Заземление – отвод напряжения, возникшего в угрожающем для безопасности месте, в место, где оно никому не повредит: это место- земля. Заземление соединяет все токоведущие части, которые в нормальном режиме работы не находиться под U, с землёй.
Зануление – это соединение всех частей электроприбора, которые не должны находиться под U, с рабочим нулём. В данном случае, если произойдёт обрыв фазы на токоведущие части, находящиеся под рабочим нулём, то произойдёт короткое замыкание и автоматический выключатель обесточит электроприбор. Это конечно менее безопасно, чем заземление, короткое замыкание может стать причиной последующих неполадок в приборе. К сожалению, именно зануление является основным видом защиты в большинстве жилых помещений.

Заземление
Заземление

Системы заземления

Рассмотрим системы, применяемые в бытовых помещениях:

  1. TN-C.
  2. TN-S.
  3. TN-C-S.
  4. ТТ.

TN-C

Первая буква Т означает, что нейтраль источника питания соединена с землёй, что значит, что проводник рабочего ноля на подстанции уходит в землю. Вторая буква- N – означает связь открытых токопроводящих частей электроустановки здания с точкой заземления источника питания. Третья буква- С -означает ,что защитный и рабочий ноль находятся на одном общем PEN, то есть рабочий ноль и является защитным. По сути, эта система и является тем самым «занулением». Самая небезопасная из систем. Все токоведущие части, которые не должны быть под U,находятся под рабочим нулём. Защита построена на действие автомата после короткого замыкания. Защитный и рабочий ноль находятся в одном проводнике до распределительного щита.

Система заземления TN-C
Система заземления TN-C

1.Открытые токопроводящие части.

2.Источник питания.

3.Распределительный щит на квартиру.

TN-S


Первые две буквы также, как и в предыдущей системе означают, что нейтраль источника питания связана с заземлением (которое расположено у источника питания) и открытые токопроводящие части электроустановки здания связаны с точкой заземления источника питания. Третья буква- S- значит, что нулевой и защитный PE и рабочий N находятся на разных проводниках (заземление). Это означает, что от электростанции отходят два отдельных провода на рабочий ноль и на заземление. Данная система является самой безопасной для многоэтажных зданий.

Система заземления TN-S
Система заземления TN-S

1.Открытые токопроводящие части.

2.Источник питания.

На представленной схеме видно, что от источника питания отходят два раздельных провода на рабочий ноль и на заземление, далее проводники не встречаются.

TN-C-S

Является модернизированной системой TN-C . Функции нулевого рабочего и нулевого защитного проводников объединены в одном проводнике в части сети, которая идёт от источника питания. Затем на определённом участке добавляется заземлённый проводник. Для многоэтажных домов обычно заземлённый проводник добавляют в ВРУ (вводное распределительное устройство на дом). Эта система также обеспечивает достаточную безопасность.


Система заземления TN-C-S
Система заземления TN-C-S

1.Открытые токопроводящие части.

2.Источник питания.

3.Распределительный щит на квартиру.

4.ВРУ.

На схеме представлена сеть до модернизации – система TN-C и после модернизации – система TN-C-S.

Система ТТ

Обычно применяется при постройке частных домов. Вторая буква Т значит, что заземление и рабочий ноль нигде не соединяются. О первой букве уже говорилось выше. В дом заходит так же, как и в системе ТN-S, три провода :рабочий ноль, фазный провод и заземляющий. Только вот заземляющий провод идёт не от источника питания (как в системе TN-S), а возле частного дома монтирован собственный контур заземления по всем правилам ПУЭ (правила устройства электроустановок), именно от заземляющего контура и идёт заземляющий провод.


Система заземления TT
Система заземления TT

1.Открытые токопроводящие части.

2.Источник питания.

3.Контур заземления у частного дома и отходящий от него проводник.

volgaproekt.ru

Применение системы IT

Эта система заземления особенно востребована и используется в электроснабжении таких объектов как медицинские учреждения, где к его бесперебойности и надежности предъявляются особые требования или в электроснабжении промышленных, энергетических предприятиях, перебои электропитания для которых могут повлечь недопустимую остановку технологического процесса.

l220.ru

Главной особенностью, которой обладает система заземления IT, является изолированная, либо имеющая заземление через большое сопротивление, нейтраль источника питания (трансформатора).
е открытые части электроустановки, изготовленные из токопроводящих материалов, заземляются. Заземление токопроводящих частей электроустановки должно выполняться в соответствии с требованиями ПУЭ. Значение тока утечки при однофазном замыкании на землю в такой системе невелико и не оказывает заметного влияния на работу электрооборудования. Электроустановка может длительное время работать в аварийном режиме.

Содержание:

  • Немного истории
  • Область применения
  • Преимущества и недостатки

Немного истории

Система электроснабжения, имеющая изолированную нейтраль, имела очень широкое применение в раннем СССР. Жилой фонд тех лет состоял преимущественно из деревянных неблагоустроенных домов барачного типа. Качественное заземление электрического щита в таком доме выполнить было не просто. Бытовая электрическая сеть имела напряжение 127/220 В и изолированную нейтраль. В этих условиях случайное прикосновение к оголенному проводу могло иметь минимальные последствия, даже если при этом держаться за водопроводную трубу.

Схема заземления IT выглядит следующим образом:

Массовый переход на электроснабжение с нейтралью, имеющей заземление, произошел в период крупномасштабного строительства железобетонных жилых домов (так называемых «хрущевок»), несмотря на некоторые достоинства, которыми обладает система IT.
таких домах нашли применение токопроводящие несущие конструкции, а также заземленный водопровод и система отопления. Эти обстоятельства обеспечивают очень высокую вероятность непреднамеренного соединения этих элементов с одним из проводов электропитания. Такой режим в системе IT не отслеживается токовыми защитами и может продолжаться длительно. При этом резко возрастает опасность поражения током при прикосновении ко второму проводу электропитания. Таким образом, схема, в которой используется IT заземление, в зависимости от того, где применяется, имеет как плюсы, так и минусы.

Область применения

Несмотря на некоторые негативные особенности, которые несет с собой применение этой системы, существуют некоторые области, где используется все же заземление IT, как оптимальное решение задач безопасности. В настоящее время система заземления IT применяется при электроснабжении сооружений, требующих повышенной безопасности и надежности. Например, это относится к шахтным электроустановкам. В условиях подземных разработок очень часто происходит скопление взрывоопасных рудничных газов, и система с изолированной нейтралью, принцип работы которой обеспечивает отсутствие искр при однофазном замыкании, в этом случае наименее опасна. Следует добавить, что шахтная электропроводка оснащается специализированной высокочувствительной защитой, схема которой реагирует на ток утечки.

Кроме этого, изолированную нейтраль имеют переносные портативные генераторные установки, которые при работе в полевых условиях не имеют надежное заземление.
этой причине, в сетях аварийного электроснабжения, питающихся от автономных генераторов, также может использоваться система заземления IT. Эта схема может иметь место на предприятиях высокой категории надежности электроснабжения, использующих аварийные системы питания, например, в медицинских учреждениях. Также заземление IT может встретиться в частном доме, оборудованном генератором резервного электропитания. К сожалению, в домашних условиях трудно применима высокочувствительная система, определяющая незначительные токи утечки, наподобие шахтной защиты.

Электроустановки, в которых используется система с изолированной нейтралью напряжением до 1000 В, обычно имеют применение в тех случаях, когда нежелательно отключение электропитания при возникновении первого замыкания на землю. В таких сетях аварийные значения токов возникают только при замыкании на землю второй фазы, то есть при междуфазном коротком замыкании. По этой причине, для фиксации режима однофазного замыкания на землю, должна быть установлена система сигнализации, реагирующая на небольшое значение тока утечки. Это необходимо для предупреждения обслуживающего персонала о возникновении ненормального режима работы, требующего устранения.

Преимущества и недостатки

Если кратко резюмировать особенности применения заземления IT, можно выделить следующие его преимущества:

  • отсутствие разности потенциалов между токоведущими частями электроустановки и местным заземлением, обеспечивающее безопасность прикосновения к ним;
  • возможность продолжения работы электроустановки при однофазном замыкании на землю, обусловленная малыми значениями тока утечки.

Недостатки, которыми обладает система заземления IT, обусловлены теми же свойствами, а именно:

  • Обычные токовые защиты не срабатывают при замыканиях на землю. Система контроля токов утечки, как правило, достаточно сложна и ее схема часто не обладает селективностью. К тому же, она работает на сигнал и требует вмешательства обслуживающего персонала.
  • При работе в режиме однофазного замыкания на землю повышается опасность поражения током при прикосновении к другой фазе.
  • Напоследок рекомендуем просмотреть видео на котором подробно рассматривается схема заземления IT и альтернативные варианты электроснабжения:

    Вот мы и предоставили описание системы заземления IT. Теперь вы знаете, какая у нее область применения и принцип работы!

    nemasterok.ru

    Основные понятия в теме типы заземления


    Чтобы разобраться с системами заземления определюсь с основными понятиями, которые будут использоваться в этой статье. Вы, конечно, можете прочитать пункты 1.7.3-1.7.7 главы 7,ПУЭ, если любите первоисточники. Здесь я не буду переписывать ПУЭ, просто расскажу, что нужно понимать под отдельными словами в этой статье.

    Прежде всего, что такое заземление эклектической сети, по сути

    Заземление электрической сети это соединение всех открытых для прикосновения токопроводящих частей электроприборов (например, корпусов) и доступной арматуры (например, металлические водопроводные трубы) с землей (в буквальном смысле).

    Зачем нужно заземление?

    Земля, вернее проводящая часть земли, имеет нулевой электрический потенциал в любой своей точке. Части электроприборов, по которым в нормальном режиме не протекает электрический ток, совершенно безопасны для человека. Другая ситуация в аварийной ситуации при которой по корпусу бытового прибора начинает течь ток. В такой аварийной ситуации прикосновение к корпусу будет представлять серьезную опасность для человека. Именно для защиты человека от поражения электрическим током, а также для защиты от последствий электроаварий (например, пожара) и предназначено ЗАЗЕМЛЕНИЕ.

    Почему заземление защищает человека?


    Как я сказал, проводящая часть Земли имеет нулевой электрический потенциал. Если на стороне проводника соединенного с землей возникает электрический потенциал (возникает аварийная ситуация), то он будет стремиться сравняться с нулевым потенциалом земли и ток потечет по направлению земли. Специальный электроприбор, отвечающий за аварийное отключение электропитания, также соединен с землей. Между аварийным проводником и устройством защиты возникает электрическая цепь, которая и отключает аварийный участок от электропитания.

    Но эта схема защиты сработает, если все элементы электросети соединены с землей. Причем говоря обо всех элементах сети, имеется в виду элементы сети от генераторов подающих электропитания до простой розетки в квартире.

    При этом. Схема, по которой сделано заземление основного генератора (источника) электропитания электросети должна совпадать со всеми схемами заземления этой сети. Вернее наоборот. Схемы заземления сети должны соответствовать схеме заземления источника электропитания.

    Разделяют три основные системы заземления электросети TN;TT;IT.

    Система заземления TN (открытые части соединены с нейтралью)

    При системе заземления TN одна точка источника питания электрической сети соединяется с землей при помощи заземляющего электрода и заземляющих проводников. Заземляющий электрод имеет непосредственный контакт с землей. При системе заземления TN открытые проводящие части соединяются с нейтралью, а нейтраль соединяется с землей.

    Система TN-C

    Если нейтраль объединена с защитными проводами (землей) на всем протяжении электросети, такая система называется и обозначается TN-C.

    TN-C

    Система TN-S

    Если нейтраль и защитный проводники разделены на всем протяжении электросети, а объединяются только у источника питания, такая система называется TN-S.

    TN-S

    Система заземления TN-C-S

    Система заземления, при которой разрешено применение и системы заземления TN-C (4-х/2-х проводной) и системы заземления TN-S (5-ти/3-х проводной).

    Важно! При системе заземления TN-C-S, запрещено использовать систему TN-C ниже системы TN-S,так как любой обрыв нейтрали в системе TN-C приведет к обрыву защитного провода после системы TN-S.(смотри рисунок)

    TN-C-S

    Система заземления TT-заземленная нейтраль

    При системе заземления ТТ средняя точка источника питания соединяется с землей. Все проводящие части электросети соединяются с землей через заземляющий электрод отличный от электрода источника питания. При этом зоны растекания обоих электродов могут пересекаться.

    TT

     

    Система заземления IT –изолированная нейтраль

    При системе заземления IT полностью изолирована для всей электросети или сопротивление соединения с землей стремится к бесконечности.

    IT

    На этом все! Относитесь к электрике с почтением!

    ©Elesant.ru

    elesant.ru

    Суть заземления

    Для чего нужно заземление, если и без него всё прекрасно работает? Более того, в нормальном режиме по проводу защитного заземления ток вообще не протекает.

    Тут ключевое слово – “защитное”. Кого и от чего защищает заземление? Оно защищает человеческие тела от воздействия электрического тока. А от чего защищает – от того, чтобы опасное напряжение ни в коем случае не появилось на теле человека, и через человека не пошёл ток.

    Представим ситуацию. Есть некий электрический прибор, например утюг. Утюг подключается через вот такую вилку.

    Читатели постарше отлично помнят такие, они постоянно раскручивались, а прикрутить к ним гибкий провод было мучением.

    Корпус утюга частично металлический. Что будет, если вдруг фаза попадет на корпус? В принципе ничего, утюг даже может продолжать работать. Но его корпус будет находиться под потенциалом 220В относительно земли. А поскольку все мы ходим по земле, то притронувшись к металлическому корпусу такого утюга, через нас пойдёт ток.

    А дальше – как повезёт. Если кожа и пол сухие – просто немного дёрнет…

    Но если  корпус утюга будет заземлён, то когда фазный провод попадёт на корпус, он соединится с заземлением, и уйдёт в землю. При этом произойдёт фактически короткое замыкание, и выбьет защитный автомат данной линии. А корпус как был под нулевым потенциалом, так и останется.

    Иными словами, если фаза вдруг попадёт на корпус прибора, это уже не проблема человека. Это проблема самого прибора и защитного автомата, который должен отключить этот прибор от фазного провода.

    Почему защитный автомат отключится? Если фазный провод попадает на защитный (заземляющий) проводник,  это равносильно короткому замыканию, то есть максимально возможному току в схеме. И автомат сработает по электромагнитной защите.

    Напоминаю, что есть время-токовая характеристика автоматического выключателя, и при КЗ автомат будет работать в правой зоне характеристики, где время отключения стремится к нулю. Подробнее – в моей статье про выбор защитного автомата.

    То есть, ток в проводе защитного заземления течёт только в момент аварии, в остальное время он бесполезен. Поэтому раньше на нём экономили, и использовали двухпроводную систему питания, в которой есть только ноль и фаза.

     

     Обозначения и перевод названий систем заземления

    Существуют TN, TT и IT системы заземления. Система TN, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Первая буква говорит о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

    Буквы эти взялись из французского, и означают: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также из английского: «Combined» и «Separated» – комбинированный и раздельный.

    • T — провод подключен к земле .
    • N — подключение к нейтрали.
    • I — изолирование.
    • C — объединение функций, соединение рабочего и защитного нулевых проводов.
    • S — раздельное использование во всей сети рабочего и защитного нулевых проводов.

    Также в схемах систем заземления используются следующие обозначения:

    • L – Line, Линия, на которой действует фазное напряжение по отношению к нулевому проводу.
    • N – Neutral, рабочий ноль, по которому протекает рабочий ток, равный току в проводе L (для однофазных систем).
    • PE – Protect Earth, защитная земля, провод защитного заземления.
    • PEN – совмещенный рабочий и защитный нулевой проводник.

     

    Краткое описание работы систем заземления

    Системы заземления отличаются прежде всего безопасностью. То есть, сколько шансов выжить даёт человеку такая система после того, как на корпусе появилась фаза.

    Возникает путаница в терминологией – одну и ту же систему называю и занулением, и заземлением. Википедия предлагает системы TN называть занулением на том основании, что в них заземляющий проводник PEN соединен с нулевым (нейтральным) проводом источника питания. А уже этот провод в трансформаторе – заземлён. Заземляется для того, чтобы не было перекоса фаз.

    Подробнее о перекосе фаз, чем он опасен, и как с ним бороться – в другой моей статье.

    ПУЭ, Библия электрика, говорит, о том же самом, как о системах заземления.

    Скачать ПУЭ у меня можно здесь, в разных вариантах.

    Разница между этими понятиями, по моему мнению, очень зыбкая. По-моему, заземление нужно для поддержания напряжения на уровне потенциала земли на проводе PE и на всех нетоковедущих частях электроустановки, к которым он подключен. А зануление нужно для создания тока короткого замыкания при замыкании фазы на тех же частях электроустановки. В итоге, эффект может быть один – заземленные или зануленные части никогда не окажутся под фазным напряжением, и при этом должен сработать защитный автомат. Это если коротко и своими словами.

    Вообще, заземление это более широкое понятие, чем зануление.

    Можно сказать, система защиты безопасна настолько, насколько эта точка приближена к источнику напряжения. И опять же, что можно считать потребителем – электрочайник, квартиру, многоэтажный дом, или район города?

    Ну а если фаза “прорвётся” на корпус – её должен уничтожить защитный автомат со 100% вероятностью.

    Тут важными считаю две вещи:

    1. Весь металл, который не под фазой, должен быть под одним и тем же потенциалом. И желательно, чтобы этот потенциал был равен потенциалу земли. Это – “самый нулевой” потенциал.
    2. Опасное – недоступно. Доступное – безопасно. Бывает, смотришь в квартирные советские щитки или РП и волосы шевелятся.

    И ещё, в который раз повторюсь. Всегда рассматривается вероятность обрыва нулевого рабочего проводника. Дело в том, что при таком обрыве на всей схеме прибора, вплоть до точки обрыва нуля, присутствует фазное напряжение.

    Подробно пишу об этом в статье про обрыв нуля в однофазной и трехфазной цепях.

    В случае прикосновения ток проходит через нагрузку и через тело человека. Не смотря на сопротивление нагрузки, этот ток остается таким же опасным, как и при прикосновению к на фазному проводу. Ведь сопротивление нагрузки (например, электробытового прибора) всегда гораздо меньше сопротивления тела человека.

     

     

    Схемы систем заземления

    Система TN-C

    TN-C – старая, советская система, когда земля просто бралась из нуля непосредственно в самой электроустановке.

     

    Что мы видим на этой схеме? Первое и самое главное. Нейтральная точка генератора или трансформатора подключена к земле (глухо заземлена). Поэтому нейтральная точка трансформатора имеет потенциал земли. А поскольку человек имеет тоже потенциал земли, между телом и нейтральным проводником – нулевая разность потенциалов, и прикосновение к нему безопасно.

    Однако, не всё так просто. Повторюсь, что вследствие перекоса фаз, а также падения напряжения на проводе PEN, на нём может присутствовать напряжение, отличное от нулевого. Поэтому провод PEN принудительно “притягивают” к земляному потенциалу через некоторые промежутки по ходу линии.

    Земля (то, из чего состоит наша планета) – универсальный и абсолютный ноль по потенциалу. Но если человеку придать потенциал фазного провода, то прикосновение к земле будет смертельно. В то же время, прикосновение к проводу, на котором тот же потенциал, будет безопасным.

    Видел документальный фильм, как человек спокойно спускается с вертолета на провод высоковольтной линии и работает там.

    В общем всё относительно. Можно упасть с 5-этажного дома насмерть. А можно вообще не повредиться, упав с того же дома. С первой ступеньки первого этажа)

    Система TN-C в настоящее время официально запрещена, и может использоваться только в трехфазных системах, где отсутствует перекос фаз, и ток по проводнику PEN (нулевой, он же защитный) в нормальном режиме не протекает. В результате, на этом проводе (а значит, и на корпусе прибора) будет потенциал нуля.

    Однако, в старом жилом фонде используется повсеместно из-за своей дешевизны. Дешевизна системы TN-C – это её единственный плюс. Ведь сечение защитного провода PE в однофазной сети должно быть равно сечению фазного провода. А это – удорожание всей электропроводки минимум на треть.

    Вообще говоря, в этой системе заземление напрочь отсутствует, и я не совсем понимаю, почему “это” называют системой заземления. Разве что, можно ноль кинуть на корпус, и прибор будет “типа” заземлён.

    Да и раньше, когда всю проводку делали по этой системе, практически и не существовало домашних приборов, требующих заземления.

    Первыми “ласточками” были стиральные машины, которые бились током. В лучшем случае к ним тянули провод от корпуса подъездного щитка, в худшем – цепляли корпус машины на трубу водопровода или к нулевому проводу.

    Нужный эффект, конечно, достигается, но шансы попасть под фазное напряжение значительно возрастают. Основная опасность приходит от того, что возможен обрыв нулевого провода, и тогда все “зануленные” приборы, и также приборы, имеющие импульсные блоки питания, получат на корпусах потенциал фазы.

    Как же защититься от поражения электрическим током в системе TN-C? Тут вспоминается УЗО (Устройство Защитного Отключения). Представим – человек коснулся фазного провода. Ток раздваивается – часть (надеюсь, бОльшая) уходит в нулевой проводник, а часть – через тело человека на корпус. Налицо дифференциальная разница (сорри, тавтология) в токах по фазе и нулю, на которую должно сработать УЗО.

    Однако, ПУЭ прямо говорит – в системе TN-C применение УЗО запрещено. Почему?

    Причина в том, что в данном случае может произойти то, о чем я писал выше. УЗО – это коммутационный аппарат, в котором может по какой-то причине нарушиться контакт PEN – проводника, и под фазное напряжение попадёт весь потребитель. В том числе и корпуса, если они занулены, а именно так и делается “заземление” в системе TN-C.

    ПУЭ также говорит, что защитный проводник (в данном случае – PEN) ни при каких условиях не должен разрываться, и должен быть всегда подключен к заземляемому устройству.

    Поэтому УЗО можно (и нужно!) применять во всех системах, кроме TN-C.

    Вот хороший рисунок, иллюстрирующий ситуацию:

    Я вас так напугал, что по любому возникнет вопрос – как теперь с этим жить?

    Отвечаю. Для ухода от этой “нехорошей” системы применяют разделение проводника PEN на N и PE. Причем, это нужно делать как можно дальше от потребителя, и как можно ближе к источнику напряжения.

    Таким образом, мы перейдём на гораздо более безопасную систему – TN-C-S, о которой я расскажу чуть ниже.

    На практике совмещенный проводник PEN заземляют (повторное заземление) на вводе в здание, и там же разделяют на нейтральный N и защитный PE, которые далее НИГДЕ не должны соединяться.

    Другой вариант – переход к системе ТТ, в которой защитный проводник PE делается на основе контура заземления, и нигде не подключен к приходящему PEN. В данном случае PEN превращается в N, поскольку защитный ток ни к коем случает по нему течь не будет.

    Заземление в квартире с проводкой TN-C

    В квартирах ноль и землю разделять сложнее. По этому поводу постоянно ведутся жаркие споры среди электриков.

    Я думаю, что тут есть два приемлемых варианта.

    1. Ноль оставить как есть, а провод PE взять с магистрального PEN проводника. Пусть не с самого проводника, а с места, куда он подсоединяется к корпусу этажного щитка. Главное, чтобы наши N и PE были подключены в разных точках. PE – на корпусе, N – на изолированной от корпуса шине, на которую ноли приходит после вводного рубильника или автомата (если они есть) и счетчика. Кстати, так и делали в советские времена при подключении в квартирах электропечей.

    2. Провести трехпроводную систему (L, N, PE), но PE никуда не подключать. В результате мы не вносим изменения в этажный щиток (кстати, это запрещено!), а все нетоковедущие части электроприборов, металлических конструкций, труб и т.д. мы подключаем к этому проводнику. И в пределах квартиры у нас благодать! Только важное замечание – на группы розеток должны стоять УЗО на случай попадания фазы на корпус в пределах квартиры.

    Всё, теперь по-быстрому пробежимся по другим системам, там всё проще.

    Система TN-S

    В названии буква третья S. Это значит, что проводники N и PE разделены (Separated) на всём протяжении от подстанции до потребителя.

    Эта система заземления наиболее безопасна и предпочтительна, однако применяется только в самых новых электроустановках. Ну а в основном в реалити сейчас применяют систему TN-C-S. То есть старую систему стараются приблизить к новой, отдаляя точку подключения N и PE от потребителя и приближая к источнику питания.

     

    Система TN-С-S

    Последние буквы в названии означают, что проводники N и PE после подстанции соединены (Connected) в один провод PEN, а потом, на вводе в здание, разделены.

    При попадании фазы на корпус должен сработать защитный автомат по КЗ. При касании токоведущих частей должен сработать УЗО.

     

    Система TT

    Terra – Terra. Я уже писал в статье про эту систему, в ней заземляющий провод PE подключается к контуру заземления, и больше никуда. Применяется в основном в частных домах и временных постройках и электроустановках.

    Всё замечательно, если также применяются УЗО от прикосновения к токонесущим частям и защитные автоматы от КЗ.

    Но есть один минус. Если в других системах своё заземление делать не обязательно, понадеявшись на заземление на подстанции или на столбах, то в данном случае его придётся делать. И делать очень качественно, чтобы в случае замыкания КЗ на землю ток короткого замыкания был достаточен для срабатывания автомата защиты.

    То есть возможен вариант, когда при КЗ на корпус потенциал корпуса останется близким к нулю, всё замечательно. Но при этом автомат защиты не выбьет, хотя через него (и через проводку дома) будет идти ток, близкий к максимальному! И проблема может подкрасться с другой стороны…

     

    Система IT

    Напоследок расскажу про специфическую систему заземления IT. Во всех других системах используются источники питания (трансформаторы) с глухозаземленной нейтралью. Иначе говоря, нулевой проводник на стороне источника заземлён.

    Однако, в системе IT источник питания полностью изолирован от земли – и ноль, и (естественно)) фаза.

    В результате по отношению к земле потенциал отсутствует. И при замыкании на землю ничего не произойдёт, ведь ток не потечёт, либо будет пренебрежимо мал.

    Я встречал такие системы для питания управляющих цепей в серьезном промышленном оборудовании. Ещё эта система применяется в переносных генераторах и других источниках питания, а также в медицинских учреждениях. Если один из выводов такого источника не заземлить и подключить к нагрузке, он будет работать по системе IT.

    Подробнее я писал об этом в статье про подключение генератора Хутер.

    Минус такой системы – при замыкании на землю она превратится в TN-C-S с плохим монтажом, и об этом даже можно не узнать, если не проконтролировать. И станет опасной.

     

    На этом заканчиваю тему, спасибо за терпение, жду мнений и вопросов в комментариях.

    P.S. Схемы взял из статьи Плакаты по технике безопасности.

    samelectric.ru

    Обозначение систем, расшифровка

    Для обозначения каждой системы, используется буквенный индекс, состоящий из нескольких букв.

    Первая, стоящая в индексе буква указывает на характер заземления основного источника питания приборов (трансформаторной подстанции), а вторая – на заземление открытых участков электрических установок.

    Для обозначения используются определенные буквы латинского алфавита, каждая из которых имеет свою расшифровку:

    • Т – заземлено (от «Terre» — земля);
    • N – занулено, подключено к нейтрали источника (от «Neuter» — нейтраль);
    • I – изолировано (от «Isole» — изоляция).

    Вот эти три буквы и используются для обозначения систем заземления, которые входят в международный стандарт.

    Три системы заземления согласно МЭК имеют обозначение:

    • TN (которая в свою очередь делится на подсистемы TN-C, TN-S, TN-C-S);
    • ТТ;
    • IT.

    Система заземления it

    Дополнительно классификацией введено буквенное обозначение нулевых проводников, задействованных в системах заземления:

    • N – рабочий;
    • РЕ – защитный;
    • PEN – комбинированный (совмещенный), включающий в себя и рабочий, и защитный нулевые проводники.

    Система заземления it

    Все указанные системы имеют свои конструктивные особенности, что предопределяет их сферу использования.

    Для использования в жилых помещениях более подходящими являются подсистемы заземления TN.

    Система TT применима для мобильных построек (строительных и иных вагончиков, киосков, имеющих металлические поверхности), а вот IT используется в основном для организации заземления лабораторий.

    Используемая при электрификации помещений система заземления обязательно указывается в проектной документации, поскольку для проведения обслуживающих и ремонтных работ нужно чтобы электрик точно знал, какая из систем использована.

    Имеющийся стандарт системы заземлений – международный, поэтому он используется и у нас.

    Причем весь регламент, действующий у нас и касающийся систем заземления, полностью прописан в правилах устройства электроустановок (ПУЭ). Причем ПУЭ действует как на территории РФ, так и Украины.

    Система заземления it

    Эти правила являются общим положением для правильного проведения электрификации, эксплуатации электроприборов и обеспечения защиты.

    Далее рассмотрим особенности каждой из систем, а также их положительные качества и недостатки.

    Система TN и ее подсистемы, их особенности, достоинства, недостатки

    Общая особенность системы TN сводится к тому, что нейтраль источника питания имеет глухое заземление (подключено к заземляющему контуру, установленному рядом с подстанцией).

    К этому заземлению и подключаются открытые участки электрической проводки посредством нулевых проводников.

    Имеющиеся подсистемы как раз и разделяются по способу подключения этих проводников к заземлению.

    TN-C.

    Система TN-C – один из самых распространенных видов заземления, который на данный момент является уже устаревшим, но часто встречается в домах старых построек.

    Она отличается тем, что проводники N и PЕ (рабочий и защитный), объединены в единый по всей системе – PEN-проводник.

    Система заземления it

    Широкое распространение эта система получила благодаря простоте монтажа и экономичности, поскольку не требует укладки и подключения дополнительных проводов. Это и является ее основными достоинствами.

    Но в этой системе не предусмотрено отдельное защитное заземление. То есть, на конечной точке электропроводки жилого дома – розетке, оно отсутствует, что значительно понижает безопасность использования электроприборов в жилье.

    Система заземления it

    Присутствующий же в системе PEN-проводник подводится только к электрощитам – вводному и этажному.

    Из-за этих конструктивных особенностей при монтаже новых линий электросетей, а также реконструкции, уже существующих запрещено использовать данную систему.

    Для повышения безопасности нередко используется зануление, позволяющее бороться с короткими замыканиями, которые могут возникнуть в сети.

    Если замыкание произойдет, зануление обеспечит срабатывание автоматических выключателей для обесточивания электросети дома.

    Система заземления it

    TN-S.

    В новых постройках система TN-C уже не применяется, для них более предпочтительна система TN-S.

    Она характеризуется тем, что рабочий и защитный нулевой проводники – раздельны по всей системе. То есть, проводка включает в себя отдельно N и PE-проводники.

    Система заземления it

    Эта система отличается обеспечением высокой степени безопасности человека и защиты оборудования и электроприборов, поскольку защитное заземление имеют даже конечные точки электросети.

    К тому же, в ней не образовываются высокочастотные помехи, которые могут возникать в первой системе во время использования пылесоса, дрели и прочих электроприборов.

    К достоинствам этой системы также относится отсутствие надобности в периодической проверке состояния контура заземления.

    При этом стоимость прокладки такой системы очень высокая. Обусловлено это тем, что при монтажных работах необходимо укладывать многожильные кабели.

    Для однофазной сети кабель должен содержать 3 жилы (фазная, рабочая нулевая N и защитная PE).

    Система заземления it

    А для трехфазной – кабель нужен уже 5-жильный (3 фазных – А, В, С, а также N и РЕ).

    Система заземления it

    Именно высокая стоимость и является основным недостатком этой системы.

    TN-C-S.

    Последняя подсистема – TN-C-S объединяет в себе конструктивные особенности двух предыдущих систем.

    Основное ее отличие заключается в том, что от подстанции на жилой дом идет PEN-проводник. Но на определенном этапе производится его разделение на рабочий N-проводник и защитный РЕ-проводник.

    Система заземления it

    Обычно разделение делается на вводно-распределительном устройстве (ВРУ), то есть, на входе в дом.

    При этом после разделения для PE-проводника делается повторное заземление, путем соединения его с заземляющим контуром дома.

    После расщепления к квартирным щиткам уже подводится раздельные нулевые проводники, что позволяет создать защитное заземление на конечных точках сети. То есть, получается, что до ВРУ идет система TN-C, а после него – уже TN-S.

    Такая система достаточно перспективная у нас, поскольку позволяет быстро и с небольшими затратами модернизировать систему TN-C, тем самым значительно повысив безопасность при использовании бытовыми электроприборами.

    Система заземления it

    Но есть у нее и один недостаток, который сводится к тому, что в случае повреждения PEN-проводника, проводка полностью лишается заземления, что может привести к поражению электрическим током, поскольку корпусы электроприборов могут оказаться под напряжением.

    Особенности системы ТТ

    Система ТТ предназначена для обеспечения заземления зданий, у которых невозможно создать необходимые условия по электробезопасности для использования подсистем TN.

    В первую очередь таким условием является ненадежность воздушных линий электропередач и отсутствие дублирующего заземления на опорах.

    Также ТТ применяется для обеспечения безопасности мобильных построек и здания, имеющих токопроводящие поверхности (киоски, контейнеры, вагончики, сделанные из металла).

    Система заземления it

    Особенность этой системы сводится к тому, что заземляющие контуры применяются отдельно для подстанции и помещения, поэтому никаких нулевых проводников между ними нет.

    К тому же в этой системе не допускается какое-либо пересечение между N и РЕ-проводниками. То есть, для каждого из них должен предусматриваться свой заземляющий контур.

    Благодаря таким конструктивным решениям удается обеспечить изоляцию токопроводящих поверхностей, а также зданий от возможного обрыва линии электропередач.

    Отметим, что при организации ТТ требуется использование устройств защитного отключения (УЗО) на все группы линий электросети, чтобы обеспечить защиту от случайного контакта с токоведущими частями электроприборов, а также для безопасности в случае образования утечки тока в доме.

    Система заземления it

    Она обладает высокими показателями по безопасности, и отлично подходит для частных домов, временных строений и т. д.

    К недостаткам же ТТ относится надобность в тщательном подборе защитных автоматических выключателей и правильный расчет их рабочих параметров.

    К тому же существует вероятность одновременного отказа УЗО и пробоя фазы на корпус электроприбора.

    В результате вся линия РЕ-проводника и открытые токопроводящие участки оказываются под напряжением.

    Система IT

    Система IT предназначена для использования в учреждениях, где могут использоваться высокочувствительные приборы (лаборатории, медучреждения).

    Система заземления it

    Особенность IT сводится к тому, что нейтраль трансформаторной подстанции заизолирована по отношению к земле, или же для заземления используются специальные приборы и устройства, обладающие высоким сопротивлением.

    А вот открытые участки электроустановок заземлены классическим способом – через заземляющий контур.

    Система заземления it

    Использование системы IT обеспечивает минимальное воздействие электромагнитных полей на чувствительную аппаратуру.

    ВАЖНО ЗНАТЬ: Как заземлить стиральную машину.

    elektrikexpert.ru



    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.