T3Грозозащита. Термин серьёзный, так называются устройства, защищающие оборудование от воздействия наведенных на линии связи высоких напряжений, угрожающих целостности электронных компонентов. Наводки от молний, например.

Используются несколько типов защитных элементов:

— варисторы — переменный резистор, резко уменьшающий своё  сопротивление при возрастании приложенного напряжения выше заданного уровня;

— супрессоры — ограничительные стабилитроны, открывающиеся при превышении приложенного напряжения выше заданного порога;

— газонаполненные разрядники — принцип тот же, при превышении определённого значения напряжения в керамическом баллончике с инертным газом происходит разряд и сопротивление падает до долей Ома;


— плавкие предохранители — ну предохранители они и есть, перегорают при превышении определенного значения тока.

Эти элементы в различных комбинациях встречаются в устройствах грозозащиты. Не вдаваясь в подробности внутренней схемотехники можно сказать, что принцип работы одинаков — при появлении опасного напряжения в проводной линии (как информационной, так и силовой — без разницы), эти устройства закорачивают линию на землю, тем самым снижают вероятность выгорания приборов, подключенных к этой линии. Поскольку ток при этом бывает очень большим, то элемент защиты может быстро перегреться и сгореть. За это время успеет нагреться и перегореть более инерционный плавкий предохранитель, включенный в линию последовательно. Это крайний случай, обычно они успешно гасят пиковые наводки и живут долго и счастливо. До близкого удара молнии. Ну тут уж как повезёт.

Не буду рисовать схем — и так всё понятно, кроме того, схемки эти нарисованы в главе «Защитное заземление в системах видеонаблюдения». Устройства грозозащиты включаются разрыв линии и через отдельный провод подключаются к ближайшей «земле». Причём земля эта должна быть как можно более надёжна — импульсный ток может быть очень велик и сопротивление проводника должно быть минимально.

Вот пример устройства грозозащиты для коаксиального кабеля тайваньского по-моему брэнда SC&T (мышь рядом исключительно для масштаба):


Устройство грозозащиты

Отчётливо видны входной и выходной разъёмы, причём на том, который в линию, надпись CABLE (кабель), с другой стороны написано что-то вроде EQUIPMENT (оборудование, короче). Ну и земляной провод торчит с клеммой. Ничего сверхъестественного. Ставить эти разряднички следует с обеих сторон линии — камеры и регистратора.

Вот разрядник грозозащиты марки OSNOVO для линии Ethernet, мы их для уличных IP-камер ставим, да и для компьютерных сетей подойдут, если вы додумаетесь тащить линию воздушкой по улице.

T3

Здесь IN -это вход со стороны линии, там и земляная «сопелька» рядом.

С этими конкретными разрядниками неувязочка вышла — камеры были с «поевским» питанием (глава «Вот оно какое PoE»), т.е. до 57В, а напряжение отсечки разрядника — 20В. Проектировщик проворонил, за что ему было обозначено большое человеческое «мерси» и объявлена клизма. Пришлось демонтировать и менять.

Вот на такие:


T3

У них отсечка на 60 вольтах, питание нормально доходит до камер. Обратите внимание — линия, уходящая на улицу, экранированная и контактный проводок от экрана так же заземлён. Землить экран нужно всегда, причём со стороны центрального оборудования.

Насчёт экрана. Любое грамотное экранирование так же значительно снижает вероятность поражения наведенными напряжениями. Если вы тянете «воздушку» и не разорились на грозозащиту, то постарайтесь хотя бы провести её в экранированном кабеле или заземлённом металлорукаве.

Ну и ещё. Разряд молнии несёт чудовищную энергию в импульсе, поэтому последствия могут быть самыми непредсказуемыми. В большинстве случаев разрядники хорошо себя показывают, но говорить о гарантиях целостности аппаратуры не приходится. О значительном снижении аварийности — да, но не более того. На одной базе отдыха в Горном Алтае выгорело по-моему 8 камер разом, это до установки грозозащиты. После — ну 1,5 года молчат, что дальше будет не знаю. На эту тему вспоминается мрачный армейский юмор незабвенного майора Феонова с институтской военной кафедры: «ПВО — это как волосы на интимных местах, — прикрывают, но не факт, что защищают». В полной мере это можно отнести к устройствам грозозащиты.


Кроме того, следует помнить, что устройства эти недёшевы (1-2 тыс. руб). Поэтому ставить их на всё подряд совсем не обязательно. Если ваши уличные камеры расположены на стенах того же здания, где стоит регистратор, то защищать их совсем не обязательно. Защита нужна при удалённом размещении камер и особенно открытой прокладке кабеля — воздушке.

Кстати, как-то спешно выезжал на удалённый объект, а разрядников не успели закупить. Короче, купил полкармана супрессоров с порогом 6 и 20В и собирал на них разрядники по сигналу и питанию прямо на месте. Получилось раз в 5 дешевле, а результат, по моему, тот же, что от фирменных, хотя, конечно в случае близкого разряда они могут и послабее оказаться. Ну вроде жалоб не было, а грозы в тех местах сильные.

Вот, собственно, всё на этом.  Комментируйте, подписывайтесь — форма внизу.

На главную                       в начало                         к оглавлению

p.s. Раскопал в столе ещё одну железяку из этой же серии:


Устройство грозозащиты

Уже знакомый SC&T, но в данном исполнении он защищает не только видеосигнал, а ещё и оба провода электропитания +/- 12В.

Не удержался, расковырял железину. Вот она со всеми своими потрохами:

Устройство грозозащиты

Лень было искать обозначения элементов для графического редактора, от руки схемку накорябал. Схема простенькая.  Все провода, питание и видео, нагружены супрессорами, которые в случае наведения напряжения выше порогового «содят» провод на землю. В линии питания кроме того включен простенький НЧ-фильтр, создающий некоторое препятствие для высокочастотных наводок. В цепь видеосигнала такой фильтр не засунешь — сигнал посадит, поэтому там ограничились установкой дополнительных супрессоров между сигналом и сигнальной землёй (это на случай, если на провода разные напряжения наведутся) и двумя очень маленькими емкостишками, образованными «змейкой» из печатных проводников — на фото видно, если присмотреться.


Schem

Вот и вся схема. Я же на объекте, когда сочинял самопальные разрядники, просто ставил одни супрессоры. Ну и емкостишки по питанию добавлял. Брал клеммную колодку на 12 контактов , набивал прямо туда элементы, подводил провода, лишние клеммы откусывал. Всё это в коробку рядом с камерой засовывал и «типа опа». Вроде работает. И стоило рублёв 150-200 по тем временам против больше 1000 за «тайваньский аналог» ?

Здесь ещё следует обратить внимание на катушки НЧ-фильтра. Провод тонкий, это на одну камеру рассчитано. Дополнительных нагрузок на эту игрушку желательно не довешивать.

А на мою можно. Вот так вот.

Теперь точно всё.

До связи.


systemdefend.ru

Роль заземления

Защитные устройства в системах видеонаблюдения должны иметь надежное заземление видеорегистратора. В большей мере это касается и экранирующего слоя витой пары, которая передает видеосигнал. Грозозащита для видеокамер в исполнении проще – достаточно использовать модули с разрядниками, которые спасают при различных наводках из атмосферы.

При обустройстве грозозащиты нужно руководствоваться следующим:


  1. Устройство грозозащитызаземление должно обеспечить защиту только того порта, рядом с которым оно устанавливается. Значит, грозозащита должна быть смонтирована рядом с каждым из портов;
  2. заземляющая шина выполняется кабелем наибольшего возможного сечения;
  3. для линий, которые проходят снаружи, следует использовать экранированный кабель. На одном конце он заземляется жестко (напрямую в землю), а на другом мягко;
  4. видеорегистратор заземляется отдельно, потому что это напрямую влияет на качество связи.

Корпус регистратора не следует заземлять путем присоединения его к неиспользуемым проводам и экранирующей оболочке кабеля.

Для IP камер

Применение грозозащиты IP видеокамер почти всегда является обязательным, в отличие от аналоговых видеокамер. Чем больше компонентов включает в себя система видеонаблюдения, тем выше вероятность прихода ее в непригодность в результате грозы. Защита для IP видеокамер основана на защите не только устройства, с помощью которого производится видеонаблюдение, но и линий, по которым передаются сигналы управления и само питание. С целью исключения воздействия окружающей среды (температура, влажность воздуха), специальные устройства грозозащиты для видеонаблюдения помещают в термокожухи. Чтобы добиться наибольшей эффективности в защите, следует придерживаться ряда правил.


Устройство грозозащиты

Нужно обеспечить защитными устройствами все камеры наружного наблюдения. Также необходимо обезопасить все питающие и сигнальные линии.

Термокожухи, в которых будет находиться устройство грозозащиты, необходимо устанавливать вблизи от камер.

Большое значение в вопросе надежности имеет выбор оборудования. Именно его качество является залогом безопасности систем видеонаблюдения. Не следует пытаться организовать такого рода защиту своими руками, установку подобных устройств следует доверять профессионалам, потому что некорректный монтаж систем грозозащиты может привести к негативным последствиям.

Устройство грозозащиты цепей видео применяется для обеспечения их надежной бесперебойной работы. С его помощью от бросков повышенного напряжения при ударах молнии защищается оборудование.

Основные элементы

Устройство грозозащитыВ общем случае грозозащита для систем видеонаблюдения состоит из трех компонентов: громоотвода (приемника молнии), токоотвода и заземлителя. Громоотвод предназначен для перехвата разрядов молний, имеет металлическое исполнение (обычно сталь, алюминий, медь). Токоотвод является составной его частью, по которой ток молнии отводится к заземлителю. Заземлитель – это проводящая часть, которая имеет непосредственный электрический контакт с землей.


Современные устройства грозозащитыдля видеокамер, мониторов и другого оборудования представляют собой модули, встраиваемые в разрыв цепи, возле прибора, который требует защиты. Для соединения с коаксиальными проводами применяют байонет коннекторы (BNC-разъемы). Устройства способны работать не только в роли грозозозащиты, но и поддерживать напряжение на безопасном уровне, защищать от любых внешних наводок.

evosnab.ru

Заземление

Чтобы защититься от электрического разряда, который и представляет собой молния, нам необходимо решить две задачи. Первая, это поймать такой разряд. И вторая, направить его в безопасное для дома место. Таким безопасным местом является заземление. С него мы и начнем.

Грозозащита своими руками

На фото показана, пожалуй, самая популярная конструкция заземления для небольшого строения. Такая конструкция имеет три заземляющих проводника, которые расположены в углах равностороннего треугольника.
самом деле, это не догма. И количество заземляющих проводников может быть другим, и их взаимное расположение тоже. Самое главное, чтобы такая конструкция обеспечивала надежное заземление. Важнейшие параметры заземления определены такими документами, как ПУЭ (Правила устройства электроустановок, глава 1.7) и ГОСТами (ГОСТ 12.1.030–81 «Электробезопасность. Защитное заземление. Зануление», ГОСТ Р 50571.10–96 Часть 5. Глава 54. «Заземляющие устройства и защитные проводники»).

Главный параметр, который говорит о способности заземления обеспечить защиту, это сопротивление, которое не должно быть более 4 Ом. Можно встретить конструкции заземления, которые состоят всего из одного заземляющего элемента. Правда, заглубление такого проводника составляет обычно не менее 30 м, что реализовать без специальной техники на участке загородного дома невозможно. Поэтому вместо одного заземляющего элемента берут несколько. Количество элементов и их заглубление определяются конкретными условиями.

Исходя из средних условий нашей страны, обычно используют три заземляющих элемента, которые должны быть заглублены на 3–5 м. Стоит отметить, что после монтажа такой конструкции необходимо измерить сопротивление. Если оно меньше 4 Ом, то все нормально. Если же оно будет больше, то расстраиваться не нужно. Можно добавить один или несколько дополнительных элементов, которые понизят сопротивление.

Как располагать заземляющие элементы

Есть простое правило, которое говорит, что расстояние между заземляющими элементами должно быть не меньше, чем двойная глубина, на которую они забиваются. Этим и вызвана популярность равностороннего треугольника, это самый компактный вариант размещения. На самом деле, если соблюдать требование по расстоянию между заземляющими элементами, то их можно размещать даже в линию.

Грозозащита своими руками

Следующим важнейшим вопросом является выбор материала. В принципе, как подсказывает логика, можно использовать любой проводник. Однако нам следует учесть не только электрические параметры, но и то, как этот материал будет вести себя с точки зрения надежности и сохранности. В ПЭУ представлены только три материала: черная сталь, оцинкованная сталь и медь. Поэтому лучше при выборе ограничиться ими, и не брать на себя риски экспериментаторов.

В зависимости от выбранного материала требуется придерживаться минимальных требований по площади сечения. Так, для круглой черной стали диаметр должен быть не меньше 16 мм, для оцинкованной стали и меди — 12 мм. Можно использовать не только круглые заземляющие элементы. Можно взять прямоугольные или даже уголок. Интересно, что в документе уголок указан только для черной стали. Ограничения для черной стали — площадь поперечного сечения 100 мм2 при толщине стенки 4 мм. Для оцинкованной стали 75 мм2 при 3 мм, а для меди 50 мм2 при 2 мм соответственно.

При выборе материала обычно оценивается стоимость, доступность и долговечность. С точки зрения долговечности не рекомендуется использовать арматуру. Дело в том, что верхний слой арматуры каленый, что сказывается на электрических параметрах. Кроме того, арматура быстрее ржавеет. Встречается и еще одно заблуждение. Сейчас много средств защиты черных металлов от коррозии. Поэтому может появиться искушение обработать заземляющие элементы такой защитой. Делать это запрещено по простой причине — такое заземление работать не будет, мы же этим покрытием изолируем заземляющие элементы от почвы.

Определившись с материалом, встает другой вопрос, каким образом правильно соединить отдельные элементы заземления?

Грозозащита своими руками

Соединение должно быть надежным, прослужить не один год. В общем случае единого идеального решения не существует. Для черной стали обычно применяется сварка. Если сделать болтовое соединение, то каждый элемент будет подвержен коррозии, и вероятность нарушения проводимости только увеличивается. Правда, сварной шов становится самым уязвимым местом, это с точки зрения коррозии. Его вполне можно обработать защитным составом, на сопротивление всей системы это не повлияет.

Оцинкованную сталь сваривать нельзя. В месте шва защитный слой будет нарушен. С другой стороны, если использовать специальные соединители, которые изготавливаются из оцинкованной стали, то соединение будет защищено от коррозии, а значит, надежность работы будет обеспечена. Аналогичным образом поступают и с медными элементами. Существуют и технологии пайки, но встречаются они исключительно редко, да и дороги. Стоит упомянуть, что может применяться и нержавеющая сталь. Ее тоже лучше не сваривать, а использовать болтовое соединение. И нужно отметить, что в ПЭУ этот материал не рассматривается.

Грозозащита своими руками

Материал подобрали, с соединениями определились, можно приступать к монтажу. Начинать нужно с разметки. Выбираем место для размещения заземляющих элементов. Тут нужно помнить, что ближайший элемент заземления должен быть не менее 1 м от фундамента. Дальше тоже не нужно, мы же еще должны соединить заземление с токоотводом. В местах размещения заземляющих элементов копаем ямы глубиной 0,5–1 м, потом эти ямы соединяем канавами такой же глубины. Заземляющие элементы длиной около 3 м можно забить кувалдой. Впрочем, все зависит от типа почвы.

Далее соединяем вертикальные элементы между собой. Для соединения обычно используется лента, только не забываем о требовании к площади поперечного сечения и толщине пластины. После того как сборка заземления выполнена, нужно проверить его целостность и организовать надежное соединение с токоотводом. Потом нужно засыпать землей, которую желательно уплотнить.

Да, перед засыпкой неплохо бы замерить сопротивление. О том, как это сделать, мы поговорим ниже. А пока помним, что если сопротивление будет больше 4 Ом, нужно подумать, где разместить еще один заземляющий элемент.

Токоотвод

На первый взгляд, элемент несложный, но на него возложено решение важнейшей задачи — доставка электрического разряда от молниеприемника до заземления. Токоотвод должен быть надежным и безопасным. Надежный — это значит, что при прохождении электрического тока он не разрушится, а безопасный — при прохождении электрического тока не будет нанесен вред как самому дому, так и оборудованию, которое в нем размещается. Сделать такой токоотвод несложно, но для этого необходимо соблюдать определенные правила.

Грозозащита своими руками

Начнем с материала, из которого допускается изготовление токоотводов. Разрешается использование стали, меди и алюминия. Чаще всего используется круглый пруток или проволока. Сечение такого токоотвода должно быть не меньше: для меди — 16 мм, для алюминия — 25 мм, для стали — 50 мм. Стоит обратить внимание на алюминий. Непосредственное соединение меди и алюминия не допускается. Поэтому лучше их не использовать. А если без него не обойтись, то производить такое соединение следует через болты из нейтрального материала. Можно отметить, что ограничений на использование стали нет. Рекомендуется использовать оцинкованную сталь, чтобы защитить токоотвод от коррозии.

Прокладывается токоотвод по кратчайшему расстоянию между молниеприемником и заземлением, горизонтальными или вертикальными прямыми линиями. Количество соединений в токоотводе необходимо минимизировать. А уж если такие соединения необходимы, то должны быть надежными. Допускаются сварка, пайка или болтовые соединения.

Токоотвод крепится непосредственно на стены. Если они выполнены из негорючего материала, то допускается размещение токоотводов не только на стене, но и в стене. Если же стена выполнена из горючего материала, то возникает опасность возгорания, при прохождении электрического разряда токоотвод может нагреться до опасной температуры. Поэтому в случае горючих материалов токоотвод размещается на расстоянии не менее 10 см от поверхности стены. Размещать токоотводы следует подальше от окон и дверей. Если же такое по каким-то причинам невозможно, то на данном участке следует использовать токоотвод в высоковольтной изоляции. Нельзя размещать токоотводы в водосточных трубах.

Грозозащита своими руками

Количество токоотводов зависит от конструкции защищаемого объекта, формы и размеров загородного дома, и требуемой степени защиты. При самой высокой степени защиты I среднее расстояние между токоотводами должно составлять 10 м. При степени защиты IV среднее расстояние составляет 25 м. Несколько токоотводов — это параллельные электрические соединения, а значит, сила тока, идущая по каждому проводнику, будет меньше. Как следствие — снижение разогрева такого проводника при прохождении электрического разряда, что снижает опасность возгорания.

Наличие нескольких токоотводов снижает и еще одно вредное воздействие молний. При прохождении электрического разряда по токоотводу возникает сильное электрическое поле, которое вызовет индуцированное перенапряжение в сетях и устройствах, находящихся в доме. Понятно, что уменьшение силы тока в проводнике снижает и напряженность электрического поля.

Правила допускают использование строительных элементы в качестве токоотводов. Это может быть металлический каркас здания, другие металлические элементы. Даже арматура здания или металлическое фасадное покрытие. Главное, чтобы электрическая непрерывность между элементами была надежной и долговечной. Так, например, для арматуры считается достаточным, если 50% всех горизонтальных и вертикальных стержней имеют сварные соединения. Толщина элементов фасадного покрытия должна быть не меньше 0,5 мм. Использование только естественных токоотводов может быть и рискованно, но в комбинации с оборудованным отдельным токоотводом можно получить сразу несколько токоотводов, а значит и рассмотренную выше выгоду.

В качестве токоотводов, а также заземляющих элементов, нельзя использовать трубопроводы, по которым транспортируется огнеопасные вещества. В загородном доме это газовые трубы и канализация, так как при разложении фекалий и органических отходов выделяется метан.

Стержневой молниеприемник

Молниеприемники можно приобрести уже готовыми, а можно изготовить и самостоятельно. Размеры и конструкции стержневых молниеприемников могут быть различными. Так, длина готовых устройств обычно составляет 2,5–15 м. Важно, чтобы верх пики молниеприемника находился выше самой высокой точки строения. Можно использовать и дополнительные мачты. Форма стержня не очень важна, главное, чтобы площадь сечения соответствовала нормам. Для разных материалов требуется разный минимум: медь — 35 мм2, алюминий — 70 мм2 и сталь — 50 мм2.

Грозозащита своими руками

Считается, что чем тоньше заточен кончик пики молниеприемника, тем эффективнее он будет работать. С другой стороны, при попадании молнии слишком тонкий кончик обгорит или разрушится. Да и окислительным процессам он будет подвержен гораздо больше. Поэтому тут требуется найти золотую середину.

Молниеприемник защищает некоторое пространство, которое может быть оценено следующим образом. Проводим прямую линию от конца молниеприемника до земли, при этом угол между прямой и молниеприемником принимаем равным 45 градусам. Приняв прямую за образующую, строим защитный конус. Если строение полностью лежит внутри этого конуса, то дом будем считать защищенным. Если же отдельные его части выступают за конус, то защита будет недостаточной, необходимо установить дополнительный стержневой молниеприемник. Вокруг него строим новый защитный конус. Если оба конуса покрывают здание, то дом защищен. Если же нет, то выбираем место для еще одного стержневого молниеприемника. Так поступаем до тех пор, пока дом не будет защищен.

Грозозащита своими руками

Проверка и контроль работоспособности системы молниезащиты

Организовали заземление, установили молниеприемник, соединили их токоотводами, монтаж закончен. Теперь нужно проверить, будет ли работать наша система. Электрическую связь отдельных элементов и их соединения можно проверить обычным тестером. А вот сопротивление заземления проверить простым тестером уже не получится.

Для замера сопротивления можно пригласить специалистов. Можно попробовать сделать это и самостоятельно, только для этого необходим специальный прибор и пара дополнительных электродов. Мы рассмотрим, как измерить сопротивление, на примере использования прибора М-416, который достаточно популярен и прост в эксплуатации.

М-416 Измеритель заземления М-416

Дополнительные электроды обычно идут в комплекте с прибором. Располагаем их в соответствии со схемой. Перед измерением электроды должны быть заглублены примерно на 0,5 м.

Грозозащита своими руками Схема измерения сопротивления заземления: 1 — контур заземления, 2 — уровень земли

Грозозащита требует регулярного контроля. Требуется проверять ее электрическую целостность и контролировать сопротивление заземления. Лучше это делать тогда, когда климатические условия наименее благоприятны. Сопротивление будет максимальным в двух случаях: летом, когда долго стояла теплая засушливая погода, и зимой в самый морозный период. В это время уровень влажности почвы минимальный, соответственно, сопротивление заземление максимальное.

Если проверка покажет, что все нормально, тогда можно считать, что с внешней грозозащитой закончено. Но это еще только половина дела. Нужно еще обеспечить внутреннюю защиту, которая называется защитой от перенапряжения.

Защита от перенапряжения

Полной защиты от грозы не существует. Но, чтобы максимально защититься от ее воздействия, кроме внешней защиты следует обеспечить и внутреннюю.

Ранее мы уже рассматривали случай, когда в домашних сетях может возникнуть индуцированное перенапряжение, которое вызывается молнией, попавшей в молниеприемник. Мы даже нашли способ снижения вредоносного воздействия. На самом деле, это редкий случай. Гораздо чаще молния воздействует на сети, даже не попадая в молниеприемник. Попадание молнии в линию, которая подводит электроэнергию в дом, может вызвать трагические последствия, даже если это случилось в нескольких километрах от дома. Вот от такого воздействия мы и постараемся защититься.

Ревизия электрической сети дома

Первое, что нужно сделать, это провести ревизию существующей электрической сети. Дело в том, что защита будет эффективной только тогда, когда внутренняя электрическая сеть сделана правильно. Начнем с самого простого. Достанем розетку из установочной коробки и посмотрим, сколько проводов к ней подключено. Если два, то сеть требует глубокой модернизации. Все дело в том, что правильная современная электрическая сеть трехпроводная: один провод для фазы, второй для нулевого рабочего, а третий для нулевого защитного. Если к розетке подведено всего два провода, то это значит, что нулевого защитного просто нет.

Существует достаточно распространенное и вредное заблуждение. Неопытный электрик может сделать для себя открытие — осознав, что рабочий ноль и защитный ноль все равно соединены на распределительном щите, значит можно сэкономить. С точки зрения электрической схемы ничего не изменится, если рабочий и защитный нули соединить прямо в розетке. И даже требовательные бытовые приборы, которые проверяют наличие защитного ноля, будут в этом случае работать.

В старых электроустановках защитный ноль был не предусмотрен, можно считать такое положение историческим наследием. А когда появились вилки с тремя контактами, то некоторые электрики стали использовать такую хитрость. На самом деле, такое решение просто бессмысленно. Главная задача защитного ноля состоит в том, чтобы защитить от перенапряжения и поражения электрическим током при отказе рабочего. Понятно, что если закоротить в розетке, то никакой защиты не будет. Поэтому необходимо проверить щит ввода и учета (вводно-распределительное устройство, ВРУ). Даже при однофазном подключении, когда на вводе всего два провода, уже на щите ввода необходимо произвести подключение защитного нуля. И от этого щита произвести разводку отдельного защитного ноля, тогда мы избавимся от ненадежного наследства.

Грозозащита своими руками

Следующим шагом к подготовке внутренней сети будет проверка, а если нужно, то и организация системы уравнивания потенциалов. Вообще, уравнивание потенциалов позволяет минимизировать вредное воздействие токов утечки. Даже в самых обычных условиях наличие токов утечки имеют отрицательные последствия. Это и поражение электрическим током, и ускоренная коррозия проводов, и возможное перенапряжение при отгорании рабочего нуля. В случае же перенапряжения от молнии последствия могут быть еще хуже.

В нормативных документах определен порядок построения системы уравнивания потенциалов. Мы должны соединить такое заземление с основным заземлением дома через систему уравнивания потенциалов. Делается это в щите ВРУ, обычно еще до счетчика электроэнергии.

Грозозащита своими руками

После такой модернизации можно приступить к организации эффективной внутренней защиты от импульсного перенапряжения.

Защита дома (класс B)

Назначение организации защиты от перенапряжений этого уровня понятно, необходимо защитить всю домовую электроустановку от прямых ударов молнии в здание или ЛЭП, а также от вызванного такими ударами индуцированного перенапряжения. Устанавливается защитное устройство в щите ВРУ до счетчика учета расхода электроэнергии. Чаще всего используются разрядники, хотя могут быть использованы и варисторы. Самое главное, чтобы они удовлетворяли требованиям, предъявляемым к оборудованию класса В.

Грозозащита своими руками Разрядник класса В

Основные параметры указаны на корпусе устройства. Для таких устройств пропускаемый импульсный ток должен быть не менее 10 кА, а кратковременный может доходить до 50 кА, максимальное напряжение должно быть 2,0–2,5 кВ.

Устройства могут быть одноканальные, как показано на фото. Такого будет достаточно при однофазном вводе. При трехфазном вводе удобнее использовать трехканальные устройства.

Между рабочим и защитным нулем на этом уровне защитное устройство не устанавливается. Корпус предназначен для размещения на DIN-рейку. Требование к материалу и конструкции — должно быть исключено возгорание и искрение за пределами корпуса устройства. Не допускается короткое замыкание даже при выходе устройства из строя.

Защита линии (класс С)

Устройства этого уровня защитить от прямого попадания молнии не могут. Они предназначены для остаточного перенапряжения, которое остается после прохождения разрядника на вводе. Устанавливается такое устройство обычно уже в распределительных щитах. Если их несколько, например, на каждом этаже, то можно устанавливать защитные устройства в каждом этажном щите независимо. На этом уровне лучше использовать четырех канальные устройства. Четвертый канал используется для установки между рабочим и защитным нулями.

Грозозащита своими руками Устройство на 4 канала

На этом уровне могут использоваться разрядники, хотя чаще применяются варисторы. Обычно их параметров бывает достаточно. Для таких устройств пропускаемый импульсный ток должен быть не менее 10 кА, а кратковременный может доходить до 40 кА, максимальное напряжение должно быть 1,3 кВ. Остальные требования аналогичны требованиям класса В.

Чтобы защита линии работала корректно, расстояние по кабелю от устройств предыдущего уровня должно быть не менее 7–10 м, что обеспечивает достаточный уровень задержки. В небольшом загородном доме может случиться такая ситуация, что расстояние будет меньше. Поэтому требуется организовать искусственную линию задержки, что несложно сделать, установив дроссель индуктивностью не менее 12 мкГн. Понятно, что дроссель должен быть установлен на каждый канал.

Защита устройства (класс D)

Это последний уровень защиты. Требуется далеко не для всех приборов. Для большинства двух предыдущих уровней будет вполне достаточно. Тем не менее, для защиты некоторых особо чувствительных и дорогих приборов такая защита все же целесообразна. Защитные устройства могут быть встраиваемые в розетки, так и автономные.

Грозозащита своими руками Защитное устройство категории D

Устройство, изображенное на фото, включается непосредственно в розетку, а уже потом подключается прибор, требующий защиты. Они могут быть и комбинированными, кроме защиты от перенапряжения в электрической сети они могут обеспечивать дополнительно и защиту слаботочных сетей. Изображенное на фото устройство имеет возможность защиты домашней компьютерной сети.

Реализовав в загородном доме внешнюю защиту и защиту от перенапряжения, мы получаем наивысший уровень защиты от гроз, доступный в настоящее время.

Вадим Жигулевский, рмнт.ру

06.08.14

www.rmnt.ru

Принципы работы

Основной принцип приемника молнии заключается в том, что она ударяет обычно в наиболее высокие здания и деревья. Именно поэтому устройство помещается в самой наивысшей точке постройки, чтобы принять удар стихии на себя и обезопасить здание от громадного заряда электрического тока и напряжения. Наивысшей точкой здания может быть как элемент кровли, дымоход, телевизионная антенна, так и высокое дерево, находящееся недалеко от жилого дома.

Система предотвращает разрушение электрических линий и приборов путем их отключения от сети во время колебания электромагнитного поля. В конструкции грозозащитных систем применяются устройства разного типа, но принцип работы у них один и тот же – при появлении высокого напряжения система отключает цепь от общей электросети. Устройства грозозащиты содержат предохранители, которые сгорают быстрее электроприборов, но это происходит довольно редко, поскольку большинство колебаний электромагнитного поля гасит заземление. Земля в системе необходима для переноса заряда, в противном случае он будет скапливаться на корпусе прибора или оборудования и может повлечь за собой поражение человека разрядом электрического тока.

Грозозащита и заземление

Заземление является важной частью системы. Именно через него электрический разряд, пойманный молниеприемником, отводится в землю. Элементы системы заземления находятся по всему зданию, а металлические элементы у основания отводят разряд глубоко в землю. Последняя должна быть заранее проверена. Это важно для предотвращения скопления заряда на корпусе прибора или детали. Следует избегать заземления канализационных и отопительных труб, так как последние обладают повышенным сопротивлением.

При этом «зануление» не требуется. Так как понятие «ноль», представляет собой шину, служащую для того, чтобы замкнуть цепь и провести ток дальше. «Зануление» в системе грозозащиты приводит к частым ее срабатываниям, к ложным призывам к работе. В итоге это сопровождается необходимостью прерывания работы устройства. Введение «нуля» допускается только в случаях, когда нельзя или нет возможности заземления.

Устройство грозозащиты

Модуль грозозащиты состоит из молниеотводов и дополнительных устройств, которые обеспечивают защиту приборов. В самых общих чертах схема молниеотвода состоит из трех элементов: приемник, токоотвод и заземлитель. Наличие молниеотвода позволяет отвести разряд атмосферного электричества от самого здания в землю и предотвратить возгорание и другие негативные последствия непосредственного контакта с молнией. Это достигается за счет возникающей разницы потенциалов, при котором диод замыкается и это приводит к отведению напряжения в область земли. Место диода может занимать любое другое защитное средство. При проектировании молниеприемника необходимо учитывать такие параметры, как общая площадь территории, высота здания, требующих защиты, соседних деревьев, тип кровли дома.

Среди устройств, которые обеспечивают подобную защиту приборов, можно упомянуть:

  • варисторы – разновидность резисторов, которые уменьшают свое сопротивление при резком скачке напряжения;
  • супрессоры – стабилизаторы, которые открываются при повышении напряжения;
  • газонаполненные разрядники – инертный газ внутри баллончиков уменьшает сопротивление;
  • плавкие предохранители – теряют способность проводить ток при скачках напряжения.

Устройства грозозащиты применяют как в электрических цепях, так и на линиях передачи сигналов.

Классификация грозозащиты

Существует 3 класса приборов грозозащиты:

1 класс (категория В) – обеспечивают защиту при прямом попадании молнии.

2 класс (категория С) – монтируются в распределительные щиты в качестве второго звена защиты, или для обеспечения безопасности токораспределяющих сетей.

3 класс (категория Д) – периферийные устройства, которые обеспечивают защиту приборов.

Расстояние между периферическими устройствами и самими приборами не должно превышать 10-15 метров.

В выборе грозозащиты необходимо склоняться к фирменным, а не самодельным устройствам. Так как последние отличаются меньшей степенью защиты.

Профессиональные устройства грозозащиты имеют:

  1. Наименьшие сопротивления.
  2. Работоспособность сохраняется вне зависимости от падения напряжения.
  3. Способность выносить большие нагрузки.

Также довольно часто самодельные или некачественные системы защиты могут не справляться с прямым попаданием молнии или же с высоким напряжением. Они лишь позволяют снизить процент вреда оборудованию, но не могут его защитить на все 100%. Поэтому недорогие устройства могут быть использованы лишь на время, пока нет возможности установить качественное оборудование.

В настоящее время введение в проектирование общественных зданий и частных домов установки системы грозозащиты необходимо для того, чтобы обезопасить дом, оборудование и людей от возможного риска возгорания и его последствий. Качественное современное оборудование, проектирование и правильные монтажные работы позволят чувствовать себя в своем доме как в настоящей крепости.

www.groze.net


Categories: Заземление

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector