания к кольцевому проводнику токоотводов через равные промежутки монтируют дополнительные заземляющие электроды.
Любые металлические конструкции, расположенные под землей, а так же соединенная между собой железобетонная арматура, могут быть использованы в качестве заземляющих электродов, при условии непрерывности протекания по ним электрического тока и наличия возможности измерения их сопротивления его растеканию.
Стандартом МЭК 62305 определены минимально допустимые размеры и сечение заземляющих проводников, изготовленных из наиболее распространенных материалов исходя из коррозионной и механической стойкости
. Молниезащитный контур в соответствии с МЭК 62305-3 должен иметь сопротивление менее 10 Ом. Защитное заземление узлов электросвязи и зданий постов ЭЦ чаще всего требует более низкое значение сопротивления, поэтому может использоваться и в качестве заземления для молниезащиты.
Для эффективной молниезащиты объектов железнодорожной инфраструктуры заземляющие устройства зданий и сооружений должны совмещаться с защитным заземлением относящихся к ним средств электросвязи, электроустановок и систем ЖАТ. В случае разделения заземлителей ввиду технологической необходимости, следует объединить их в единую систему используя уравнивание потенциалов.

Защита от вторичных воздействий ударов молнии

Помимо возможного прямого попадания удара молнии в защищаемый объект, воздействию могут подвергаться и его внутренние системы, вследствие возникновения разности потенциалов.
Защита строений и находящихся в них систем электросвязи, оборудования, обслуживающего персонала от прямых и вторичных проявлений удара молнии обеспечивается внутренней системой молниезащиты LPS путем уравнивания потенциалов при помощи:

  • заземляющих проводников — в случаях, когда естественные проводники не обеспечивают непрерывность прохождения тока;
  • УЗИП – в случаях, когда невозможно соединение с проводниками LPS.

Для защиты электроустановок до 1 кВ от перенапряжений, здание оборудуют общей главной заземляющей шиной, присоединяя к ней несколько проводников, доступных для соединения, в количестве не менее двух от разных точек сети заземляющих электродов контура защитного заземления. Изготавливают проводники, как правило, из стали в виде полос размером 4×40 мм. Они должны соответствовать требованиям ГОСТа Р 50571.5.54-2013 и выдерживать протекание части тока молнии.
Размещают шину недалеко от источника питания объекта током или места ввода силового кабеля, обеспечивая доступность к местам соединения для визуального осмотра. Для объектов с несколькими отдельными вводами ее выполняют для каждого вводного устройства.
Использование ГЗШ позволяет уравнивать потенциалы между токопроводящими элементами, находящимися в зоне действия проводников, а так же выполнять функцию защитного проводника РЕ для электроустановок. Применение шины в качестве нулевого защитного проводника N не допускается.
Молниезащита силовых кабелей обеспечивается УЗИП путем присоединения заземляющих проводников от этих устройств через шину уравнивания потенциалов с главной заземляющей шиной наикратчайшим путем. В данном случае заземляющие проводники изготавливаются из меди и прокладываются с учётом их минимального электромагнитного влияния на остальные цепи.
Кольцевое заземляющее устройство можно подключать к главной заземляющей шине только в одном месте, с одной стороны строения. Соединение заземляющих проводников напрямую с заземляющим устройством вне ГЗШ не допускается. Сопротивление заземлителя измеряют только при отключенных от шины коммуникациях.

Заключение

Значение защитного заземления для обеспечения электробезопасности на железнодорожном транспорте трудно переоценить. Допущенные при заземлении ошибки, как правило, приводят к динамическому и термическому разрушению объектов, отказам технических средств и внутренних систем, что является крайне опасным и может привести к тяжелым последствиям. Поэтому пренебрежение правилами по организации молниезащиты и заземления не допустимо. Заземление объектов железнодорожной инфраструктуры следует производить руководствуясь соответствующими нормативными документами, в строгом соответствии содержащимися в них требованиями.

Источник: zandz.com

Вопросы, затрагиваемые в ПУЭ

Регламентирование порядка эксплуатации различных видов защитных систем может быть представлено в виде определённого набора требований, касающихся обустройства отдельных конструкций.

