О компании » Электролаборатория » Контур заземления » Норма сопротивления контура заземления

Очень часто энергетики спорят на тему, какие должны быть нормы растекания тока контура заземления? Какова величина сопротивления контура заземления? Какое допустимое сопротивление контура заземления? Как правило, в таких спорах можно услышать разные цифры, одни называют 4 Ом, от других можно услышать 20 Ом, некоторые специалисты говорят, что сопротивление контура заземлителя не нормируется. Так какие же должны быть нормы и почему такая путаница?

Какие бывают испытания?

Норма сопротивления контура заземленияНачну с того, что поясню, какие бывают испытания.  Электролаборатория проводит приёмо-сдаточные или эксплуатационные испытания. Приёмо-сдаточные испытания проводятся после окончания монтирования новой электроустановки, после того как, электроустановка смонтирована и сдана в эксплуатацию, с этого момента начинаются эксплуатационные испытания. Соответственно приёмо-сдаточные испытания проводятся только один раз, после окончания электромонтажных работ, а эксплуатационные испытания проводятся периодически, в процессе эксплуатации.


И так, существуют приёмо-сдаточные и эксплуатационные испытания. Приёмо-сдаточные испытания регламентируются Правилами Устройства Электроустановок (ПУЭ), а эксплуатационные Правилами технической эксплуатации электроустановок потребителей (ПТЭЭП).

Почему спорят специалисты?

Наконец, мы подошли к самому главному. Почему спорят специалисты, почему такие разные цифры они называют?

Во первых, нужно понять о каких испытаниях идёт речь. Если разговор идёт о приёмо-сдаточных испытаниях, то ответ нужно смотреть в ПУЭ, Глава 1.8, Нормы приёмо-сдаточных испытаний, а если об эксплуатационных, то ответ ищем в ПТЭЭП, Приложение 3, Нормы испытаний электрооборудования и аппаратов электроустановок потребителей.

Во вторых нужно понять предназначение контура заземления. Контур заземления бывает для подстанций и распределительных пунктов выше 1000 Вольт, воздушных линий электропередач до 1000 Вольт и выше 1000 Вольт и электроустановок до 1000 Вольт.

Какие нормы?

Норма сопротивления контура заземления1. Контур заземления для электроустановки напряжением до 1000 Вольт:


ПУЭ, п. 1.8.39, таблица 1.8.38, п. 3 гласит: при измерении в непосредственной близости к трансформаторной подстанции, сопротивление контура заземления должно быть: 15, 30 или 60 Ом, при измерении с учетом естественных заземлителей и повторных заземлителей отходящих линий: 2, 4 или 8 Ом соответственно для напряжений 660, 380 и 220 Вольт.

ПТЭЭП, Приложение № 3, таблица 36 гласит: сопротивление контура заземления — 15, 30 или 60 Ом для напряжений сети 660-380, 380-220 и 220-127 Вольт соответственно (трёхфазная/однофазная сеть), а при измерении с учётом присоединённых повторных заземлений должно быть не более 2, 4 и 8 Ом при напряжениях соответственно 660, 380 и 220 Вольт источника трехфазного тока и напряжениях 380, 220 и 127 Вольт источника однофазного тока.

2. Контур заземления для трансформаторной подстанции и распредпунктов напряжением больше 1000 Вольт:

ПУЭ, п. 1.8.39, таблица 1.8.38, п. 1 гласит: при измерении в электроустановке с глухозаземленной и эффективно заземленной нейтралью, должно быть не более 0,5 Ом.

ПТЭЭП, Приложение № 3, таблица 36 гласит: при измерении в электроустановке напряжением 110 кВ и выше, в сетях с эффективным заземлением нейтрали, сопротивление контура должно быть не более 0,5 Ом.

В электроустановке 3 — 35 кВ сетей с изолированной нейтралью — 250/Ip, но не более 10 Ом, где Ip — расчетный ток замыкания на землю.

3. Контур заземления воздушной линии электропередачи напряжением выше 1 кВ:


Норма сопротивления контура заземленияПУЭ, п. 1.8.39, таблица 1.8.38, п. 2
гласит: Заземляющие устройства опор высоковольтной линии (ВЛ) при удельном сопротивлении грунта, ρ, Ом·м: 100/100-500/500-1000/1000-5000 – 10, 15, 20 и 30 Ом соответственно.

ПТЭЭП, Приложение № 31, таблица 35, п. 4 гласит:

А. Для воздушных линий электропередач на напряжение выше 1000 В: Опоры, имеющие грозозащитный трос или другие устройства грозозащиты, металлические и железобетонные опоры ВЛ 35 кВ и такие же опоры ВЛ 3 — 20 кВ в
населенной местности, заземлители оборудования на опорах 110 кВ и выше: 10, 15, 20 или 30 Ом при удельном сопротивлении грунта, соответственно: 100, 100-500, 500-1000, 1000-5000 Ом·м.

Б. Для воздушных линий электропередач на напряжение до 1000 Вольт: Опора ВЛ с грозозащитой – 30 Ом, Опоры с повторными заземлителями нулевого провода – 15, 30 и 60 Ом для напряжений питающей сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.


Подведём итог

Для электромонтажников, работающих в сетях напряжением ниже 1000 Вольт:

Сопротивление растекания контура заземления на вновь построенной электроустановке должно быть 15, 30 или 60 Ом или 2, 4 и 8 Ом при измерении с присоединёнными естественными заземлителями и повторными заземлителями отходящих линий для напряжений питающей сети 660-380, 380-220 или 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Сопротивление растекания контура заземления на уже эксплуатирующейся электроустановке, тоже 15, 30 и 60 Ом или 2, 4, 8 Ом при измерении с присоединёнными естественными и повторными заземлителями для напряжений сети 660-380, 380-220 и 220-127 Вольт (трёхфазная/однофазная сеть) соответственно.

Как видим, значения сопротивления контура заземления одинаковы, не зависимо от вида испытаний, но разные в зависимости от назначения контура заземления!

Источник: www.MegaOmm.ru

Удельное сопротивление грунта.

Определяет собой удельное сопротивление грунта уровень "электропроводности" земли как проводника равный тому, насколько хорошо в такой среде будет растекаться электрический ток, который поступает от заземлителя. Сопротивление заземления тем меньшее значение будет иметь, чем у этой величины будет меньший размер.


Удельное электрическое сопротивление грунта (Ом*м) — измеряемая величина, которая зависит от состава грунта, плотности и размеров прилегания его частиц друг к другу, а также температуры, влажности грунта и концентрации растворимых в нем химических веществ (щелочных и кислотных остатков, солей).

Так как точное измерение этого параметра возможно только в ходе проведения специальных геологических изыскательных работ, то применяется обычно таблица ориентировочных величин — "удельное сопротивление грунта".

 

Конфигурация заземлителя.

Зависит напрямую сопротивление заземления от площади электрического контакта электродов заземлителя с грунтом, которая необходима быть как можно большей, потому что чем площадь поверхности заземлителя больше, тем сопротивление заземления меньше.

В роли заземлителя, чаще всего, из-за простоты выполнения монтажа используется вертикальный электрод, который имеет вид стержня, уголка или трубы.

Чтобы максимально увеличить площадь контакта заземлителя с грунтом, необходимо провести следующие мероприятия:

  • Увеличить длину (глубину) электрода.
  • Использовать несколько коротких электродов соединенных вместе и размещенных на небольшом расстоянии друг от друга (контур заземления).

Площади единичных электродов в таком случае просто складываются вместе.

Сопротивление заземления

Источник: www.calc.ru

Виды заземления


  1. Рабочее – заземление определённых мест, например, нейтральных точек трансформаторов. Служит для правильной эксплуатации электроустановок.
  2. Защита от молний – заземление приёмников молний для стока возникающих токов на металлоконструкции, в жилом доме или другом строении.
  3. Защитное – заземление корпусов бытовых приборов или не токопроводящих частей электроустановок. Защищает от поражения электрическим током при случайном прикосновении к деталям, не предназначенным для пропускания электрического тока.

Заземляющие устройства (ЗУ) должны снимать заряды с частей электроустановок, на которых не должно быть напряжения, образующегося в следующих случаях:

  • статическое электричество;
  • наведение напряжения;
  • вынос потенциала;
  • электрический разряд.

В качестве устройства (очага) заземления, выступает закопанный в грунт контур из металлических стержней, вместе с подключёнными к нему проводниками. Место соединения с ЗУ провода от защищаемого оборудования называется точкой заземления.

В большей степени напряжение появляется, когда нарушается изоляция или повреждаются проводники. В обычных условиях контур защитного заземления контактирует с корпусами бытовых приборов и не работает, пока на нём по какой-либо причине не появится потенциал.


Когда цепи исправны, через него не проходят никакие токи, кроме фоновых. Как только на металлическом корпусе бытового электроприбора появляется потенциал, начинается его стекание на землю, через заземляющий контур.

При этом на нетоковедущих частях из металла, напряжение должно снижаться до более низкого уровня. Если нарушается целостность контура заземления или соединённых с ним проводов, напряжение на них остаётся высоким со стороны источника тока, что представляет значительную опасность для человека.

Периодичность замеров сопротивления защитного заземления регламентируется ПТЭЭП (1 раз в 6 лет). Кроме того, делается регулярная проверка его исправности.

Для проверки соответствия ЗУ, нормативным требованиям, производится замер его сопротивления растеканию тока Rз. В идеале оно должно быть равно нулю, но на практике это невозможно.

Факторы учета сопротивления

Величина (Rз) складывается из нескольких составляющих:

  1. Сопротивление металла, закопанного в грунт электрода и на его контакте с проводником. В связи с хорошей проводимостью применяемых материалов (сталь с медным покрытием или медь), а также при надёжном соединении с проводом, величинами сопротивлений обычно пренебрегают.

  2. Сопротивление между грунтом и штырём, которым можно пренебречь, если электрод сидит плотно, а его место контакта свободно от краски и других диэлектрических покрытий. Со временем сталь корродирует, и электропроводность электрода снижается. Поэтому целесообразно использовать омедненные стержни и периодически измерять сопротивление растеканию. Места сварки покрываются лаком, чтобы уменьшить коррозию.
  3. Сопротивление грунта – это основной фактор, который следует учитывать. Особенно это относится к близлежащим слоям. По мере удаления их, сопротивление снижается, и на определённом расстоянии принимается за нулевое.
  4. Неоднородность электрических характеристик грунта трудно учесть. Поэтому важным является замер фактического Rз. На одиночную простую конструкцию заземлителя, преимущественно влияют поверхностные слои грунта, а на контурную – глубинные.

Объект испытания

Проверке подвергаются искусственные ЗУ, которые выполняются в виде одиночных электродов или контуров. К ним не относятся PEN,-и PE-проводники, входящие в виде отдельной жилы в состав кабеля.

Искусственные ЗУ выполняются в виде:

  1. Углублённого заземлителя из горизонтальных стальных полос или круга, уложенных на дно котлована.
  2. Вертикального заземлителя из угловой стали – вбиваемых стержней или труб. Они размещаются в грунте на дистанции не меньше их длины и объединяются в контур горизонтальными полосами или круглым стержнем на глубине около 0,5 м. Распространённой конструкцией в частном доме, и не только в нём, является треугольная. Обвязка для заземляющих электродов учитывается в расчётах.

Элементы меняются, если их коррозия превышает 50%. На электроустановках проверка производится выборочно, где действие коррозии максимально. Там обязательно проверяются заземления нейтралей. На ВЛ контролируется не менее 2% опор. При этом выбираются участки с наиболее агрессивным грунтом.

Значения Rз для каждого вида заземлителя приводятся в ПУЭ и таблице.

Максимально допустимое значение Rз

Характеристика электроустановки Удельное сопротивление грунта, Ом*м Сопротивление заземляющего устройства, Ом
Искусственный заземлитель, к которому присоединяются нейтрали генератора и трансформаторов, а также повторные заземлители нулевого провода (в том числе во вводах помещения) в сетях с заземленной нейтралью на напряжение, В:
660/380 до 100 | свыше 100 15 | 0,5*p
380/220 до 100 | свыше 100 30 | 0,3*p
220/127 до 100 | свыше 100 60 | 0,6*p
Примечание: p — удельное сопротивление грунта.

Измерение сопротивления заземлителя

Методика основана на законе Ома для определённого места электроцепи. Величина сопротивления вычисляется, если к ЗУ от источника напряжения подать ток и замерить его с высокой точностью. В принципе это можно сделать мультиметром, но погрешность здесь будет высокая. Поэтому применяются только приборы высокой точности.

Методы измерения сопротивления заземлителя:

  1. Метод пробного электрода. Замеры производят до монтажа заземляющего устройства.

Перед тем как проверить заземление, на испытуемом участке в грунт забивают одиночный пробный заземлитель, равный по длине будущему устройству и выступающий над землёй.

Затем тестером измеряют Rз, после чего по его величине и геометрическим размерам стержня рассчитывают удельное сопротивление земли (ρ), в Ом:

ρ = 2πRзl/[ln(4l/d)], где

  • l – длина стержня, м;
  • d – диаметр стержня, м.
  1. Метод вертикального электрического зондирования (ВЭЗ). На рисунке ниже изображена четырёхэлектродная схема измерения.

К наружным стержням (1) и (2) подключают ЭДС, а разность потенциалов замеряют на расположенных внутри стержнях (3) и (4).

  1. Метод вольтметра и амперметра. При измерениях собирается цепь из заземляющих устройств, основного (потенциального, П) и дополнительного (токового, Т) электродов, забиваемых в грунт.

Затем к ЗУ и Т прикладывается стабилизированное напряжение с последующим измерением амперметром (А) проходящего тока. К зачищенной поверхности контура защитного заземления и потенциальному электроду подключается вольтметр (V), которым измеряется падение напряжения между ними.

Электрод П располагается в зоне нулевого потенциала грунта и должен находиться на достаточно большом расстоянии от ЗУ и электрода Т.

Сопротивление заземления находится как частное, от деления измеренного значения напряжения на величину тока. Полученный результат можно принять как окончательный, в первом приближении. Уточнённый расчёт получится, если учитывать сопротивление соединительных проводов.

На рисунке выше изображена принципиальная электрическая схема и как собираются схемы измерения Rз с прибором МС-08. Первая из них отличается большей точностью, а во второй следует из показаний прибора вычесть сопротивления проводников, соединяющих заземлитель с клеммами (I1) и (E1).

Как видно из схем на рисунке выше, расстояния между заземлителями требуются большие и не всегда в городских условиях метод можно применить. Кроме того, показания прибора искажают металлические коммуникации.

  1. Компенсационный метод. Для измерений применяют высокоточные промышленные приборы.

Общим с предыдущим методом является аналогичное заглубление двух электродов. Их размещают на одной линии, захватывая исследуемый контур заземления.

В качестве прибора используется измерительный зонд, который подключают к дополнительным электродам 1 и 3, а также как можно ближе к шине 2 контура заземления.

Переменная ЭДС подаётся через заглублённые в грунт, дополнительные стержни, землю, соединительные проводники и первичную обмотку трансформатора тока (ТТ). На его вторичной обмотке появляется ток (I1). Реохордом «б» выставляется равенство напряжений U2 = U1. Оно достигается путём установки на ноль показаний прибора V, подключённого к реохорду через трансформатор ИТ.

Искомая величина Rз находится из системы уравнений:

U1=I1∙ Rз;

U2=I2∙ Rаб;

U1= U2;

I1=I2.

После решения системы устанавливается, что Rз=Rаб. Остаётся определить величину Rаб. Для этого на подвижной части ручки устанавливается стрелка, служащая указателем значения Rаб, на неподвижной шкале.

Таким образом, путём вращения ручки реостата и установки показаний прибора V на ноль, по положению стрелки реохорда можно найти Rз.

  1. Замеры Rз с использованием калиброванного резистора. Электричество подаётся на ЗУ напрямую с фазы питания через охлаждаемый калиброванный резистор Rкр.

Ток через ЗУ определяется по измеренному напряжению Uкр на резисторе и известной величине сопротивления.

Падение напряжения на ЗУ находится по разности напряжений (рабочего и на резисторе): Uз = Uф — Uкр.

Сопротивление заземляющего устройства находится из формулы: Rз = Rкр (Uф — Uкр)/Uкр. Здесь не учитываются сопротивления проводников, а также сопротивление заземления нейтрали трансформатора на подстанции, поскольку их значениями можно пренебречь. Погрешность метода составляет около 10%.

Измерения производят путём отключения провода PE сети от заземлителя, на который затем подаётся фазное напряжение через калиброванное сопротивление типа НР-64/220 (46 Ом). Выделяемая мощность составляет сотни ватт, что требует его водяного охлаждения.

Преимуществом метода является его простота: не требуются тяжёлые электроды и многометровые провода, а измерения производятся на небольшом участке земли. Он является эффективным в городских условиях, например, в многоэтажном доме, где проходит множество коммуникаций.

  1. Измерение Rз с применением токовых клещей. Современный метод измерения производится без отключения заземляющей цепи.

Он удобен и в доме, и на предприятии. При этом учитываются сопротивления соединений, что повышает точность замеров. На рисунке ниже представлена схема измерения и её эквивалентная схема.

В цепь Rз подаётся напряжение Е и по ней проходит ток. Измерив его величину клещами, можно получить все исходные данные для расчёта Rз.

Сопротивление находится из соотношения Rз = E/I. Напряжение Е известно, а сопротивление находится по данной формуле, если измерить величину тока с помощью клещей.

Приборы для измерения

С развитием энергетики, приборы измерения совершенствуются в плане удобства использования и получения более точных результатов. Практически все аналоговые приборы заменены на цифровые с микропроцессорами.

Процессы замеров стали проще, точность повысилась, а результаты сохраняются в памяти. Стоимость приборов высокая. Периодичность измерений составляет 1 раз в 6 лет, и приобретать для этого прибор не стоит.

Кроме характеристик измерительных приборов, важно качественно подготовить шинопровод к подключению контактирующих с ним проводников. Места соединения очищаются от коррозии, а также применяют струбцины с винтовыми зажимами, чтобы продавить верхний слой металла в месте контакта проводника с электродом.

Измерения выполняются с отключением главного автомата щита управления или отсоединением от заземлителя РЕ-проводника. Иначе, может возникнуть аварийный режим с прохождением тока короткого замыкания через тестер и ЗУ.

Прибор МС-08 применяется для замеров, методом амперметра и вольтметра, где устанавливаются 2 электрода на расстоянии более 25 м от заземлителя. Ток в цепи создаётся генератором, приводимым во вращение вручную через редуктор.

После сборки схемы и подключения прибора, сопротивления вспомогательных заземлителей компенсируются. Если этого сделать не удаётся, вокруг дополнительного заземлителя увлажняется грунт. Измерения производят на разных диапазонах, пока тестер не даст заметные показания. Они не должны колебаться после окончательной установки.

Прибор М-416 удобен для измерений, так как имеет небольшой вес, шкалу с вращением и фиксацией измеренных значений, собран на полупроводниках с автономным питанием.

Тестер СА 6415 с токовыми клещами и ЖК-дисплеем позволяет измерять заземление без применения дополнительных электродов. При этом нет необходимости отключать РЕ-проводник от электродов. Трудоёмкость метода значительно меньше по сравнению с другими.

Измерение сопротивления. Видео

Как проводится измерение сопротивления контура заземления опоры, рассказывается в этом видео.

Измерение сопротивления заземления должно производиться при благоприятных погодных условиях. Это делается в середине лета или зимы, когда грунт обладает максимальным сопротивлением. Периодичность измерения Rз в частном доме и на предприятиях определяется в соответствии с ПТЭЭП.

Источник: elquanta.ru

Нормы сопротивления заземления

Идеальное сопротивление заземления равно нулю, но таких данных добиться практически невозможно. Поэтому было создано нормирование данных величин, опубликованных в правилах устройства электроустановок (ПУЭ). Данные нормы сопротивления подходят для грунта, способствующего наилучшему растеканию электрического тока – глина, суглинок, торф. Также показатель сопротивления зависит от погоды и климата на местности монтажа защитного устройства.

Так, согласно ПУЭ для жилищ частного сектора, следует иметь заземление локализованного значения с указанными данными составляющими не более 30 Ом., при подключении электрической сети 220/380 Вольт.

В не зависимости от погодных условий значение сопротивления должно соответствовать таким показателям: 2 Ома для 380 Вольт однофазного тока и 660 Вольт трехфазного тока; 4 Ома для 220 Вольт однофазного тока и 380 Вольт трехфазного тока; 8 Ом для 127 Вольт однофазного тока и 220 Вольт трехфазного тока.

Заземлителю, проходящего вблизи от нейтрали трансформатора или генератора, должно принадлежать сопротивление: не более 15 Ом для напряжения 380 Вольт однофазного тока и 660 Вольт трехфазного тока; не более 30 Ом для напряжения 220 Вольт однофазного тока и 380 Вольт трехфазного тока; не более 60 Ом для напряжения 127 Вольт источника однофазного тока и 220 Вольт источника трехфазного тока.

Какое должно быть сопротивление заземления

Одним из основных критериев продуктивности любого помещения защитного заземления является сопротивление заземления. Это значение показывает противодействие беспрепятственному распространению электрического тока в слоях земли, поступающего в грунт через защитное устройство – заземлитель.

В лучшем случае этот показатель сопротивления равен нулю. При данной величине электрический ток поглощается полностью. В практическом плане такого показателя добиться невозможно. Для правильной работы электрооборудования и надежной защиты граждан допускается конечное значение 0,5 Ом для всего защитного устройства.

Переходное сопротивление заземления

нормы контура заземленияСхема заземления включает в себя множество элементов, соединенных между собой. В случае обрыва, распайки швов или окисления соединений данный показатель начинает увеличиваться, что приводит к ухудшению эффективности защитной системы. При существовании большой массы потребителей и наличие значимых соединений в заземляющей схеме данная величина возрастает.

В промежутках соединений элементов заземления определяют переходное сопротивление. Для контактирующего соединения допускается максимальное значение 0,05 Ом. В случаях, когда данный показатель выше 0,05 Ом, это говорит о неработоспособности системы. Такие неисправности необходимо устранять, так как увеличенное сопротивление, делает защитные функции системы ничтожными.

Переходное сопротивление в заземляющем устройстве называется металлосвязью. Она характеризует соединение в цепи между заземляющим устройством и заземляемым электрооборудованием. Дефекты, возникающие в металлосвязи, ведут к короткому замыканию. Цель замеров сопротивления металлосвязи — определение наличия повреждения на отрезке участка электрооборудования и заземляющего устройства.

Основной характеристикой металлосвязи является сопротивление измеряемой части заземляющей системы, которое должно соответствовать 0,05 Ом. В ходе проверки исследуются надежность и правильность соединений посредством визуального осмотра. Качество сварочных швов проверяется ударом тяжелого молотка. В ПУЭ оговаривается, что заземляющие проводники должны быть надежно скреплены, что обеспечивает целостность электрической линии.

Заземляющие проводники, сделанные из стали, требуется соединять при помощи сварки. Данные участки должны быть расположены так чтобы предоставить беспрепятственный доступ для осуществления проверок, измерений, осмотров в дальнейшем времени.

Согласно требованиям ПУЭ соединения проводников и нейтралей присоединяются посредством сварки или болтов. Для присоединения электроприборов, которые постоянно монтируются, употребляются гибкие проводники.

Испытания сопротивления заземления

замер заземленияСуществуют приемо-сдаточные и эксплуатационные испытания.

Первые на основании ПУЭ проводятся после окончания работ по установке защитного заземления. Эксплуатационным испытаниям, регламентируемым ПТЭЭП, подвергаются электроустановки, которые сданы в эксплуатацию. При данном виде испытаний, обследования проводятся на протяжении всего периода работы защитного устройства.

В соответствии с правилами измерение сопротивления заземляющей конструкции должно осуществляться один раз в шесть лет. Если есть подозрение на повреждение заземляющего устройства, такое испытание проводится чаще.

Замеры переходного сопротивления проходят не менее одного раза в год.

Кроме измерения сопротивления также при испытаниях должен происходить тщательный осмотр всех видимых частей заземляющего устройства.

Раз в 12 лет необходимо проводить детальный осмотр с частичным вскрытием грунта в местах наиболее вероятного появления коррозии. Если грунт в данном районе ведет себя агрессивно, то количество таких осмотров увеличивается.

Также один раз в шесть лет проводится проверка состояния предохранителей.

Если в результате проверки было выявлено более 50% повреждений, такую защитную конструкцию следует заменить в обязательном порядке.

Источник: uzotoka.ru


Categories: Заземление

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector