Нормальное функционирование и безопасность различных электрических сетей, установок, электрооборудования промышленного и бытового назначения во многом зависит от точного проектирования и грамотного выполнения системы заземления. Этот технологический метод представляет собой комплекс устройств, в котором часть электроцепи или оборудования намеренно соединяется с грунтом. Именно он защищает человека от поражения током при контакте с электрическими приборами.

Уровень качества системы заземления характеризуется ее сопротивлением. Этот показатель определяет силу противодействия току, поступающему в почву через заземлитель. На величину сопротивления влияют многие факторы: материалы заземляющих устройств, тип конструкции, особенности грунта.

Какое бывает заземление

Нормативными документами разрешено использовать несколько типов систем заземления:

  1. TN (TN-C, TN-S, TN-C-S).
  2. TT.
  3. IT.

Названия обозначаются сочетанием первых букв нескольких слов, позаимствованных из французского и английского языка. Они имеют следующие обозначения, подходящие в данном случае:

  • земля (T);
  • нейтраль (N);
  • изолировать (I);
  • комбинированный (C);
  • раздельный (S).

Первая буква в названии определяет виды заземления источника энергии. Вторая — указывает на потребителя. По третьей букве судят о типе обустройства нолей — рабочего и защитного проводника.

Система TN и ее разновидности

В схемах TN при подключении нолей используется нейтраль источника, наглухо соединенная с заземлителем. Все элементы сети, проводящие электроэнергию, подключаются к общему нолю, который соединен с нейтралью.

Существует несколько типов нулевых проводников:

  • функциональный (N);
  • защитный (PE);
  • комбинация проводников (PEN).

Система заземления нейтрали TN имеет несколько подвидов, отличающихся типом подключения N и PE.

Подсистема TN-C

В TN-C проводники с защитной и рабочей функцией совмещены в PEN по всей длине. Производится так называемое защитное зануление. Классическая схема состоит из трех фазных и одного нулевого провода. К нейтрали, заземленной наглухо, подключаются открытые токопроводящие металлические элементы с помощью дополнительных нолей.

Плюсы:

  • простой монтаж;
  • экономичность, за счет выполнения двух функций одним проводом.

Минусы:

  • при нарушении целостности проводника потребители могут оказаться незащищенными.

Подобные типы заземления устарели и не используются в новых постройках. Их можно встретить в старых домах или в уличном освещении.

Подсистема TN-S

TN-S более современна и безопасна. Нулевые проводники в ней разделены. Каждый из них выполняет свое предназначение: рабочее или же защитное. N и PE разделяются на подстанции, ноли подключаются через глухо заземленную нейтраль энергоисточника. Трехфазное напряжение подается посредством пяти проводов, в однофазном участвует три провода. Состояние контура заземления в данной системе не нуждается в контроле.

Плюсы:

  • высокая безопасность;
  • эффективная защита от поражения электричеством;
  • отсутствие помех на силовых линиях пользователей.

Минусы:

  • дорогостоящий монтаж.

TN-S применяется в новых зданиях и телекоммуникационных сетях.

Подcистема TN-C-S

В TN-C-S проводник PEN в определенном месте (обычно в главном распределительном щите при входе в здание) разветвляется на отдельные N и PE проводники. В целях бесперебойной работы в системе устанавливается дополнительный заземлитель после места разделения. При однофазном питании электроснабжение выполняется с помощью кабеля из трех жил. При трехфазном питании – из пяти жил.

Плюсы:

  • простой монтаж конструкции;
  • высокий уровень безопасности;
  • выгодное соотношение «цена/качество».

Минусы:

  • высокая степень риска электротравм при нарушении изоляции PEN проводника вне здания.

Эта система защитного заземления считается одной из самых оптимальных для жилых зданий.

Система TT

Системы заземления TT актуальны при несоответствующих условиях безопасности для предыдущих видов. Специалисты рекомендуют применять их в случае, когда техническое состояние воздушных линий электропередач далеко от идеала.

Данной конструкцией предусмотрено независимое заземление защитного и рабочего нолей через отдельные контуры. Связь между проводниками запрещена. Такой подход помогает изолировать от электросетей все металлические поверхности, способные проводить ток.

Плюсы:

  • независимость от разных повреждений линии питания.