Согласно им, функциональная готовность контуров заземления, в состав которых входит целый набор конструктивных элементов, должна подтверждаться следующими техническими данными:

  • Описание конструкции и состава защитных устройств, применяемых в действующих электроустановках;
  • Формулы для расчета их размеров, а также нормы сопротивления заземляющих устройств (ЗУ);
  • Таблицы с корректировочными коэффициентами, позволяющими вводить поправки на качество и состояние грунта в месте размещения контура (с учётом материала отдельных элементов);
  • Порядок организации и проведения контрольных испытаний, имеющихся у систем заземления.

При его обустройстве предписывается действовать в строгом соответствии с ПУЭ, а также соблюдать все требования, касающиеся эксплуатации данного защитного устройства.

Конструкция контура

Составные части

Уже упоминавшееся ранее сопротивление заземления (Rз) контура – основной параметр, контролируемый на всех этапах его эксплуатации и определяющий эффективность его применения. Эта величина должна быть настолько малой, чтобы обеспечить свободный путь аварийному току, стремящемуся стечь в землю.

Исходя из этого, рассматриваемое ЗУ или заземляющий контур ЗК (что для нашего случая – одно и то же) должны иметь конструкцию, удовлетворяющую следующим требованиям:

  • В её составе необходимо предусмотреть набор металлических прутьев или штырей длиной не менее 2-х метров и диаметром от 10-ти до 25-ти миллиметров;
  • Они соединяются между собой (обязательно на сварку) пластинами из того же металла в конструкцию определённой формы, образуя так называемый «заземлитель»;
  • Кроме того, в комплект устройства входит подводящая медная шина (её ещё называют электротехнической) с сечением, определяемым типом защищаемого оборудования и величиной токов стекания (смотрите таблицу на рисунке ниже).

Дополнительная информация. Условно к этой конструкции можно отнести соединительные медные провода в виде жгута или оплётки.

Эти составляющие устройства  необходимы для соединения элементов защищаемого оборудования со спуском (медной шиной).

Различие по месту устройства

Согласно положениям ПУЭ, защитный контур может иметь как наружное, так и внутреннее исполнение, причём к каждому из них предъявляются особые требования. Последними устанавливается не только допустимое сопротивление контура заземления, но и оговариваются условия измерения этого параметра в каждом частном случае (снаружи и внутри объекта).

При разделении систем заземления по их местонахождению следует помнить о том, что лишь для наружных конструкций корректен вопрос о том, как нормируется сопротивление заземлителя, поскольку внутри помещения он обычно отсутствует. Для внутренних конструкций характерна разводка по всему периметру помещений электротехнических шин, к которым посредством гибких медных проводников подсоединяются заземляемые части оборудования и приборов.

Для элементов конструкций, заземлённых снаружи объекта, вводится понятие сопротивления повторного заземления, появившееся вследствие особенной организации защиты на подстанции. Дело в том, что при формировании нулевого защитного или совмещённого с ним рабочего проводника на питающей станции нейтральная точка оборудования (понижающего трансформатора, в частности) уже заземляется один раз.

Поэтому когда на ответном конце того же провода (обычно это PEN или PE шина, выводимая непосредственно на щиток потребителя) делается ещё одно местное заземление, его с полным основанием можно назвать повторным. Организация этого вида защиты показана на рисунке ниже.

Такая неисправность в технической литературе обычно встречается под наименованием «отгорание нуля».

Влияние почвы на сопротивление Rз

Практически доказано, что сопротивление заземляющего устройства в значительной степени определяется состоянием грунта в месте расположения заземлителя. В свою очередь, характеристики почвы в зоне проведения защитных работ зависят от следующих факторов:

  • Влажность почвы на участке проведения работ;

Дополнительная информация. При оценке влажности следует знать, что сланцы и глина хорошо удерживают воду, а песчаные почвы, напротив, плохо.

  • Наличие в почве каменистых составляющих, в которых обустроить заземление попросту невозможно (в этом случае приходится выбирать другое место);
  • Возможность искусственного увлажнения грунта в особо засушливые летние периоды;
  • Химический состав почвы (наличие в ней солевых составляющих).

В зависимости от состава грунта, он может быть отнесён к тому или иному виду (смотрите фото ниже).

Исходя из особенностей формирования сопротивления заземлителя, предполагающих его снижение при увлажнении и повышении солевой концентрации, в случае крайней необходимости в грунт искусственно вводятся порции влажного химиката NaCl.

Хорошие грунты с точки зрения обустройства заземления – это суглинистые почвы с высоким содержанием торфяных составляющих и солей.

Устройство и типы контуров

Стандартный контур заземления изготавливается не только в виде оптимального для большинства условий треугольника; он может иметь форму линии, прямоугольника, угла или даже дуги (овала). При рассмотрении каждой из этих конструкций с точки зрения их сопротивления необходимо отметить следующее:

  • Основой конструкции являются забиваемые в землю штыри или стержни;
  • Между собой они соединяются нарезанными по длине металлическими полосами (так называемой «металлосвязью»);
  • К одному из штырей или к полоске металла приваривается медная шина, прокладываемая в отдельной канавке, как это изображено на приведённом ниже рисунке.

Выбор треугольника в качестве основного вида заземлителя объясняется тем, что в этом случае удаётся получить максимальную зону рассеивания при небольшой занимаемой площади. Материальные затраты на такую конструкцию минимальны, а величина сопротивления растеканию в грунте при правильном её обустройстве соответствует нормативам.

Расстояние между штырями треугольного контура обычно выбирается равным длине, а максимальное удаление одного от другого может быть вдвое больше. Так, если штыри заглубляются в землю на 250 сантиметров, оно может достигать 5-ти метров. Лишь при соблюдении этих условий удаётся получить оптимальные характеристики зарытого в землю сооружения.

Линейный контур представляет собой цепочку штырей, вбитых в землю с определённым шагом, равным примерно 5-10 метров (смотрите рисунок далее по тексту).

В отдельных случаях, зависящих от условий местности, конструкция сооружается в виде полукруга; при этом штыри располагаются на том же удалении один от другого. В таком распределённом устройстве сопротивление должно быть минимальным именно в точках соприкосновения прутьев с грунтом. Для достижения требуемого показателя Rз штырей забивается как можно больше.

Все остальные типы конструкций являются модификациями описанных выше заземлителей, а предъявляемые к ним требования по сопротивлению стекания являются производными от уже рассмотренных.

Виды материала (профили)

Согласно требованиям ПУЭ, содержащим указания на то, каким должно быть сопротивление растекания тока в грунте, в большинстве случаев этот показатель устанавливается на уровне не более 4 Ом. Для получения этого значения обычно приходится приложить немало усилий, направленных на то, чтобы придерживаться заданных теми же требованиями технологий.

В первую очередь, это касается используемых при сборке заземляющего контура материалов, подбираемых, исходя из следующих условий:

  • При выборе штырей предпочтение должно отдаваться заготовкам из черного металла;
  • Наиболее часто применяется пруток типоразмером 16-20 мм или уголок с параметрами 50х50х5 мм и толщиной металла около 5 мм;
  • Применять в качестве элементов контура арматуру не допускается, поскольку она обладает каленой поверхностью, влияющей на нормальное стекание тока;
  • Для этих целей подходит именно чистый пруток, а не его арматурный заменитель.

Согласно положениям ПУЭ, перед их размещением в грунте сначала бурятся лунки нужной длины, поскольку забить их вручную достаточно проблематично. В случае особо засушливого лета и резком ухудшении параметров заземлителя в полые части труб заливается концентрированный соляной раствор, что позволяет получить такое сопротивление, какое должно быть в соответствии с требованиями ПУЭ. Длина трубных заготовок выбирается в пределах 2,5-3 метра, что вполне хватает для большинства российских регионов.

К этому виду профильных заготовок предъявляются особые требования, касающиеся порядка их размещения в почве и состоящие в следующем:

  • Во-первых, трубные элементы защитного контура должны размещаться на глубине, превышающей уровень промерзания грунта не менее чем на 80-100 см;
  • Во-вторых, в особо засушливых местностях примерно треть длины заземлителя должна достигать влажных слоёв почвы;
  • В-третьих, при выполнении второго условия следует ориентироваться на особенности расположения в данном регионе так называемых «грунтовых вод». В случае если они находятся на значительной глубине, по правилу, сформулированному в положениях ПУЭ, необходимо будет подготовить более длинные трубные отрезки.

С видом и профилем используемых при обустройстве заземлителя штыревых заготовок можно ознакомиться на размещённом ниже рисунке.

На практике в большинстве регионов России обычно применяются стальной уголок и полоса из того же металла. Для того чтобы получить более точные параметры используемых элементов заземления, потребуются данные геологических обследований. При наличии этой информации можно будет привлечь к обсчёту параметров заземлителя специалистов.

Из чего делается металлосвязь

Соединяющие штыри элементы (металлосвязь) обычно изготавливается из следующих электротехнических материалов:

  • Типовая медная шина, имеющая сечение на менее 10 мм2;
  • Алюминиевая полоса с поперечным сечением порядка 16 мм2;
  • Стальная полоска 100 мм2 (типоразмер – 25х5 мм).

Классическая металлосвязь делается обычно в виде нарезанных по размеру стальных полос, крепящихся на сварку к уголкам или оголовкам прутка.

При применении более дорогих алюминиевых (медных) полосок к ним на сварку крепится болт подходящего типоразмера, на котором впоследствии фиксируются подводящие шины. Главное, на что нужно обращать внимание при обустройстве любых соединений, – это надёжность получаемого в результате контакта.

Для этого перед оформлением болтового сочленения необходимо тщательно зачистить обе соединяемые детали до появления блеска чистого металла. Дополнительно эти места желательно обработать шкуркой, а после закручивания болта хорошо его поджать, что обеспечит более надёжный контакт.

Самостоятельное изготовление

После подготовки всех необходимых материалов и выбора подходящего места для обустройства заземления можно переходить к непосредственным операциям по сборке заземляющего контура. На подготовительной стадии нарезаются трубные или другие профильные отрезки, размер которых выбирается на 20-30 см больше расчётного (это нужно для компенсации изгиба вершины заготовки при её вбивании в землю).

Дополнительная информация. Для облегчения забивания таких отрезков рекомендуется заострить их нижний срез посредством болгарки с обрезным диском.

Одновременно с подготовкой точечных штыревых заземлителей начинается этап земляных работ, состоящих в подготовке канавок со скошенными краями (для лучшего удерживания грунта от осыпания).

Порядок производимых при земляных работах операций выглядит следующим образом:

  • Сначала подготавливается (расчищается) площадка под будущий контур заземления и делается его разметка;
  • Затем по уже нанесённой разметке выкапываются канавки глубиной 70-80 см и шириной порядка 50 см (глубина выбирается из соображения минимальной коррозии металлосвязей);
  • После этого нарезанные по длине штыри забиваются в намеченных точках так, чтобы над поверхностью выступало около 20 см (смотрите фото ниже);
  • По завершении монтажа всех вертикальных элементов верхние их части срезаются, а контактные площадки тщательно зачищаются, после чего к ним привариваются металлосвязи;
  • После того, как все сварочные швы остынут, они зачищаются болгаркой со шлифовальным диском, а затем окрашиваются специальной защитной краской на основе гудрона;
  • Далее от ближайшей к жилому строению точки КЗ прокапывают канавку на ту же глубину, что была вырыта под металлосвязи (её ширина может быть чуть меньше, поскольку соединительная полоса делается цельной, не требующей проведения сварных работ);
  • Затем в подготовленную траншею укладывается полоса металла с типоразмером не менее 25х4 мм, которая впоследствии приваривается к штырю или перемычке (металлосвязи);
  • На заключительной стадии работ у самой стены дома уже проложенная металлическая полоса поднимается на высоту порядка 200 мм, где к ней на болт или сварку подсоединяется шина (провод), идущая на ГЗШ распределительного щитка (фото ниже).

Для подключения готового заземления в действующую цепь электроснабжения потребуется ознакомиться с существующими схемами организации заземления.

Ввод в дом

На шину заземления распределительной системы контур заводится с помощью стальной полосы с типоразмером 24х4 мм или же медной и гибкой проволоки сечением 10 мм². В отдельных случаях, специально оговариваемых в ПУЭ, для этого допускается применять алюминиевый провод сечением 16 мм² (смотрите рисунок ниже).

При возможности выбора между предложенными выше вариантами предпочтение отдаётся медному проводу, имеющему наиболее подходящие для выполнения поставленной задачи характеристики.

В заключительной части обзора обратим внимание пользователей на то, что сделать заземляющий контур своими руками не очень просто, поскольку при проведении этих работ необходимо строгое соблюдение требований ПУЭ. Для тех, кто полностью не уверен в своих силах, всегда имеется «запасной» выход – пригласить представителей организации, специализирующейся на изготовлении заземлений.

Источник: amperof.ru


Categories: Заземление

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector