Основным элементом обеспечения безопасности электроустановок является защитное заземление. Сопутствующие системы: автоматические защитные выключатели, предохранители, молниезащита — не могут функционировать при его отсутствии, и становятся бесполезными.

Что такое заземление

Это комплекс, состоящий из металлических конструкций и проводников, который обеспечивает электрический контакт корпуса электроустановки с физической землей, то есть с грунтом. Система начинается с заземлителя: металлического электрода, заземленного в грунт. Эти элементы не могут быть одиночными, для надежности они объединяются в заземляющий контур.

Контур заземления 1

Как это работает

Внешний контур заземления (который находится непосредственно в грунте), соединяется с помощью надежного проводника с внутренним контуром в помещении, или с щитком заземления. Далее, с помощью внутренней сети защитных проводников, производится подключение к корпусам электроустановок, и контактам заземления на коммутационных устройствах (распределительные щитки, коробки, розетки и прочее).


Устройства, генерирующие электроэнергию, также имеют систему заземления, с которой соединяется нулевая шина. При возникновении аварийной ситуации (фаза соединилась с корпусом электроустановки), возникает электрическая цепь между фазным проводником и нулевой шиной по линии заземления. Сила тока в аварийной цепи спонтанно возрастает, срабатывает устройство защитного отключения (автоматический выключатель) или перегорает предохранительная вставка.

Результат работы исправной системы:

  • не происходит возгорание силового кабеля (опасность пожара);
  • предотвращается возможность поражения электротоком при касании аварийного корпуса электроустановки.

Сопротивление тела человека в десятки раз выше, чем сопротивление заземления. Поэтому сила тока (при наличии фазы на корпусе электроустановки) не достигнет опасной для жизни величины.

Контур заземления 2

Из чего состоит заземление

  1. Внешний контур заземления. Располагается за пределами помещений, непосредственно в грунте. Представляет собой пространственную конструкцию из электродов (заземлителей), соединенных между собой неразделимым проводником.
  2. Внутренний контур заземления. Токопроводящая шина, размещенная внутри здания. Охватывает периметр каждого помещения. К этому устройству подсоединяются все электроустановки. Вместо внутреннего контура может быть установлен щиток заземления.
  3. Заземляющие проводники. Соединительные линии, предназначенные для подключения электроустановок непосредственно к заземлителю, или внутреннему контуру заземления.

Рассмотри эти компоненты подробнее.

Внешний, или наружный контур

Монтаж контура заземления зависит от внешних условий. Прежде чем начать расчет, и выполнить проектный чертеж, необходимо знать параметры грунта, в котором будут установлены заземлители. Если вы сами строили дом, эти характеристики известны. В противном случае лучше вызвать геодезистов, для получения заключения по грунту.

Какие бывают грунты, и как они влияют на качество заземления? Примерное удельное сопротивление каждого типа грунта. Чем оно ниже, тем лучше проводимость.

  • Глина пластичная, торф = 20–30 Ωм·м
  • Суглинок пластичный, зольные грунты, пепел, классическая садовая земля = 30–40 Ом·м
  • Чернозем, глинистые сланцы, полутвердая глина = 50–60 Ом·м

Это лучшая среда для того, чтобы установить наружный контур заземления. Сопротивление растекания тока будет достаточно низким даже при малом содержании влаги. А в этих грунтах естественная влажность обычно выше среднего.

  • Полутвердый суглинок, смесь глины и песка, влажная супесь — 100–150 Ом·м

Сопротивление немного выше, но при нормальной влажности параметры заземления не выйдут за нормативы. Если в регионе установки установится продолжительная сухая погода, необходимо принимать меры к принудительному увлажнению мест установки заземлителей.

  • Глинистый гравий, супесок, влажный (постоянно) песок = 300–500 Ом·м

Гравий, скала, сухой песок – даже при высокой общей влажности, заземление в такой почве будет неэффективным. Для соблюдения нормативов, придется устанавливать глубинные заземлители.

Контур заземления 3

Важно! Неверный расчет контура заземления, игнорирование параметров, часто приводят к печальным результатам: поражение электротоком, выход из строя оборудования, возгорание кабеля.

Многие владельцы объектов, экономя «на спичках», просто не понимают, для чего нужен контур заземления. Его задача при соединении фазы с землей обеспечить максимальную величину тока короткого замыкания. Только в этом случае быстро сработают устройства защитного отключения. Этого невозможно достичь, если сопротивление растекания тока будет высоким.

Определившись с грунтом, вы сможете выбрать тип, и самое главное — размер заземлителей. Предварительный расчет параметров можно выполнить по формуле:

Формла

Расчет приведен для вертикально установленных заземлителей.

Расшифровка величин формулы:


  • R0 — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • Рэкв — удельное сопротивление грунта, см. информацию выше.
  • L — общая длина каждого электрода в контуре.
  • d — диаметр электрода (если сечение круглое).
  • Т — вычисленное расстояние от центра электрода до поверхности земли.

Задавая известные данные, а также меняя соотношение величин, вы должны добиться значения для одного электрода порядка 30 Ом.

Если установка вертикальных заземлителей невозможна (по причине качества грунта), можно рассчитать величину сопротивления горизонтальных заземлителей.

Важно! Монтаж горизонтального контура более трудоемок и связан с повышенным расходом материала. К тому же, такое заземление сильно зависит от сезонной погоды.

Поэтому лучше потратить больше времени на забивание вертикальных стержней, чем следить за барометром и влажностью воздуха.

Контур заземления 5

И все же приводим формулу расчета горизонтальных заземлителей.

Формула 2

Соответственно, расшифровка дополнительных величин:

  • Rв — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • b — ширина электрода — заземлителя.
  • ψ — коэффициент, зависящий от погодного сезона. Данные можно взять в таблице:

Таблица

  • ɳГ — так называемый коэффициент спроса горизонтально расположенных электродов. Не вдаваясь в подробности, получаем цифры из таблицы на иллюстрации:

Таблица 2

Таблица 3

Предварительный расчет сопротивления необходим не только для правильного планирования закупок материала: хотя будет обидно, если вам не хватит для завершения работ, пары метров электрода, а до магазина несколько десятков километров. Более-менее аккуратно оформленный план, расчеты и чертежи, пригодятся для решения бюрократических вопросов: при подписании документов о приемке объекта, или составлении ТУ с компанией энергосбыта.

Разумеется, никакой инженер не подпишет бумаги только на основании пусть и красиво исполненных чертежей. Будут произведены замеры сопротивления растекания.

Далее расскажем о том, как добиться правильных характеристик внешнего контура заземления.

Технология проведения работ


Выбираем место размещения заземлителей. Разумеется, недалеко от дома (объекта), чтобы не пришлось прокладывать длинный проводник, который придется механически защищать. Желательно, чтобы вся площадь контура находилась на территории, которую вы контролируете (являетесь собственником). Чтобы в один прекрасный момент, ваша защитная «земля» не была выкопана пьяным экскаваторщиком. Так что забивать штыри за забором не будем.

Подойдет огород (за исключением картофельной грядки), палисадник, клумба возле дома. Возделываемые участки предпочтительнее, они регулярно поливаются. А дополнительная влага в земле пойдет на пользу заземлению. Если ваш грунт обладает низким удельным сопротивлением — можно установить заземление на площадке, которая затем будет покрыта асфальтом или плиткой. Под искусственным покрытием земля не пересушивается. Да и риск повредить контур заземления минимален.

Разумеется, необходимо учитывать дальнейшие планы. Если в месте установки контура через год появится гараж со смотровой ямой — лучше сразу выбрать место поспокойнее.

В зависимости от формы площадки, выбираем порядок расположения электродов: в линию, или треугольником.

Важно! Вне зависимости от расположения, вертикальных заземлителей должно быть не менее трех.

Если выбран треугольник — размечаем площадку соответствующей формы со сторонами 2.5–3 метра.  Копаем траншею в форме равностороннего треугольника на глубину 70–100 см, шириной 50–70 см. Мы знаем, что все заземлители соединяются между собой. Проводник должен быть углублен на расстояние не менее 50 см, с учетом минимального уровня грунта (например, вскопка грядки). Если сверху будет уложено покрытие — его толщина в расчет не берется. Только чистый грунт.


Можно выбрать весь грунт, не только по периметру траншеи. Получится треугольная яма глубиной 0.7–1.0 м. Готовый контур можно будет засыпать грунтом с низким удельным сопротивлением. Например, золой или пеплом. Соли проникнут в землю, и будут способствовать снижению общего сопротивления растекания тока.

Контур заземления 9

После чего, по углам ямы (траншеи) начинаем забивать электроды.

Параметры заземлителей (рассматриваем вертикальное расположение)

  • Сталь без гальванического покрытия:

Круг — диаметр 16 мм.

Труба — диаметр 32 мм.

Прямоугольник или уголок — площадь поперечного сечения 100 мм².

  • Сталь оцинкованная

Круг — диаметр 12 мм.

Труба — диаметр 25 мм.

Прямоугольник или уголок — площадь поперечного сечения 75 мм².

  • Медь

Круг — диаметр 12 мм.

Труба — диаметр 20 мм.

Прямоугольник или уголок — площадь поперечного сечения 50 мм².

Важно! Категорически запрещено бурить скважины, а затем погружать в них заземлители. При таком способе монтажа сопротивление увеличивается в разы.

Грунт должен плотно облегать металлическую поверхность заземлителя. Красить электроды запрещено!

А как быть, если по расчетам длина каждого из трех электродов превышает 1.5–2 метра? Есть небольшие секреты.


  1. Электроды забивают не кувалдой, а вибратором, отбойным молотком с насадкой, или перфоратором. Кувалда подойдет для высоты чуть более 1 метра. Это вариант для идеального грунта с наименьшим сопротивлением.
  2. Совершенно не обязательно устанавливать трехметровую стремянку. Длинные электроды соединяются между собой по мере погружения в грунт. Если вы купили фабричный комплект — заземлители составные, можно набрать из сегментов любую длину.Контур заземления 10
  3. Для кустарного изготовления также есть способ забить в землю 4 метровый уголок. Нарезаем электрод на куски по 1.5 метра. Забиваем первый сегмент. Привариваем к нему следующий — забиваем далее. И так до расчетной глубины.

    Информация: часто бывает, что заземлитель упирается в монолитное препятствие (например, на глубине 2.5 метра), а расчетная глубина — 3.5 м. В этом случае электрод просто обрезается, а в контуре заземления будет добавлен еще один стержень, для компенсации потерянной длины.

  4. Если забить стержни на расчетную глубину не получается в принципе — опять же берем количеством. Линейный перерасчет (типа: вместо трех по 4 метра, забиваем шесть по 2 метра длиной) не работает. Количество заземлителей определяется только последующим замером сопротивления растекания тока.

Соединяем электроды проводником. Если арматура стальная — лучше всего подойдет сварка. Медные стержни соединяются болтовой стяжкой, проводник должен иметь сечение не менее 30% от сечения электродов.

После сборки контура, проводим замеры сопротивления растекания тока. Требования к контуру заземления для индивидуального жилья — 10 Ом. Измерение лучше доверить сертифицированным специалистам, у которых имеется соответствующее оборудование. Тем более, что при получении ТУ от энергетиков, вам все равно придется представить систему заземления для измерений. Если сопротивление выше нормы — добавляем электроды и привариваем их к контуру. Пока не получим норму.

Схема

Контур заземления внутри объекта

Как правило, это стальная шина, проложенная открытым способом по внутренней поверхности стен, вблизи пола.

Схема 2

В индивидуальных жилых домах монтаж внутреннего контура заземления не проводится. По причине невысокого класса опасности помещения, и небольшого количества электроустановок. Вместо внутреннего контура устанавливается заземляющий щиток, или главная заземляющая шина (ГХШ).


Контур заземления 13

Щиток соединяется либо с внутренним контуром (как на иллюстрации), либо с помощью проводника с внешним контуром заземления. Непосредственно от щитка выполняется разводка проводников защитного заземления по электроустановкам. Часто вместо щитка заземления, может применяться контактная колодка «PE», непосредственно во входном щите квартиры.

Контур заземления 14

Итог

Мы подробно рассмотрели, что такое контур заземления, для чего он нужен, и каким он должен быть согласно ПУЭ. Самостоятельная установка не снижает ответственности: от выполнения требований безопасности зависит ваша жизнь, и жизнь домочадцев.

Источник: ProFazu.ru

Для чего нужно заземление зданий

Наши далекие предки сталкивались только с проявлениями атмосферного электричества. Но уже тогда люди знали, насколько опасными могут быть разряды молнии и называли их «гневом богов». Раскопки археологов показали, что уже в те далекие времена люди понимали некоторые принципы действия атмосферного электричества и пытались создавать примитивные системы защиты.  Эти находки представляли собой длинные медные прутья, возвышающиеся над зданиями, противоположным концом погруженные в грунт.

заземление зданий вид 1

Однако с развитием человеческого общества, технологий, электричество прочно вошло в наш быт. И тут же остро встал вопрос о защите человека от поражающих факторов электрического тока, но на этот раз не атмосферного, а «домашнего», сгенерированного машинами, построенными самим же человеком. Решение оказалось лежащим на поверхности.

Действительно, заземление зданий — практически точная копия конструкции громоотвода. Из опасной зоны ток отводится в землю с помощью фидера — металлического стержня, проволоки, кабеля.

заземление зданий вид 2

С помощью заземления защищают электрические агрегаты, домашние сети, бытовую и промышленную технику. В случаях, когда на объектах электроснабжения случается пожар, насосы пожарных автомобилей и даже ручные стволы (брандспойты), которыми пожарные бойцы тушат пожар, должны быть заземлены с помощью специальных устройств.

Принцип действия системы заземления

Принцип действия системы заземления чрезвычайно прост. В чем состоит поражающая (разрушающая) сила электрического тока? Все начинается с того, что в одном месте при создании особых условий, накапливается очень большое количество отрицательно заряженных частиц — электронов. Но так как все в природе стремится к равновесию, то этот избыток частиц устремляется туда, где их недостаточно. Звучит не очень пугающе, но когда поток электронов мчится к земле от наэлектризованных облаков, они, эти крошечные частицы, умудряются нагревать слои атмосферы до миллиона градусов по Цельсию.

Изобретатели научились пускать этот поток в мирное русло — по электрическим проводам. Проходя через проволоку, электроны заставляют её нагреваться и иногда от перегрева она, проволока, начинает ярко светиться. Поток электронов создает и электромагнитное поле, приводящее в движение роторы мощных моторов.

Но машины иногда выходят из строя и поток электронов, прокладывают свой путь через любой предмет, проводящий электрический ток, иногда подобным проводником становится и тело человека. Таким образом, заземление зданий предназначено для предоставления заряженным частицам, электронам, образно говоря, альтернативного пути — более удобной, с меньшим сопротивлением, дороги к выходу. В результате, большая часть электронов проходит по защитному контуру заземления и уменьшает силу тока, направленного на человеческое тело.

заземление зданий вид 3

Установка и правильный расчет заземления, молниезащиты — необходимое условие безопасности проживающих в доме.

Заземление зданий. Требования

Если расчет заземления частного дома, как и решение о необходимости его монтажа, полностью лежит на совести владельца, то о производственных зданиях и помещениях, многоквартирных жилых домах этого не скажешь. Так, согласно существующим правилам устройства электроустановок, наличие и характеристики системы заземления зависят не только от напряжения, под которым работают машины, но также и от микроклимата внутри конкретных помещений здания.

заземление зданий вид 4

Расчет заземления электрооборудования производится на стадии проектирования. Согласно ГОСТ 12.1.030-81, в помещениях, где пользуются переменным током с напряжением 380 В и выше или постоянным более 440 В, устройство заземления или зануления обязательно во всех случаях. При напряжении от 42 В до 380 В переменного тока или от 110 В до 440 В постоянного тока заземление устраивается в случае, если работа в помещении сопряжена с условиями повышенной опасности или особо опасными по ГОСТ 12.1.013-78.

Обязательному заземлению подлежат и электроустановки, расположенные под открытым небом.

Машины, работающие от электрической сети с напряжением, менее указанных величин, должны быть заземлены только в помещениях с большой влажностью или на производствах, где есть опасность образования газовоздушных или газопылевых взрывоопасных смесей.

Расчет системы заземления

Методика сводится к расчету количества стержней, необходимых для достижения заданных параметров заземления. Для того чтобы сделать подобный расчет, необходимо знать сопротивление одного стержня. Это сопротивление можно измерить или рассчитать.

Замер производится методом, показанным на рисунке ниже.

заземление зданий вид 6

Сопротивление стержня определяют по формуле R = U / I, где:

  • U — напряжение, измеренное вольтметром, В;
  • I — сила тока, измеренная амперметром, А.

Расчет заземления можно сделать и без замеров, для этого можно воспользоваться достаточно сложной формулой, но универсальной для любых вертикальных заземлителей.

заземление зданий вид 7

Для расчета с помощью этой формулы необходимы следующие исходные данные:

  • ρ-экв — эквивалентное удельное сопротивление почвы, Ом×м;
  • L — длина стержня, м;
  • d — диаметр стержня, м;
  • Т — расстояние от поверхности грунта до середины заземлителя (геометрическая середина стержня), м.

Таблица 1. Эквивалентное удельное сопротивление почвы – значения, нормированные для известных видов почв.

Грунт

Эквивалентное удельное сопротивление, Ом×м

Климатический коэфициент

При влажности грунта 10-12%

Возможные границы колебания значений

Рекомендовано для расчетов

Ψ1

Ψ2

Ψ3

торф

чернозем

садовая земля

глина

суглинок

мергель, известняк

супесчаный

песчаный

20

200

40

40

100

250

300

700

9 — 53

30 — 60

8 — 70

40 — 150

200 — 300

150 — 400

400 — 2500

20

30

50

60

100

250

300

500

1,4

1,6

2,0

2,0

2,4

1,1

1,32

1,3

1,3

1,5

1,5

1,56

1,0

1,2

1,2

1,2

1,4

1,4

1,2

В таблице: Ψ1— очень влажный грунт, Ψ2 – грунт средней влажности, Ψ3 – сухой грунт.

После того, как стало известно сопротивление одного вертикального стержня, можно рассчитать их необходимое количество, без учета сопротивления горизонтального заземления:

заземление зданий вид 8

где:

  • Rн — нормируемое сопротивление растеканию тока заземляющих устройств, Ом;
  • Ψ — сезонный климатический коэффициент сопротивления грунта, для средней полосы Российской Федерации, может приниматься как 1,7.

Таблица 2. Наибольшее допустимое значение сопротивления заземляющих устройств (согласно ПТЭЭП), в формуле выше обозначено как Rн.

Характеристика электроустановки Удельное сопротивление грунта ρ, Ом·м Сопротивление заземляющего устройства, Ом
Искусственный заземлитель к которому присоединяется нейтрали генераторов и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
 660/380 до 100 15
свыше 100 0.5 х ρ
 380/220 до 100 30
свыше 100 0.3 х ρ
 220/127 до 100 60
свыше 100 0.6 х ρ

Так как удельное сопротивление грунта зависит от его влажности, для стабильности сопротивления заземлителя и уменьшения на него влияния климатических условий, заземлитель размещают на глубине не менее 0.7 м.

Заглубление горизонтального заземлителя можно найти по формуле:

заземление зданий вид 9

где:

  • Т – расстояние от поверхности земли до геометрической середины заземлителя, м.;
  • L – длина заземлителя, м;
  • t — минимальное заглубление заземлителя (глубина траншеи), принимается равным 0.7 м.

Сопротивление растекания тока для горизонтального заземлителя:

заземление зданий вид 10

где:

  • Lг, b – длина и ширина заземлителя;
  • Ψ – коэффициент сезонности горизонтального заземлителя;
  • ηг – коэффициент спроса горизонтальных заземлителей (таблица 3).

Длину самого горизонтального заземлителя найдем исходя из количества заземлителей:

заземление зданий вид 11 — в ряд; заземление зданий вид 12— по контуру,

где а – расстояние между заземляющими стержнями.

Определим сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:

заземление зданий вид 14

Полное количество вертикальных заземлителей определяется по формуле:

заземление зданий вид 15

где ηв – коэффициент спроса вертикальных заземлителей (таблица).

Таблица 3. Коэффициент использования заземлителей.

заземление зданий вид 16

Коэффициент использования показывает как влияют друг на друга токи растекания с одиночных заземлителей при различном расположении последних. При соединении параллельно, токи растекания одиночных заземлителей оказывают взаимное влияние друг на друга, поэтому чем ближе расположены друг к другу заземляющие стержни тем общее сопротивление заземляющего контура больше.

Полученное при расчете число заземлителей округляется до ближайшего большего

Пример расчета

Расчет заземления электрооборудования. Пример — частный дом, используется однофазная электрическая сеть, требуемое сопротивление растеканию не выше 4 Ом. Место расположения — черноземье: эквивалентное удельное сопротивление грунта равно 50 Ом м. Для оборудования системы заземления используются стальные трубы длиной 160 см, диаметром 32 мм.

Расчет одного заземлителя:

заземление зданий вид 17

заземление зданий вид 18

Зная сопротивление растеканию, одного заземлителя, нетрудно рассчитать необходимое их количество:

заземление зданий вид 20

Ответ: 11 заземлителей.

Советы

Сухой грунт — плохой проводник электрического тока, поэтому на песчаных почвах чем глубже забиты заземляющие стержни, тем лучше.

Находясь постоянно во влажной почве, конструкция из тонкого металла очень быстро разрушится в результате коррозии и перестанет выполнять возложенные на нее функции. Поэтому, во влажных грунтах, заземляющие стержни должны быть выполнены из достаточно толстых прокатных материалов.

заземление зданий вид 21

На фото: заземляющий контур здания выполнен из стальной полосы.

Отличным заземлением может послужить водоносная скважина, если обсадочная труба выполнена из металла.

Если крыша дома выполнена из металлочерепицы (профнастила), ее в обязательном порядке заземляют. Подобная конструкция будет прекрасной молниезащитой здания.

Готовый молниеотвод можно получить, заземлив металлическую мачту телевизионной антенны, если таковая имеется.

Заземление зданий промышленных объектов

Расчет заземления электроподстанции просто необходим, на её территории находится большое количество оборудования, работающего с большим напряжением. Поэтому, практически все оборудование подстанции (трансформаторы, электрические щиты, железобетонные и железные опоры машин, муфты кабелей, кожухи кабельных каналов и размыкателей) заземляется в обязательном порядке.

Сопротивление растекания тока на рассматриваемых объектах не должно превышать 0,5 Ома. Для достижения заданной цифры при устройстве оборудования подстанций по максимуму пользуются естественными заземлителями, такими как трубопроводы подземных кабельных каналов, металлическими опорами электропередач и поддерживают их тросами.

Сопротивление подобных систем рассчитывается по формуле:

заземление зданий вид 25

где:

  • R тр — сопротивление троса одной опоры ЛЭП, Ом;
  • R оп — сопротивление растеканию тока самой опоры, Ом.

Заземление зданий цехов промышленного предприятия производится в зависимости от наличия и количества установленного в нем оборудования. Сам алгоритм расчета ничем не отличается от рассмотренного выше примера. По рассматриваемой схеме производится и расчет заземления электрических кабелей.

Произвести необходимые расчеты и составить полный пакет документации по заземлению здания Вам помогут квалифицированные специалисты нашей компании.

Как заказать услугу?

Заказать услугу, рассчитать стоимость работ или уточнить дополнительную информацию вы можете:

оставив заявку на сайте, через форму обратной связи «Заказать звонок»,

позвонив нам по контактному телефону 8 (495) 669 31 74 

или же написать нам на почту: info@bta.ru

Будем рады ответить на все интересующие вопросы!

Источник: bta.ru

Что является заземляющим контуром

Чтобы понять, что такое контурный заземлитель – следует представить его как систему, состоящую из металлических стержней, связывающих их полос и набора медных соединительных проводников. Такая сборная конструкция обеспечивает надежный контакт токопроводящего корпуса электроустановки с фактической землей (почвой).

При выяснении вопроса о том, что является заземляющими контурами, следует понимать, что основной их компонент – это одиночный электрод подходящего размера и сечения, забиваемый в грунт на определенную глубину. Для создания распределенной контурной системы согласно действующим техническим требованиям должна использоваться группа штырей, соединенных между собой металлическими полосами.

Контур заземления частного дома (слева треугольник, справа линия)

Как это работает

Чтобы всем было понятно, для чего нужны контуры заземления – рассмотрим принцип действия составной конструкции. Защитный заземляющий контур работает следующим образом:

  • За счет качественного монтажа заземляющих жил и хорошего контакта с грунтом металлическая распределенная система обеспечивает идеальные условия для стекания аварийных токов в землю.
  • Благодаря этому опасный для человека потенциал, появившийся на корпусе электрооборудования во внештатном режиме (при нарушении изоляции фазного провода, например), резко снижается.
  • Надежное стекание тока в землю обеспечивается низким переходным сопротивлением заземлителя, который является частью защитного контура.

Как работает заземление

Появление значительных по величине аварийных токов приводит к срабатыванию установленных в питающих цепях устройств защиты (как автоматов, так и предохранителей).

В результате питающая сеть полностью отключается, предотвращая возможные негативные последствия. При подключении контура заземления основное внимание уделяется созданию условий, обеспечивающих эффективный контакт как штырей, так и полос с грунтом.

Из чего состоит заземление

В состав заземляющей системы согласно ее определению (смотрите ПУЭ) входят такие обязательные элементы, как:

  1. Сам ЗК, обустраиваемый на основе металлических уголков площадью поперечного сечения не менее 100 мм квадратных или отдельных штырей диаметром порядка 20 мм.
  2. Комплект специальных проводников (медных шин), позволяющих в жилых домах заземлять электрические приборы.

Обратите внимание: Иногда как отдельный элемент рассматривается заземляющий спуск, обустраиваемый вдоль стены здания (в устройствах защиты от молний, например).

В зависимости от своего расположения относительно здания защитные конструкции могут быть внешними и внутренними. Рассмотрим как нужно обустраивать каждый из представленных видов контуров, чтобы добиться наилучших результатов.

Внешний контур

При обустройстве наружного контура заземления необходимо учитывать качество и состав грунта в месте расположения его элементов. Хозяева самостоятельно отстроенного дома обычно знают, на какой почве он стоит, и сразу могут определить, как она влияет на проводимость. В противном случае потребуется помощь специалистов по геодезии.

При самостоятельном проведении работ важно знать, что грунты бывают:

  • чисто глинистыми;
  • суглинистыми;
  • торфяными;
  • черноземными;
  • гравийными и скалистыми.

В реальных условиях в пределах домашнего участка чаще всего встречаются первые два класса почв или их разновидности (суглинок пластичный, глинистые сланцы и подобные им). Для различных типов грунтов их удельные сопротивления имеют следующие значения:

  • Глина пластичная и мягкий торф – 20-30 Ом·/метр.
  • Для суглинка с содержанием золы и пепла, а также простой садовой земли этот показатель составляет 30-40 Ом/метр.
  • Черноземные земли и глинистые сланцы, а также глина полутвердая имеют сопротивление, близкое к значениям 50-60 Ом/метр.

Внешний контур заземления

С точки зрения организации внешнего контура заземления эти почвы – самые подходящие, поскольку в них сопротивление растеканию имеет небольшую величину.

Грунты с большими значениями сопротивлений представлены такими видами, как:

  1. Полутвердый суглинок, иногда определяемый как смесь глины и песка, а также так называемая «влажная супесь», имеющая средний показатель 100-150 Ом/·метр.
  2. Содержащий глину гравий и влажный песок – 300-500 Ом/·метр.

А такие «жесткие» грунты, как скала, гравий и сухой песок совершенно неспособны обеспечить надежное заземление. В этих условиях принимаются специальные меры, позволяющие понизить сопротивление заземляющих контуров в месте расположения штырей.

Дополнительная информация: Они чаще всего сводятся к искусственному изменению состава почвы. Как пример – добавление в нее раствора поваренной соли.

Еще один вариант, позволяющий найти выход из сложившейся ситуации – обустройство глубинных заземлителей, достающих до слоев более «легкого» состава. Но этот подход к тому, как обустроить наружное заземление, достаточно трудоемок и обойдется недешево.

Контур заземления внутри объекта

При расчете элементов внутреннего контура заземления необходимо учитывать, что смонтированная внутри здания токопроводящая полоса должна охватывать периметр каждого из имеющихся в нем помещений. К открыто проложенной вдоль стен и вблизи от пола заземляющей шине подсоединяются все установленные в них электроустановки и приборы.

Обратите внимание: В небольших по размеру помещениях (в жилых квартирах или частных домах) вместо ЗК монтируется типовой щиток со специальной планкой. Ее принято называть главной заземляющей шиной (ГЗШ).

Заземляющая шина в ВРУ
Заземляющая шина в распределительном шите

В этих условиях особое внимание уделяется таким составляющим, как заземляющие проводники (соединители, предназначенные для подключения бытовых приборов и ванны непосредственно к заземлению).

Отдельный контакт щитка (планка заземления) соединяется либо с обустроенным в пределах строения внутренним контуром, либо посредством длинного медного проводника – с внешней системой заземления (как это изображено на первом фото данной статьи). Прямо от него медные шины в виде проводников отводятся в сторону различных защищаемых электроустановок и приборов. Нередко вместо полноценного щитка применяется отдельная контактная планка «PE», оборудованная непосредственно на входе в частный дом (рейка ГЗШ приведена на фото ниже).

Главная заземляющая шина
Главная заземляющая шина

Техника монтажных работ

Грамотный подход к обустройству ЗК состоит в правильности выбора места под него, а также в соблюдении требований действующих нормативов в части проведения основных монтажных работ.

Выбор места под ЗК

Перед устройством контура заземления важно подобрать место для размещения его элементов. Желательно – неподалеку от дома (его обычно рассчитывают устанавливать на удаление не более 2-х метров, что позволит выиграть на длине проводников).
Дополнительная информация: При выборе участка под заземление в первую очередь следует учесть, чтобы эта площадка располагалась на контролируемой хозяином территории.

Для этих целей подойдут такие зоны, как:

  • участок огорода (кроме грядок с картофелем);
  • палисадник или клумба;
  • парковая зона, непосредственно примыкающая к дому.

Если грунт на прилегающей к строению местности имеет высокое удельное сопротивление – допускается установка системы штырей КЗ на более удаленной дистанции.

Обратите внимание: В этом случае придется смириться с излишними расходами на приобретение медных шин.

В любом из рассмотренных случаев при выборе места под ЗК следует предусмотреть все возможные варианты его использования в будущем (пусть даже и в очень отдаленной перспективе). Это позволит избежать ненужных издержек на перенос конструкции в ситуации, когда в данной зоне потребуется разбить детскую площадку, например.

Монтаж контура заземления

В зависимости от выбранной площадки (ее формы и размеров) при монтаже ЗК могут применяться различные схемы. Штыри в нем могут располагаться как в линию, так и в виде треугольника.

Важно! Независимо от используемой схемы, количество вертикально вбиваемых заземлителей должно быть не менее трех штук.

 

В том случае, когда выбрана треугольная конструкция, порядок обустройства ЗК выглядит следующим образом:

  1. Сначала на этом месте размечается площадка соответствующей конфигурации со сторонами примерно 2,5-3 метра.
  2. Затем вырывается котлован с размерами чуть большими, чем это обозначено разметкой.
  3. Вырытый в земле приямок должен повторять форму равнобедренного треугольника и иметь глубину не менее полуметра (при ширине порядка 50-70 см.).
  4. После этого по углам треугольного котлована с небольшим отступлением от стенок вбиваются три стальных штыря (отрезка арматуры) на глубину не менее 2-х метров.
  5. И, в завершении все они соединятся между собой стальными полосами (делается это посредством сварки, которой в данной ситуации следует отдать предпочтение).

В результате должна получиться конструкция, похожая на приведенную ниже.

Контур заземления по схеме треугольник
Контур заземления по схеме треугольник

Сечения проводов заземления от контура не должно быть менее 12-16 мм квадратных.

Для экономии сил и времени вырывать приямок под штыри можно не полностью. Достаточно будет выбрать землю только из канавок, в которые укладываются затем стальные соединительные полосы. На заключительной стадии сварных работ уже готовый заземлитель присыпается составом с низким удельным сопротивлением (золой или пеплом, например). Со временем содержащиеся в добавках соли растворятся в земле, что обеспечивает снижение сопротивления растеканию аварийного тока.

Параметры заземлителей (вертикальное расположение)

При проведении расчетов контуров заземления вертикального типа необходимо руководствоваться следующей формулой:

Формула расчета сопротивления электрода

Приведенные в ней величины расшифровываются, как указано ниже:

R0 – величина расчетного сопротивления одиночного электрода в Омах.

Рэкв – значение удельного сопротивления почвы, уже рассмотренное ранее в главе о наружном ЗК.

L – длина отдельного электрода, входящего в состав системы заземления.

D – диаметр или соответствующий сечению размер штыря.

Т – расчетное расстояние от условного центра каждого из электродов до земной поверхности.

Для того чтобы получить требуемое значение сопротивления R0 (согласно ПУЭ оно не должно превышать 30 Ом) следует подбирать входящие в формулу переменные величины.

Параметры комплектующих элементов внешнего контура заземления по нормам ПУЭ

Обратите внимание: В случае если из-за особенностей грунта в данной местности установка вертикальных стержней невозможна – расчет величины сопротивления производится по формуле для горизонтальных заземлителей.

Перед тем как рассчитать ЗК следует учитывать, что для монтажа горизонтальной конструкции потребуется намного больше усилий и затрат по времени (а также значительных расходов медного материала). Кроме того, обустроенное таким способом заземление очень чувствительно к погодным условиям.

Именно поэтому считается, что лучше потратиться на обустройство вертикальных стержней, чем пытаться преодолеть недостатки горизонтальных заземляющих систем.

Тестирование

По завершении монтажных работ необходимо протестировать контур заземления на нормируемые показатели. Для испытания потребуются точные измерительные приборы, не всегда имеющиеся в распоряжении пользователя.

Проверка контура заземления

В отсутствие требуемого оборудования следует воспользоваться простейшими способами, один из которых описан ниже (он подходит только для частного дома).

Во-первых, нужно взять достаточно мощную нагрузку (такую как утюг, например, с потреблением порядка 2-4 кВт). Во-вторых, необходим специальный переходник с обычной розеткой на одном из концов (второй из них выполняется в виде двух отдельных проводов). Далее, один из них следует оформить в виде изолированного одиночного контакта, а на конце второй сделать толстую петлю.

После этого необходимо подсоединить полученную петлю к свободной колодке на заземляющей шине в щитке. Одиночный изолированный контакт следует воткнуть в фазную клемму розетки, ближайшей к нему (нарушать порядок подключения концов переходника к фазе и земле ни в коем случае нельзя). После всех этих манипуляций нагревательный прибор окажется включенным в питающую цепь через сопротивление самодельного контура заземления. Затем нужно измерить напряжение в сети посредством мультиметра при включенном утюге и без него.

Небольшая разница в показаниях двух описанных измерений означает, что изготовленный заземлитель вполне работоспособен. Если же они отличаются очень намного – контур придется доработать (увеличить количество штырей, например).

О том, как проверить наличие правильного заземления мультиметром, мы рассказывали в соответствующей статье!

Итог

Подводя итог всему сказанному, обратим внимание на рекомендации, которыми делятся опытные мастера:

  • Перед началом монтажных работ желательно подготовить чертеж будущей конструкции, который может понадобиться при дальнейшей эксплуатации. При его наличии легче восстановить в памяти схему расположения штырей.
  • Отрезки электродов допускается вбивать не только в угловых точках треугольника. Их можно располагать как в линию, так и по дуге. Главное, чтобы суммарное сопротивление растеканию тока, создаваемое всей цепочкой, не превышало 3-4-х Ом.
  • Если оно больше нормируемого значения, то систему придется доработать, добавив в нее еще пару стержней.
  • При отсутствии опыта самостоятельной проверки сопротивления заземления — лучше всего пригласить специалиста.

После ознакомления со всеми тонкостями процесса сборки и тестирования ЗК, попытаться изготовить его своими руками может каждый желающий.

Источник: FishkiElektrika.ru



Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.