Минусы:

  • необходимость в качественном повторном заземлении, реализации технических мер для подавления скачков напряжения по время грозы;
  • обязательность монтажа прибора, выполняющего защитное отключение.

Такие виды заземления целесообразны для небольших жилых помещений, металлических блок-контейнеров, строительных бытовок.

Система IT

IT отличается изолированной нейтралью. Она не соединяется с землей, или же заземляется через специальное устройство, обладающее большим сопротивлением. Открытые токопроводящие детали электрических установок заземляются через отдельные контуры. Конструкция практически исключает недостатки в виде появления нежелательных вихревых токов либо магнитных полей.

Существует два вида схем IT. В стандартном варианте проводник N отсутствует. Во второй схеме он предусмотрен, а вместе с ним применяются устройства контроля изоляции. В итоге к потребителю может приходить три или четыре (3 фазы + рабочий ноль) проводника от трансформаторной подстанции.

Плюсы:


  • повышенная безопасность для потребителя;
  • максимальная защита оборудования;
  • простой монтаж;
  • надежная защита от межфазных замыканий при работе с большими токами.

Минусы:

  • сложная схема контроля токов утечки, требующая вмешательств потребителя.

IT используется в лабораториях, промышленных предприятиях, больницах.

Технологии устройства заземления

Контур заземления устанавливается по одной из двух технологий:

  • Традиционная.
  • Модульно-штыревая.

Традиционная технология

По правилам традиционной технологии заземление выполняется из черного металла. В этих целях могут быть использованы полоски, трубы, уголки. Для начала выбирается подходящее для оборудования заземляющего контура место в почве. Затем на расстоянии 5 м друг от друга вкапываются в грунт металлические электроды (на глубину около 3 м в зависимости от объекта). Далее они собираются в общий контур с помощью сварки и стальной полоски.

Из-за трудоемкой установки и коррозии, свойственной металлу, сейчас чаще применяется более современная модульная технология.


Модульная технология

Для обустройства модульно-штыревой заземляющей технологии применяются металлические стержни с медным покрытием. Они вбиваются в грунт вертикально на глубину до 1 м. По краям нарезается резьба, которую тоже покрывают медью. Металлические элементы конструкции соединяют латунными муфтами. Для соединения горизонтальных и вертикальных частей берут латунные зажимы. Все детали обрабатываются специальной защитной пастой от коррозии.

Модульно-штыревая технология не нуждается в трудоемком монтаже и сварке. Она подходит для любого типа грунта и имеет больший срок службы, чем традиционная.

Технически совершенная система заземления здания обеспечивает надежную и безопасную работу электроприборов для потребителя. Во многих случаях правильное заземление может спасти жизнь человека.

electromanual.ru

Категории

Наша земля является колоссальным поглотителем электроэнергии любого происхождения, и это ее качество используется человеком для обеспечения безопасности при использовании электрических приборов.

Типы систем заземления

Все заземлители делятся на две категории: естественные и искусственные. К первым относятся все металлические изделия, находящиеся в соприкосновении с землей. Это арматура в железобетонных конструкциях, в буронабивных сваях, канализационные, водопроводные трубы и прочие электропроводные предметы.


Но проводимость земли в разных местах сильно различается, зависит от типа почвы, места расположения, поэтому нормировать ее проводимость в местах растекания электрических зарядов от этих предметов не представляется возможным. Кроме этого, использование арматуры, труб, металлических ферм приводит к ускоренной коррозии и ухудшению их прочностных характеристик. В связи с этим, запрещается использовать естественное заземление при эксплуатации электроприборов и оборудования.

Государственными и международными стандартами разрешено применение только искусственного заземления. В этом случае оборудование через специальную шину присоединяется к заземлителю с допустимой нормированной проводимостью.

Виды искусственного заземления

Если рассматривать по функциональности, то существует защитное и рабочее заземления. Первое обеспечивает безопасность людей при использовании электроприборов, а второе – нормальную работу электроустановок. По типу заземления нулевого провода делятся на системы с изолированной (IT) и глухозаземленной (TN) нейтралью. На рисунке показаны все типы заземления.


В системе IT нулевой провод генератора электроэнергии не имеет гальванической связи с заземлением, а токопроводящие части намеренно заземляются. Допускается между заземлителем и нейтралью установка дугообразующего устройства или приборов с большим внутренним сопротивлением.

Система заземления TN самая распространенная. В ней нулевой провод генератора электроэнергии глухо заземлен, а токопроводящие части с помощью специальных шин присоединяются к нему.

Типы систем заземления

Она подразделяется еще на четыре подвида:

  • систему заземления TN-С, в ней рабочий и защитный нулевые провода представляют собой один проводник от источника до потребителя энергии;
  • систему TN-S, в ней рабочий и защитный нулевые провода представляют собой два проводника от источника до потребителя энергии;
  • систему заземления TN C S, в ней рабочий и защитный нулевые проводники представляют собой один проводник, начиная от генератора электроэнергии, затем на каком-то участке разделяются на два;
  • систему ТТ, в ней нулевой провод генератора электроэнергии глухо заземлен, а открытые токопроводящие части потребителя электроэнергии заземлены через собственное заземление, которое никак не связано с нулевым проводом генератора электроэнергии.

Первый символ аббревиатуры сообщает, в каком состоянии относительно земляного слоя находится нулевой провод производителя электроэнергии (генератора, трансформатора).

Т – заземленный нулевой проводник.

I — изолированный нулевой проводник.

Второй символ информирует о состоянии токопроводящих частей относительно заземления.


Типы систем заземления

Т — токопроводящие части заземлены, состояние нулевого провода генератора электроэнергии значения не имеет;

N — токопроводящие части присоединены к глухозаземленному нулевому проводнику источника электропитания.

Символ после N показывают, как соотносятся рабочий и защитный нулевые проводники.

S (separated)— разделены рабочий (N) и защитный (PE) нулевые проводники.
С (combined)— объединены в (PEN) проводе N и PE проводники.

Системы с глухозаземлённым нулевым проводом

Система зануления TN C впервые была применена компанией AEG в начале ХХ века. Классическим ее видом является обычная схема электроснабжения с тремя фазными и одним нулевым проводом. Он одновременно является функциональным (N) и защитным (PE) «нолем», наглухо заземленным. С ним соединяют все корпуса и доступные токопроводящие части устройств. Самая большая проблема у системы возникает при обрыве нулевого провода, на токоведущих частях корпусов устройств появляется линейное напряжение в 1,73 раза больше фазного. При нормальной работе, попадание фазного провода на корпус приведет к короткому замыканию, но, благодаря специальным устройствам, произойдет мгновенное отключение, что оградит людей от удара током. В странах СНГ схема заземления TN C используется в наружном освещении и в зданиях, построенных до девяностых годов ХХ века.


Система TN-S

Самая надежная и безопасная система заземления TN-S была создана перед Второй мировой войной. Главная ее особенность заключается в раздельном использовании рабочего и защитного нулевого проводников, начиная от генератора электроэнергии. При трехфазном электроснабжении используются пять проводов, однофазном — три. Электробезопасность обеспечивается за счет практического дублирования защитного проводника. Независимо от места обрыва N проводника, система оставалась относительно безопасной. Позже, благодаря этому способу заземления были разработаны дифференциальные автоматы.

Типы систем заземления

ГОСТ Р50571 и новая редакция ПУЭ предписывает при электроснабжении новых объектов, при капитальном ремонте зданий использовать систему зануления TN-S. Но ее распространению мешает высокая стоимость и то, что вся российская энергетика работает по четырехпроводной системе электроснабжения.


Система TN-C-S

Компромиссной стала система заземления TN-C-S, которая использовала преимущества TN-S, но по стоимости стала значительно дешевле. Все дело в том, что с трансформатора подача электроэнергии происходит с применением объединенного нуля «PEN», наглухо заземленного. При входе на объект PEN провод разделяется на защитный и рабочий нуль, но расщепление возможно и раньше ввода в сооружение. При обрыве провода PEN на участке генерирующая станция — здание, на корпусах электроустановок, появится опасное напряжение. Поэтому в системе заземления TN C S нормами предусмотрены особые меры защиты проводника PEN.

Система TT

Самый экономичный способ доставки электроэнергии на селе по воздушным линиям. Использование системы TN-S, как наиболее безопасной, обходится дорого, у систем заземления TN-C и TN-C-S сложно обеспечить надежную защиту нулевого проводника PEN. Поэтому часто используется система TT, с заземленным нулевым проводом у источника электропитания. При трехфазном электроснабжении система работает по четырехпроводной схеме с одним нулевым проводником.

Типы систем заземленияОколо приемника электроэнергии делается местное заземление, к которому присоединяют токоведущие части и корпуса устройств. В случае обрыва нулевого провода, а вне города это нередкое явление, на корпусе устройства не возникает опасного напряжения благодаря местному заземлению. В городской черте система заземления TT используется при электроснабжении временных сооружений, при этом обязательно должны быть установлены устройства защитного отключения и проведена грозозащита.

Система IT

Это система, в которой имеется полностью изолированный от земли нулевой провод или соединенный с ней через высокоомное сопротивление, а также наличие у потребителя электроэнергии собственного защитного заземления. Все токопроводящие части оборудования при этом надежно заземляются. Система IT применяется в электроустановках зданий с повышенными требованиями безопасности, например, в больницах для медицинского оборудования, в шахтах, карьерах. Мобильные электростанции тоже используют изолированную нейтраль, что позволяет использовать подключенные к ним электроприборы без заземления. Раньше система IT широко использовалась и в энергоснабжении деревянных домов. В Советском Союзе сети напряжения 127/220 В долгое время использовались с изолированным нулевым проводом, это было связано с отсутствием заземления в домах. С началом панельного строительства от нее отказались.

Сами заземляющие устройства прежде выглядели как набор трехметровых стальных стержней вкопанных в землю на расстоянии нескольких метров, вершины которых соединялись стальной полосой. Получившийся огромный контактный элемент проверялся на сопротивление, если превышал нормированную величину, то вкапывались дополнительные стержни, пока не получали необходимый результат. Недостатком его были большие занимаемые площади и недостаточная стойкость к коррозии. Современные заземляющие устройства лишены этих недостатков. Они строятся на основе омедненных стальных стержней, которые могут соединяться между собой при помощи латунных муфт и забиваться на глубину до 50 м. По верху соединяются медной полосой. За счет такой конструкции могут устанавливаться на любых грунтах, не требуют земляных работ и занимают мало площади.

Вот такими заземляющими устройствами и системами заземления обеспечивается электробезопасность людей.

evosnab.ru

Задачи для заземляющих систем

Главные задачи систем безопасности, работающих на принципе заземления:

  1. Безопасность для жизни человека, с целью защиты от поражения электрическим током. Предусматривает альтернативный путь прохождения аварийного тока, чтобы он не нанес повреждение пользователю.
  2. Защиты зданий, машин и оборудования в условиях сбоя электросети, чтобы открытые токопроводящие части оборудования не достигли смертельного потенциала.
  3. Защита от перенапряжения из-за удара молнии, который может привести к опасным высоким напряжениям в электрической распределительной системе или от непреднамеренного контакта человека с линиями высокого напряжения.
  4. Стабилизация напряжения. Существует много источников электроэнергии. Каждый трансформатор можно рассматривать, как отдельный источник. У них должна быть общая доступная точка сброса негативной энергии. Земля является единственной такой токопроводящей поверхностью для всех источников энергии, поэтому она была принята в качества универсального стандарта для сброса тока и напряжения. Если бы не было такой общей точки, то чрезвычайно трудно было бы обеспечить безопасность в энергосистеме в целом.

Требования к системе заземления:

  • Она должна иметь альтернативный путь для протекания опасного тока.
  • Отсутствие опасного потенциала на открытых токопроводящих частях оборудования.
  • Должна иметь низкий импеданс, достаточный для обеспечения необходимого тока через предохранительное устройство, чтобы он отключил питание (<0,4 сек).
  • Должна иметь хорошую коррозионную стойкость.
  • Должна быть способной рассеивать большой ток короткого замыкания.

Описание систем заземления

Процесс соединения металлических частей электрических аппаратов и оборудования с массой земли металлическим устройством, имеющим незначительное сопротивление, называется заземлением. При заземлении токоведущие части приборов непосредственно соединены с землей. Заземление обеспечивает обратный путь для тока утечки и, следовательно, защищает оборудование энергосистемы от повреждений.

Когда неисправность возникает в оборудовании, во всех трех его фазах образуется дисбаланс тока. Заземление разряжает ток повреждения на землю и, следовательно, восстанавливает рабочий баланс системы. У этих защитных систем есть несколько преимуществ, таких как устранение перенапряжения через разрядку ее на землю. Заземление обеспечивает безопасность оборудования и повышает надежность обслуживания.

Метод зануления

Зануление означает подключение несущей части оборудования к земле. Когда неисправность возникает в системе, создается опасный потенциал на внешней поверхности оборудования, и любой человек или животное, случайно прикоснувшись к поверхности, могут получить удар током. Зануление сбрасывает опасные токи на землю и, следовательно, нейтрализует токовый удар.

Оно также защищает оборудование от молниеносных ударов и обеспечивает путь разряда от разрядников и других гасящих устройств. Это достигается путем соединения частей установки с землей заземляющим проводником или электродом в тесном контакте с почвой, размещенной на некотором расстоянии ниже уровня грунта.

Разница между заземлением и занулением

Одним из основных различий между заземлением и занулением является то, что при заземлении несущая токопроводящая часть соединена с землей, тогда как при занулении поверхность приборов соединяются с землей. Другие различия между ними объясняются ниже в виде сравнительной таблицы.

Сравнительная таблица

Основы для сравнения

Заземление

Зануление

Определение

Токопроводящая часть соединена с землей

Корпус оборудования подключен к земле

Местонахождение

Между нейтралью оборудования и землей

Между корпусом оборудования и землей, который помещен под земную поверхность

Нулевой потенциал

Не имеет

Есть

Защита

Защитить оборудование энергосистемы

Защитить человека от поражения электрическим током

Путь

Указывается путь возврата к текущему заземлению

Разряжает электрическую энергию на землю

Типы

Три (сплошное сопротивление)

Пять (труба, плита, заземление электрода, заземление и зануление)

Цвет провода

Черный

Зеленый

Использование

Для балансировки нагрузки

Для предотвращения поражения электрическим током

Примеры

Нейтраль генератора и силового трансформатора подключенная к земле

Корпус трансформатора, генератора, двигателя и т. д. подключен к земле

Защитные провода TN

Данные типы систем заземления имеют одну или несколько непосредственно заземленных точек от источника энергии. Открытые проводящие части установки подключаются к этим точкам с помощью защитных проводов.

В мировой практике используется двухбуквенный код.

Используемые буквы:

  • T (французское слово Terre означает «земля») — прямое соединение точки с землей.
  • I — ни одна точка не подключена к земле из-за высокого импеданса.
  • N — прямое подключение к нейтрали источника, который, в свою очередь, подключен к земле.

Основываясь на сочетании этих трех букв, существуют виды систем заземления: TN, TN-S, TN-C, TN-CS . Что это означает?

В системе заземления типа TN одна из точек источника (генератор или трансформатор) подключается к земле. Эта точка обычно является точкой звезды в трехфазной системе. Корпус подключенного электрического устройства подключается к земле через эту точку заземления со стороны источника.

На рисунке выше: PE — Акроним для Protective Earth — это проводник, который соединяет открытые металлические части электрической установки потребителя с землей. N называется нейтральным. Это проводник, соединяющий звезду в трехфазной системе с землей. По этим обозначениям на схеме, сразу понятно, какая система заземления относится к системе TN.

Нейтральная линия TN-S

Это система, имеющая отдельные нейтральные и защитные проводники по всей схеме электроустановок.

Защитный проводник (PE) представляет собой металлическое покрытие кабеля, питающего установки или отдельный проводник.

Все открытые проводящие части с установкой подключены к этому защитному проводнику через основную клемму установки.

Система TN-C-S

Это типы систем заземления система, в которых нейтральные и защитные функции объединены в один проводник системы.

В системе заземления нейтрали TN-CS, также известной как Protective Multiple Earthing, проводник PEN называется объединенным проводником нейтральной и заземленной частей.

Проводник PEN системы питания заземлен в нескольких точках, а заземляющий электрод расположен на месте установки потребителя или рядом с ним.

Все открытые проводящие части с установкой соединены проводником PEN с помощью главной заземляющей клеммы и нейтральной клеммы и связаны друг с другом.

Защитная схема TT

Это система защитного заземления, имеющая одну точку источника энергии.

Все открытые проводящие части с установкой, которые соединены с заземленным электродом, электрически не зависят от источника земли.

Изолирующая система IT

Система защитного заземления, не имеющая прямого соединения между токоведущими частями и землей.

Все открытые проводящие части с установкой, которые соединены с заземленным электродом.

Источник либо подключен к земле через сознательно введенный импеданс системы, либо изолирован от земли.

Конструкции защитных систем

Соединение между электроприборами и устройствами с заземляющей пластиной или электродом через толстый провод с низким сопротивлением для обеспечения безопасности называется заземлением или занулением.

Система заземления или зануления в электрической сети работает в качестве меры безопасности для защиты жизни людей, а также оборудования. Основная цель — обеспечить альтернативный путь для прохождения опасных потоков, чтобы можно было избежать несчастные случаи из-за поражения электрическим током и повреждения оборудования.

Металлические части оборудования заземлены или подключены к земле, и если по какой-либо причине изоляция оборудования не срабатывает, то высокие напряжения, которые могут присутствовать во внешнем покрытии оборудования, будут иметь путь сброса на землю. Если оборудование не заземлено, это опасное напряжение может быть передано любому, кто его коснется, что приведет к поражению электрическим током. Цепь замыкается, и предохранитель немедленно срабатывает, если токоведущий провод касается заземленного корпуса.

Существует несколько способов исполнения системы заземления электроустановок, таких как заземление провода или полосы, пластины или штока, заземление занулением или через водопровод. Наиболее распространенными методами являются зануление и устройство пластины.

Заземляющий мат

Заземляющий мат изготавливается путем соединения количества стержней через медные провода. Это уменьшает общее сопротивление схемы. Эти системы электрических заземлений помогают ограничить потенциал земли. Заземляющий мат в основном используется в месте, где должен быть испытан большой ток повреждения.

При проектировании заземляющего мата принимаются во внимание следующие требования:

  1. В случае неисправности напряжение не должно быть опасным для человека при касании токопроводящей поверхности оборудования электрической системы.
  2. Постоянный ток короткого замыкания, который может протекать в заземляющий мат, должен быть довольно большим для работы защитного реле.
  3. Сопротивление грунта низкое, чтобы ток утечки протекал через него.
  4. Конструкция заземляющего мата должна быть такой, чтобы ступенчатое напряжение было меньше допустимого значения, которое будет зависеть от удельного сопротивления грунта, необходимой для изоляции неисправной установки от человека и животных.

Электродная противотоковая защита

При такой системе заземления здания любой провод, стержень, труба или пучок проводников помещается горизонтально или вертикально в грунт рядом с защитным объектом. В распределительных системах заземляющий электрод может состоять из стержня длиной около 1 метра и располагаться в вертикальном положении в земле. При изготовлении подстанций используется заземляющий мат, а не отдельные стержни.

Трубный контур токозащиты

Это наиболее распространенная и лучшая система заземления электроустановок по сравнению с другими системами, подходящими для тех же условий земли и влаги. В этом способе оцинкованная сталь и перфорированная труба с расчетной длиной и диаметром расположены вертикально на постоянно влажной почве, как показано ниже. Размер трубы зависит от текущего тока и типа почвы.

Как правило, размер трубы для системы заземления дома имеет диаметр 40 мм и 2,5 метра в длину для обычной почвы или большей длины в случае сухой и каменистой почвы. Глубина, при которой труба должна быть зарыта, зависит от влажности грунта. Обычно труба располагается вглубь на 3,75 метра. Дно трубы окружено небольшими кусками кокса или древесного угля на расстоянии около 15 см.

Альтернативные уровни угля и соли используются для увеличения эффективной площади земли и, соответственно, для уменьшения сопротивления. Другая труба диаметром 19 мм и минимальной длиной 1,25 метра соединена в верхней части трубы GI через редуктор. Летом уменьшается влажность почвы, что приводит к увеличению сопротивления земли.

Таким образом, выполняются работы по цементному бетонированному основанию, чтобы поддерживать доступность воды летом и иметь землю с необходимыми защитными параметрами. Через воронку, соединенную с трубой диаметром 19 мм, можно добавить 3 или 4 ведра воды. Провод заземления либо GI, либо полоса провода GI с достаточным поперечным сечением для безопасного удаления тока переносится в трубу GI диаметром 12 мм на глубине около 60 см от земли.

Пластинчатое заземление

В этом устройстве системы заземления заземляющая пластина из меди размером 60 см × 60 см × 3 м и оцинкованного железа размером 60 см × 60 см × 6 мм погружается в землю с вертикальной поверхностью на глубине не менее 3 м от уровня земли

Защитная плита вставляется во вспомогательные слои древесного угля и соли с минимальной толщиной 15 см. Провод заземления (GI или медный провод) плотно крепится болтами к заземляющей пластине.

Медная пластина и медная проволока обычно не используются в защитных схемах из-за их более высокой стоимости.

Подключение заземления через водопровод

В этом типе GI или медный провод соединяются с водопроводной сетью с помощью стальной связующей проволоки, которая закрепляется на медном свинце, как показано ниже.

Водопровод состоит из металла и расположен ниже поверхности земли, т. е. непосредственно соединен с землей. Поток тока через GI или медный провод непосредственно заземляется через водопровод.

Расчет сопротивления заземляющего контура

Сопротивление одиночной полосы стержня, зарытого в землю, составляет:

R = 100xρ / 2 × 3,14 × L (loge (2 x L x L / W x t)), где:

ρ — устойчивость почвы (Ω ом),

L — длина полосы или проводника (см),

w — ширина полосы или диаметра проводника (см),

t — глубина захоронения (см).

Пример: Рассчитайте сопротивление заземляющей полосы. Провод диаметром 36 мм длиной 262 метра на глубине 500 мм в грунте, сопротивление земли составляет 65 Ом.

R — сопротивление заземляющего стержня в Вт.

r — Сопротивление грунта (Омметр) = 65 Ом.

Измеритель l — длина стержня (см) = 262 м = 26200 см.

d — внутренний диаметр стержня (см) = 36 мм = 3,6 см.

h — глубина скрытой полосы / стержня (см) = 500 мм = 50 см.

Сопротивление заземляющей полосы / проводника (R) = ρ / 2 × 3,14 x L (loge (2 x L x L / Wt))

Сопротивление заземляющей полосы / проводника (R) = 65 / 2 × 3,14 x 26200 x ln (2 x 26200 x 26200 / 3,6 × 50)

Сопротивление заземляющей полосы / проводника (R) = 1,7 Ом.

Для вычисления количества заземляющего стержня можно применять правило большого пальца.

Примерное сопротивление электродов Rod / Pipe можно рассчитать, используя сопротивление стержневых/трубных электродов:

R = K x ρ / L, где:

ρ — сопротивление земли в Омметре,

L — длина электрода в измерителе,

d — диаметр электрода в измерителе,

K = 0,75, если 25 <L / d <100.

K = 1, если 100 <L / d <600.

K = 1,2 o / L, если 600 <L / d <300.

Число электродов, если найти формулу R (d) = (1,5 / N) x R, где:

R (d) — требуемое сопротивление.

R — сопротивление одиночного электрода

N — количество электродов, установленных параллельно на расстоянии от 3 до 4 метров.

Пример: рассчитать сопротивление заземляющей трубы и количество электродов для получения сопротивления 1 Ом, резистивность грунта от ρ = 40, длина = 2,5 метра, диаметр трубы = 38 мм.

L / d = 2,5 / 0,038 = 65,78, так что K = 0,75.

Сопротивление электродов трубы R = K x ρ / L = 0,75 × 65,78 = 12 Ω

Один электрод — сопротивление — 12 Ом.

Для получения сопротивления 1 Ом общее количество требуемых электродов = (1,5 × 12) / 1 = 18

Факторы, влияющие на сопротивление земли

Код NEC требует минимальной длины заземляющего электрода длиной 2,5 метра для контакта с почвой. Но есть некоторые факторы, которые влияют на сопротивление земли защитной системы:

  1. Длина/глубина заземляющего электрода. Увеличение длины вдвое снижает сопротивление поверхности до 40 %.
  2. Диаметр заземляющего электрода. Удвоенное увеличение диаметра заземлителя снижает сопротивление грунту только на 10 %.
  3. Количество заземляющих электродов. Для повышения эффективности устанавливаются дополнительные электроды на глубину основных заземляющих электродов.

Строительство защитных электросистем жилого дома

В настоящее время земляные конструкции являются предпочтительным методом заземления, особенно для электрических сетей. Электричество всегда следует по пути наименьшего сопротивления и отводит максимальный ток от цепи в заземляющие ямы, предназначенные для уменьшения сопротивления, в идеале до 1 Ом.

Для достижения этой цели:

  1. Площадь 1,5 м х 1,5 м выкапывается на глубину до 3 м. Яма наполовину заполняется смесью древесного угольного порошка, песка и соли.
  2. GI-пластина 500 мм х 500 мм х 10 мм помещается в середину.
  3. Устанавливают соединения между заземляющей пластиной для системы заземления частного дома.
  4. Остальная часть ямы заполняется смесью угля, песка, соли.
  5. Для подключения заземляющей пластины к поверхности можно использовать две полосы GI с поперечным сечением 30 мм х 10 мм, но предпочтительной является 2,5-дюймовая труба GI с фланцем в верхней части.
  6. Кроме того, верхняя часть трубы может быть покрыта особым устройством, чтобы предотвратить проникновение грязи и пыли и засорение заземляющей трубы.

Монтаж системы заземления и преимущества:

  1. Древесный угольный порошок является отличным проводником и предотвращает коррозию металлических деталей.
  2. Соль растворяется в воде, что значительно увеличивает проводимость.
  3. Песок позволяет пропускать воду через всю яму.

Чтобы проверить эффективность ямы, убедитесь, что разность напряжений между ямой и нейтралью сетевого питания составляет менее 2 вольт.

Сопротивление ямы должно поддерживаться на уровне менее 1 Ом, расстояние до 15 м от защитного проводника.

Электрический удар

Электрический удар (электрошок) возникает, когда две части тела человека контактируют с электрическими проводниками цепи, которая имеет разные потенциалы и создает разницу потенциалов по всему телу. Тело человека имеет сопротивление, и когда оно соединено между двумя проводниками при разном потенциале, цепь образуется через тело, и будет поступать ток. Когда человек контактирует только с одним проводником, цепь не образуется, и ничего не происходит. Когда человек контактирует с проводниками цепи, независимо от того, какое в нем есть напряжение, всегда имеется вероятность получения травмы от электротока.

Оценка риска удара молнии для жилых домов

Некоторые дома имеют больше шансов привлечь молнию, чем другие. Они увеличиваются в зависимости от высоты здания и близости к другим домам. Близость определяется как тройное расстояние от высоты дома.

Для того, чтобы определить, насколько уязвимым является жилой дом для ударов молнии, можно использовать такие данные:

  1. Низкий риск. Одноуровневые частные жилые дома в близком окружении других домов одинаковой высоты.
  2. Средний риск. Двухуровневый частный дом, окруженный домами с подобными высотами или окруженный домами меньших высот.
  3. Высокий риск. Изолированные дома, которые не окружены другими структурами, двухэтажными домами или домами с меньшей высотой.

Независимо от вероятности удара молнии, правильное использовании важных компонентов молниезащиты поможет защитить любой жилой дом от таких повреждений. Системы молниезащиты и заземления требуются в жилом доме, чтобы удар молнии отводился в землю. Система обычно включает в себя заземленный стержень с медным соединением, который установлен в грунте.

При установке схемы молниезащиты в доме выполните следующие требования:

  1. Наземные электроды должны иметь длину не менее половины 12 мм и на 2,5 м в длину.
  2. Рекомендуется использовать медные соединения.
  3. Если на участке системы каменистая почва или расположены инженерные подземные линии, запрещается использование вертикального электрода, необходим только горизонтальный проводник.
  4. Он должен быть углублен на расстоянии не менее 50 см от земли и простираться не менее чем на 2,5 м от дома.
  5. Системы заземления частного дома должны быть взаимосвязаны с использованием проводника того же размера.
  6. Соединительные элементы для всех подземных систем металлических трубопроводов, таких как водопроводные или газовые трубы, должны быть расположены в пределах 8 м от дома.
  7. Если все системы уже были соединены до установки молниезащиты, требуется только привязать ближайший электрод к системе водопроводов.

Все люди, живущие или работающие в жилых, общественных зданиях постоянно находятся в тесном контакте с электрическими системами и оборудованием и должны быть надежно защищены от опасных явлений, которые могут возникнуть из-за коротких замыканий или очень высоких напряжений от разряда молнии.

Для достижения этой защиты системы заземления электрических сетей должны быть спроектированы и установлены в соответствии со стандартными государственными требованиями. По мере развития электротехнических материалов требования надежности защитных устройств повышаются.

fb.ru



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.