Замер сопротивления изоляции

Электробезопасность для любого помещения является гарантом качественной работы и долговечности всех электроприборов. Кроме того, соблюдая такие предусмотренные нормами и правилами электробезопасности условия эксплуатации проводки, можно обезопасить себя, не только от пожара, но и обычного удара током. То есть, если сопротивление изоляции кабеля – норма, то и безопасность жильцов или персонала в этом помещении будет высокой.

Для чего нужно проводить эти замеры, и с какой периодичностью? Замеры сопротивления проводятся в любых помещениях, особенно, если проводка была смонтирована давно. Это относится и к предприятиям, к жилым квартирам и домам. Лучше всего, если замеры сопротивления изоляции выполняются регулярно, обеспечивая бесперебойную работу всех электроприборов и оборудования.

Согласно статистическим данным, порядка 20% пожаров в жилых домах и на производстве происходит из-за некачественной или повреждённой проводки. Не менее 15% случаев удара током или выхода из строя любого электроприбора также относятся к нарушению изоляции.

Причины нарушения изоляции электропроводки


Причины нарушения изоляции могут быть различными, так как на проводку влияет множество факторов, включая время эксплуатации и её интенсивность. То есть, будет важно выяснить, не только, как измерить сопротивление изоляции , но и возможные причины её повреждения. Наиболее часто такими причинами повреждений будет:

  • Механическое повреждение вследствие проведения ремонта или случайных действий;
  • Агрессивные условия эксплуатации проводки или подключение слишком мощных электрических приборов и оборудования, на нагрузку от которых не рассчитано сопротивление изоляции;
  • Длительная эксплуатация и разрушение изоляции проводки вследствие «старения»;
  • Брак и дефекты изоляции, которые были допущены на заводе.

Даже небольшая трещина на изоляции может привести к огромному пожару. Единственным методом диагностирования и предупреждения подобного исхода будет проверка изоляции кабеля, которая проводится во всех проблемных местах. Диагностику и замеры выполняют с кабелями и проводами специальными приборами.

Условия проведения замеров сопротивления изоляции


Как измеритьсопротивление изоляции

Мы уже выяснили, что даже в обычной квартире вам придётся регулярно проводить подобные замеры. Для этого можно приобрести специальный тестер, который пригодится и во многих других ситуациях, например, при проверке питания в розетке, монтаже осветительных приборов или даже проверке работы электрооборудования.

Теперь рассмотрим, когда именно лучше проводить подобный замер сопротивления изоляции, ведь для него также необходимо определённые условия. Если вы хотите померить сопротивление проводки в квартире, то принципиальной разницы между летом или зимой не будет. Главное, чтобы в помещении не была повышена влажность.

Жителям собственных домов проверку изоляции кабелей проводить будет немного сложнее. Прежде всего, хотя бы часть их проводки и подводящих к ней кабелей расположена на улице. Соответственно, тут будут действовать другие условия диагностики. Одним из таких условий является температура воздуха, которая не должна быть отрицательной.

Отрицательная температура и повышенная влажность препятствуют получению точных данных при диагностировании сопротивления. Микрочастицы воды от повышенной влажности могут превратиться в лёд, который выступит в качестве диэлектрика. При этом, будет показано сопротивление изоляции кабелей – нормальное, а на самом деле может быть гораздо меньше.

Положительная температура (и лучше всего день, когда она поднимается выше всего) будут идеальными условиями для проведения измерения. Причём, этот же фактор относится и к проводке, которая расположена непосредственно в помещении, ведь большая часть её находится внутри стен, которые нагреваются долго.

Инструменты и приборы для проведения замеров


Проводить замер сопротивления изоляции кабеля следует при помощи специального прибора – мегомметра. При этом, бытовая проводка, например, в квартире или доме, замеряется напряжением в 1000 Вольт, а силовые кабеля требуют установки напряжения в 2500 Вольт.

Теперь определим, как измерять сопротивление изоляции , и в каком порядке выполнять подобную диагностику. В первую очередь, выполняются замеры между токоведущими жилами. Это стандартная проверка и её показатели будут основными. После этого необходимо будет выполнить более долгий процесс определения сопротивления уже между заземляющим проводником и отдельно каждой жилой.

Проведение измерений с учётом повышенных напряжений не должно быть точечным. То есть, такой замер сопротивления изоляции кабеля нормой будет только после проверки хотя бы на протяжении минуты. При этом прибор должен отображать сопротивление для изоляции не менее чем 0,5 МОм.

Когда нужно проводить замер сопротивления изоляции?


Проверка изоляции кабеля

Вот мы и подошли к основному интересующему всех вопросу – когда же проводить этот самый замер, например, у себя в квартире? Сразу следует сказать, что слишком частым он не будет, а вот безопасность для жильца от пожара или удара током увеличит значительно. То есть, по затраченному времени и периодичности проверки – она будет обязательной для обеспечения этой самой безопасности.

Для обычной квартиры или даже дома, периодичность проверки изоляций кабелей и проводки составляет три года. То есть, один раз в три года (и как говорилось выше, в летнее время) необходимо проверять всю проводку, и особенное внимание уделять проблемным местам. Однако, тут есть и исключения, которые относятся к тем же частным домам и коттеджам.

Кроме этого:

  1. Проверка изоляции, при наружной проводке и в кабелях, должна проводиться раз в год.
  2. На предприятиях с более высоким напряжением и подключением большого количества оборудования и приборов, факт нормального сопротивления изоляции кабелей нужно подтверждать ежегодно.
  3. Ежегодная проверка проводится и для эксплуатируемого электрооборудования.

Будет удобно совместить эти две диагностики, что значительно повысит степень безопасности.

Случаи повреждения проводки и их определение

Осознав необходимость ежегодной (или раз в три года) проверки сопротивления для изоляции, мы можем хотя бы частично подстраховаться от удара током и увеличить безопасность использования электроприборов. А вот что делать и, как измерять сопротивление изоляции, а точнее даже не измерять, а определять её повреждение, если проверка прошла, а до следующей далеко?


Данный вопрос будет актуален в том случае, если для проверки вызывается мастер со своим прибором, а уже после проведения диагностики обнаружилась неисправность.

Подобной неисправностью могут быть обычные искры, которые возникают при нагрузке, вот только короткого замыкания так и нет, да и автоматы не реагируют.

В такой ситуации проверка кабелей изоляции выполняется визуально-мануальным способом. То есть, необходимо найти место, в котором «искрит» и осмотреть проводку, подходящую к нему. При этом можно увидеть немного оплавленные провода, смену цвета или даже обгорелые участки вокруг изоляции. Лучшим выходом в данной ситуации станет проверка всех контактов, к которым подходит кабель, и замена повреждённого участка проводки.

Повышение безопасности использования электроприборов и оборудования

Итак, мы можем подвести итоги и уже точно сказать, как можно увеличить безопасность использования электроприборов и оборудования. Естественно, главным будет регулярно убеждаться, что сопротивления изоляции кабелей нормальное , в чём может помочь проверка. Также следует внимательно относиться к изоляции проводки и осматривать на предмет искр или нагрева. И последнее несложное требование, которое относится к совмещению проверки сопротивления для изоляции проводки и диагностики оборудования. Соблюдая эти не слишком обременительные правила, можно обеспечить и безопасность для электроприборов, и защиту от ударов током.


obelektrike.ru

В каких случаях проводятся измерения

Согласно действующим нормативам измерение сопротивления изоляции электропроводки осуществляется в следующих случаях:

  • при проведении технического обслуживания (ТО) любой категории сложности;
  • по окончании пусковых испытаний электротехнических объектов;
  • в случаях обнаружения неисправностей, проявляющихся в процессе текущей эксплуатации в виде токовых утечек;
  • по окончании ремонта электросетей и оборудования.

При техобслуживании замер сопротивления изоляции электропроводки составляет основу используемых при испытаниях методик, согласно которым электрические цепи проверяются на отсутствие утечек. Аналогичным образом проводятся замеры и во всех остальных случаях, отличающихся от техобслуживания только особенностями организации предстоящих испытаний.

В соответствии с действующими стандартами при проведении ТО параметры изоляции электропроводки, в том числе сопротивление, проверяются между всеми её жилами (фазной, нулевой и заземляющей). Особую важность приобретает это требование в случае проверки питающих цепей электродвигателей самых различных классов.


Замер сопротивления изоляции электропроводки

Теми же нормативами (ПТТЭП, в частности) оговаривается и периодичность измерения параметров изоляции в рамках техобслуживания электропроводки.

Измерительные средства

Для проведения испытаний электрического провода или кабеля на целостность изоляции используются специальные приборы, называемые мегомметрами (делают замер высокого сопротивления). Они работают по принципу воздействия на измеряемую цепь высоковольтным напряжением, формируемым встроенной в устройство схемой.

Современные образцы этих приборов работают от аккумулятора с формирователем высокого напряжения.

Замер сопротивления изоляции электропроводки

Известные модели мегомметров различаются по величине испытательного напряжения, подаваемого на изоляцию проверяемой цепи. Согласно этому показателю они делятся на устройства с номинальными контрольными напряжениями из следующего ряда: 100, 500, 1000 и 2500 Вольт.

Сразу оговоримся, что померить сопротивление изоляционной оболочки с помощью обычного цифрового прибора не представляется возможным. Указанное ограничение объяснятся тем, что изоляция электропроводки обладает высоким сопротивлением и напряжение, выдаваемое прибором в соответствующем режиме, очень мало для оценки защитных свойств оболочки провода.


Мультиметром удаётся проверить лишь целостность оболочки силовых проводов, для чего сначала следует внимательно осмотреть их изоляцию, а затем зачистить места вывода контактных групп. И только после этого можно будет подсоединять к ним щупы мультиметра, переведённого в режим замера «Ω» (на пределе десятки кОм). При исправной изоляции прибор будет показывать сопротивление в пределах 3,5-10 кОм.

Нормируемые показатели

Для современных кабельных изделий действующие нормативы по сопротивлению изоляции в режиме проверки постоянным током выглядят следующим образом:

  1. для силового кабеля, эксплуатируемого в сетях с напряжениями более 1000 Вольт, величина сопротивления строго не нормируется; при этом её рекомендуемое значение должно превышать 10 МОм;
  2. для образцов кабельной продукции, работающих в сетях с максимумом напряжения до 1000 Вольт, нормируемое сопротивление не должно быть меньше, чем 0,5 МОм;
  3. для проводных изделий контрольного назначения сопротивление не должна быть менее 1 МОм.

Замер сопротивления изоляции электропроводки

При изучении вопроса о том, какова периодичность проведения испытаний изоляции, необходимо отметить, что этот показатель определяется нормативами, приводимыми в ПТЭЭП.

Так для осветительных установок и сетей, например, сопротивление изоляции измеряется один раз в три года. Аналогичные требования предъявляются и к электропроводке большинства категорий промышленных сетей.

Дополнительная информация! В наружных электрических сетях, а также в особо опасных помещениях проверка изоляции проводки организуется ежегодно. Такие же сроки должны соблюдаться и в случаях, когда испытывают проводку промышленного оборудования специального назначения (краны, лифты и тому подобное).

evosnab.ru

Для чего необходимы данные замеры?

Благодаря измерению сопротивления изоляции проводки можно обнаружить, насколько сильно износилось данное покрытие проводов. От показаний данного замера зависят потери тока в сети, безопасность работающих людей и бесперебойная работа оборудования.

Проходит время, и изоляция постепенно утрачивает свои свойства. Связано это с тем, что диэлектрики, которые используются во время изготовления изоляционной оболочки кабелей, различаются по своим характеристикам, составу и режимам эксплуатации. В тех случаях, когда свойства проводов подобраны не верно, изоляционные свойства уменьшаются гораздо интенсивнее нормируемого срока работы. Но даже в тех случаях, когда они выбраны правильно, то время всё равно вносит свои коррективы.

Потеря изоляционных особенностей электрической проводки зависит от следующего:


  • Режимов работы, которые определяются нагрузкой по току сети и проводников.
  • Величина напряжения электроприёмников.
  • Различных механических повреждений.
  • Симметричности системы напряжения.
  • Воздействия окружающих факторов (температуры, влажности).

Если сопротивления изоляции снизится до значения «0,5 МОм» и меньше, то в сети возникает утечка тока. Это вызовет нагрев проводов, их замыкание между собой, что может спровоцировать возгорание. Для предотвращения этому и нужно производить периодические испытания сопротивления изоляции электрической проводки.

Приборы  для измерения сопротивления проводки ↑

Все замеры сопротивления изоляции осуществляются при помощи сертифицированного и проверенного оборудования. А сами измерения  проводят только специалисты высокого уровня.

Измерения осуществляются специальным прибором, который называется мегаомметр. Данные устройства бывают нескольких типов:

  • с ручным приводом, т.е. внутри прибора имеется встроенный генератор;
  • электронные, где питание осуществляется от аккумулятора.

Также они классифицируются по пределам напряжения: 500, 1000, 2500 и 5000 Вольт.

Приборы для измерения сопротивления проводки

Какие существуют показатели сопротивления изоляции? ↑

  1. Измерение величины сопротивления изоляционного покрытия электрической установки. Сюда относятся: внутренние и внешние механические повреждения, загрязнения и увлажнённость. Всё это приводит к снижению сопротивления изоляции.
  2. Коэффициент поляризации. Данный показатель показывает на то, насколько заряженные частицы и диполя в самом диэлектрике способны перемещаться, если на них воздействует электрическое поле. Это позволяет определить, насколько сильно износилась изоляция.
  3. Коэффициент абсорбции. С его помощью можно максимально точно определить увлажнённость изоляционного слоя. Рассчитывается он исходя из отношения измеренных величин сопротивления изоляции, по истечению 60 и 15 секунд после приложенного напряжения «мегомметром». В тех случаях, когда изоляционное покрытие сухое, данный коэффициент существенно больше единицы. А если изоляция влажная, то он очень близок к «1». Коэффициент абсорбции может отличаться от заводских значений, но не более чем на 20 процентов, а также не ниже «1,3». Температура при этом должна быть в пределах от 10 до 30°С. В случаях, когда все эти условия не выполняются, проводку в обязательном порядке необходимо высушить.

Метод измерения сопротивления ↑

Сущность данного метода основана на измерении отношения приложенного постоянного напряжения изоляции к протекающему сквозь неё току. Начинается замер с того, что необходимо визуально осмотреть целостность электрической проводки, места соединения проводов в специальных распределителях. Затем надо исследовать место подсоединения проводов к самому оборудованию. Измерение сопротивления изоляции проводки осуществляются лишь тогда, когда вся линия обесточена и отключены все потребители. Сопротивление изоляции проводки приборов, напряжение которых не превышает 0,4 кВ, не должно быть меньше 0,5 мОм. Все полученные данные замеров заносятся в специальный протокол.

Любой замер обязан производиться только лишь проверенным, лицензированным прибором и специалистом высокого уровня.

Замер производят между фазным и нулевым проводом, а также защитными проводниками. Количество измерений напрямую связано с численностью проводов в электрической цепи. Минимально допустимая величина сопротивления изоляции не должно быть меньше чем 0,5 МОм. Если же этот параметр окажется меньше, то всю электрическую цепь необходимо разбить на несколько участков и измерять сопротивление изоляции проводки, начиная от самого распределительного щитка. Провод с неисправным изоляционным покрытием необходимо заменить.

Прежде чем приступить к измерениям участков цепи, находящихся на улице, необходимо узнать какая температура окружающей среды. Связано это с тем, что при отрицательной температуре, частички воды, находящиеся в проводке, превращаются в лёд. А всем, наверное, известно, что лёд является превосходным проводником.

В нормативной документации ПУЭ и ПТЭЭП приведены нормируемые значения данного показателя, а также периодичность его замеров.

Протокол проверки ↑

В протоколе измерения сопротивления изоляции электрической проводки необходимо фиксировать результаты замеров. Для трёхфазной сети должно быть сделано 10 замеров сопротивления, а для однофазной  достаточно трёх. В конце документа необходимо указать соответствие измерения всем требованиям ПУЭ (издание №7, п. 1.8.37).

Как часто необходимо производить замеры? ↑

Периодичность проверки изоляционного покрытия проводки должна соответствовать ПТЭЭП (приложение №3):

  • Измерение величины сопротивления проводки во взрывоопасных помещениях и различных наружных установках проводится 1 раз в год. В остальных вариантах – 1 раз в три года.
  • Сопротивление изоляции лифтовых и крановых кабелей – 1 раз в год.
  • Стационарных электрических плит – также 1 раз в год, но при условии, что во время измерений плита будет находиться в нагретом состоянии.

energiatrend.ru

Базовое предложение на замер сопротивления изоляции с составлением Технического отчета

Базовое (типовое) предложение по замерам сопротивления изоляции подходит для всех видов жилых и общественных зданий (помещений). Оформляемый по результатам Технический отчет содержит все требуемые Протоколы в соответствии с текущими Нормами и Правилами.

Периодичность проведения замеров сопротивления изоляции электропроводок

Периодичность замеров сопротивления изоляции, как и прочих электроиспытаний, устанавливается нормами ПТЭЭП (Правила технической эксплуатации электроустановок потребителей).

В частности, для электропроводок, в т.ч. осветительных сетей:

Это единственное явное указание, имеющееся в Нормативно-техническом документе 1-ой категории.

Оформление результатов измерений

По результатам замеров сопротивления изоляции оформляется «Протокол проверки сопротивления изоляции проводов, кабелей и обмоток электрических машин», форма по ГОСТ Р 50571.16-99.

Протокол замера сопротивления изоляции в составе Технического отчета по электроиспытаниям

Протокол замера (проверки) сопротивления изоляции электропроводки, как правило, самостоятельным документом не является, а входит в Технический отчет по измерениям и испытаниям электроустановки здания (помещения, сооружения). Причем, является обязательной его частью.

Таким образом, когда говорят о «замере сопротивления изоляции» в отношении помещения (или здания целиком), имеют в виду электроиспытания с составлением Технического отчета, в котором, в том числе, будет и Протокол проверки сопротивления изоляции.

Стоимость замеров сопротивления изоляции

Стоимость замеров сопротивления изоляции формируется исходя из Базовых расценок, с учетом расстояния от г.Москва (МКАД) и минимальной стоимости за выезд бригады электролаборатории

Оформление предварительной сметы по ФЕРп: бесплатно (в электронном виде)

Форма представления результатов испытаний и измерений: Технический отчет, формы бланков по ГОСТ Р 50571-99

Срок оформления для объектов с установленной мощностью до 80кВт/более: 2-3 рабочих дня с момента выезда/по доп. соглашению

Форма оплаты: любая

obryv.ucoz.ru

Стандарты измерения изоляции

Измерение сопротивления изоляции электрооборудования до 1000В производится по правилам, установленным п. 612. 3 стандарта МЭК 364-6-61. При измерении сопротивления изоляции проводов ( кабелей) сначала проводят измерения между фазными проводниками всех пар фаз поочередно. Затем измеряется сопротивление изоляции каждого фазного провода относительно земли. Основное условие – отсоединить электроприборы, вывернуть лампы и снять предохранители. В том случае, если к цепи стационарно подключены электронные приборы, то измерение должно проводиться по другой методике: соединяются фазные и нейтральные проводники и измеряется сопротивление между ними и землей. Если не соблюдать это правило при измерении сопротивления изоляции электрооборудования, то есть риск повреждения электронных приборов.

Дополнительно требования к измерению сопротивления изоляции изложены в п. 1. 20 приложения 1 ПТЭЭП и п.413.3 ГОСТ Р 50571.3-94. Они касаются не только состояния системы, в которой проводится измерение. Особое внимание уделяется помещению, в котором проводятся электроизмерительные работы как части электрохозяйства: пол и стены помещения, зоны или площадки, где проводится измерение сопротивления изоляции, должны быть непроводящими. Это необходимо для того, чтобы при прикосновении к частям аппаратуры с разными потенциалами в случае, если изоляция повреждена, не произошло поражения током.

Требования жестко устанавливают расположение токопроводящих частей при измерении сопротивления изоляции: так, открытые проводящие части и сторонние проводящие части разводятся на расстояние. Между открытыми проводящими частями и сторонними проводящими частями должны быть установлены эффективные приборы. Сторонние проводящие части изолируются с определенным напряжением: при измерении сопротивления изоляции электрооборудования при номинальном напряжении электроустановок не выше 500 В – 50 кОм, при напряжении свыше 500 В — 100 кОм. Для того, чтобы измерить изоляцию поверхностей, требуется провести три измерения: в одном метре от сторонних проводящих частей, два других – на большем удалении. Нормативы измерений установлены в МЭК 364-6-61.

Измерения сопротивления изоляции проводится с помощью мегаоомметра, а испытания оборудования с подачей повышенного напряжения промышленной частоты или выпрямленного напряжения в электроустановках до и выше 1 кВ – выполняется только бригадой от двух человек и больше, с группой допуска по электробезопасности у производителя работ — не ниже четвертой ( IV) , у члена бригады –должна быть третья группа ( III) по электробезопасности (ЭБ) ,у охраняющего рабочее место допускается вторая (II) группа по ЭБ. Все испытания электрооборудования, выполняемые с помощью передвижной установки, проводятся по наряду. Допуск к работам в электроустановке осуществляет оперативный персонал, а вне электроустановок – ответственный руководитель работ или производитель работ. Если напряжение в установке ниже 1 кВ, для измерения все равно требуются два работника, один из которых должен иметь допуск по электробезопасности не меньше третьей группы. Измерение сопротивления изоляции может проводиться одним работником с третьей группой по электробезопасности. Ротор работающего генератора в части измерения сопротивления изоляции проверяется двумя работниками третьей и четвертой группой по электробезопасности. После подключения мегаоомметра к токоведущим частям надо снять заземление. Заземление необходимо для снятия заряда с токоведущих частей.

В соответствии с нормативным документом «Правила по охране труда при эксплуатации электроустановок» (ПОТ), список мероприятий по измерению сопротивления изоляции электрооборудования определяет лицо, выдающее наряд или распоряжение. Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормативных документах: Объем и нормы испытаний электрооборудования ( ОиНИЭ, РД (СО) 34.45-51.300-97), Правила устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП). В ГОСТ Р 50571.16-99 также указаны нормируемые величины сопротивления изоляции электроустановок.

Важно, чтобы соблюдался температурный режим и уровень влажности, допустимый при измерении сопротивления: температура изоляции не должна подниматься выше +35 градусов Цельсия и опускаться ниже +5 градусов. Степень увлажненности рассчитывается по формуле Kабс=R60/R15, где R60 – измеренное сопротивление изоляции через 60 секунд после приложения напряжения мегаоомметра, R15 – через 15 секугд. Отношение этих двух величин называется коэффициентом абсорбции. Практика измерения сопротивления изоляции электрооборудования показывает, что оптимальная влажность воздуха для достижения коэффициента абсорбции, отличающегося от заводских показателей не более, чем на 20%, должна быть не выше 80%. Коэффициент абсорбции не должен превышать величину 1,3 (нормируется в ПТЭЭП) при температуре от +10 до +30 градусов Цельсия. Если по результатам измерений электрооборудование имеет коэффициент абсорбции ниже 1,3- оно подлежит сушке.

Измерение сопротивления изоляции электроустановок производится с помощью цифровых измерителей с преобразованием напряжения, либо мегаоомметры генераторного типа. Ежегодная поверка приборов проводится органами Госстандарта РФ, в Санкт-Петербурге — ФГУ Тест –Санкт Петербург, или ВНИИМ им. Д.И.Менделеева о чем выдаются свидетельства о проверке. Если проверка не проведена в срок, прибор к эксплуатации не допускается. Измерение сопротивления изоляции групповых кабельных линий электропроводок проводится мегаоомметрами на 1 кВ для магистральных кабелей — на напряжение 2,5 кВ . Для измерения сопротивления изоляции электрооборудования после монтажа значения напряжения мегаомметра (0,5 или 1 кВ) указаны в НД ПУЭ ,глава 1.8 в таб. 1.8.34. Заключение о непригодности проводки делается в случае, если после измерения сопротивления изоляции выясняется, что сопротивление менее нормируемого значения.

Порядок измерения сопротивления изоляции

В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5). Мегаомметры серии Ф. 4100, с электронным питанием от электросети, рассчитаны на номинальное рабочее напряжение 100, 500, 1000 (Ф4101, Ф4102). Мегаоомметры ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) уже не выпускаются, тем не менее, мегаомметры типа M l101 М, МС-05, МС-06 используются с большим успехом. Минимальный класс точности приборов – четвертый. Измерение сопротивления изоляции электроустановок происходит путем присоединения мегаоомметров к схеме. Присоединение проводится с помощью гибких одножильных проводов. Сопротивление изоляции этих проводов, длина которых должна составлять не менее 2-3 метров, должна составлять 100 Мом. Концы проводов маркируются, на них со стороны мегаоомметра надеваются оконцеватели, а противоположные концы снабжаются зажимами типа «крокодил», при этом зажимы снабжаются специальными щупами или изолированными ручками. Провода при измерении сопротивления изоляции электроустановок «не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей. При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) — к проводнику тока».

Измерение сопротивления изоляции силовых кабелей и электропроводок

Начало измерения сопротивления изоляции начинается с проверки кабеля на напряжение – оно должно отсутствовать. Заземление на 2-3 минуты снимает с токоведущей жилы остаточные заряды, и можно приступать к работе. Пыль, грязь, другие посторонние субстанции затрудняют точное измерение сопротивления изоляции, поэтому кабель нужно от них очистить. Сверка с заводским паспортом дает нашим экспертам величину предполагаемого сопротивления, исходя из чего, выбирается предел измерений. После контрольной проверки – определения показаний на шкалах мегаоомметра при замкнутых и разомкнутых проводах – прибор допускается эксплуатацию. При разомкнутых проводах стрелка должна указывать на бесконечность, при замкнутых – на ноль.

Измерение сопротивления изоляции начинается с проверки каждой фазы относительно заземления. Если показания выявят нарушения изолирующей функции, проводится замер относительно земли изоляции каждой фазы, а также между двумя фазами. Количество замеров варьируется: для трехжильного кабеля могут быть проведены 3-6 замеров, для пятижильного – 4, 8 или 10. Поскольку существует несколько схем, в паспорте замеров обязательно указывать схему, по которой выполнялись работы.

Граничные показатели мегаомметра – 15 и 60 секунд с момента присоединения к исследуемому объекту, из них вычисляется и коэффициент абсорбции, то есть влажности изоляции. Если значения явно не соответствуют ожидаемому, рекомендуется повторно снять остаточное напряжение, наложив заземление, переключить предел и повторить замер. По правилам техники безопасности измерения сопротивления изоляции электрооборудования, эту операцию требуется проводить в диэлектрических перчатках. Помимо этого, строго рекомендуется соблюдать правила измерений, указанные в п.п. 1.7.81, 2.1.35 ПУЭ: «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»; «как со стороны источников питания, так и со стороны приемника, нулевые проводники должны быть отсоединены от заземленных частей», «схема испытания… имеет различия лишь в количестве замеров (4 или 8, вместо 3 или 6) и в отсутствие необходимости использовать зажим «Экран» на мегаомметрах»; «измерение сопротивления изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, аппаратах, вывернутых электролампах».

Измерение сопротивления изоляции силового электрооборудования

Как и для изоляции кабелей, для электрических аппаратов и машин большое значение имеет температура. Так, для изоляции класса А характерно увеличение сопротивления изоляции в полтора раза при понижении температуры на каждые 10 градусов. Изоляция класса В увеличивает сопротивление в два раза при повышении температуры на 10 градусов. Поэтому установлены температурные пределы для измерения сопротивления изоляции электрооборудования, а также разработаны специальные коэффициенты: для электрических машин – Кт, для трансформаторов – Кз, которые можно посмотреть в таблице. Нормы для сопротивления изоляции приведены в двух документах: для уже работающих установок – в ПТЭЭП, для находящихся в процессе ввода в эксплуатацию – в ПУЭ.

Помимо изоляции проводки, при измерении сопротивления изоляции электрооборудования, замеряется и сопротивление относительно корпуса и наружных металлических частей при выключенном двигателе. Как правило, такие замеры проводятся для переносных электроинструментов. Если корпус инструмента выполнен из диэлектрика, его перед измерением оборачивают металлической фольгой и соединяют с контуром заземления. Для переносных трансформаторов дополнительно проводятся замеры сопротивления изоляции между корпусом и обмотками. А также между обмотками, при этом вторичную обмотку надо закоротить на корпус. Измерения сопротивления изоляции электрооборудования включают в себя и измерения сопротивления изоляции автоматических выключателей и устройств защитного отключения.

Правила измерения регулируются ГОСТ Р 50345-99 и ГОСТ Р 50030.2-99, которых рассматриваются разные типы УЗО и АВ, первый устанавливает правила измерений для аппаратов с минимальным сопротивлением изоляции 2 или 5 МОм (п.п. 1,2 и п.3 — соответственно), второй документ устанавливает правила измерений для аппаратов с минимальным сопротивлением изоляции не менее 0,5 МОм. Согласно ГОСТам, измерение сопротивления изоляции электрооборудования такого типа производятся:

  1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО;
  2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО;
  3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.

При работе с измерительными приборами в части замеров сопротивления изоляции УЗО и АВ, необходимо помнить о разнице параметров выходного напряжения и наибольшего значения измеряемого сопротивления у разных видов измерительных приборов: только в семействе мегаомметров Ф4100 насчитывается пять разных типов.

Все виды измерений сопротивления изоляции электрооборудования проводятся нашими специалистами в точном соответствии с требованиями ГОСТ Р, ПТЭЭП, ПУЭ , ОиНИЭ и других нормативных документов, оформляются протоколами со всеми необходимыми приложениями. Электроизмерительная лаборатория имеет все разрешительные документы для проведения видов работ.

www.gorod812.com

Как проводится измерение сопротивления изоляции кабельных линий мегаомметром

Кабельные линии перед началом работ, а также с определенной периодичностью, проверяются на эксплуатационные характеристики, одна из которых сопротивление изоляции. Именно данная характеристика определяет, сможет ли кабель выдерживать токовые нагрузки, не перегреется ли он и не прогорит ли. Проверка сопротивления изоляции производится мегаомметром. Прибор этот не самый сложный в плане использования, но некоторые моменты применения требуют знаний. Итак, как провести измерение сопротивления изоляции кабельных линий мегаомметром.

Измерение сопротивления изоляции кабеля

Существуют определенные нормативы, которые распределены по классификации самих кабельных линий, представленные в основном тремя позициями:

  • силовые высоковольтные, где напряжение в системе превышает 1000 вольт;
  • силовые низковольтные – это ниже 1000 вольт;
  • контрольные системы и управления.

Кабели двух первых позиций измеряются мегаомметром при напряжении 2500 вольт. Контрольные при напряжении от 500 до 2500 вольт. При этом у каждой позиции свои нормы.

  • У первой позиции (высоковольтных) сопротивление изоляции находится в пределах не меньше 10 МОм.
  • У низковольтных не ниже 0,5 МОм.
  • У контрольных не ниже 1,0 МОм.

Необходимо учитывать тот факт, что измерение сопротивления изоляции должно проводиться с учетом температурного режима, при котором кабельные системы эксплуатируются и тестируются. Все дело в том, что в линии иногда находятся капли влажности, которые при низких отрицательных температурах превращаются в льдинки. А всем известен тот факт, что лед является диэлектриком, то есть, при проведении измерения он (лед) выявляться не будет.

Как измеряется сопротивление мегаомметром

Измерение сопротивление изоляции мегаомметром любых видов кабельных линий производится практически одинаково с некоторыми специфичными различиями. Чтобы понять, какие отличия есть в каждом случае, разберем их все три по отдельности.

Измерение высоковольтных линий

Измерение сопротивления изоляции кабеля

Итак, в первую очередь кабель проверяется на отсутствие на нем напряжения. Для этого используются специальные указатели высокого напряжения. После чего сам измерительный прибор подключается к жилам со стороны, где проверяется изоляция. С другой стороны жилы разводятся на определенное расстояние, узаконенное ПУЭ. Кстати, именно с этой стороны необходимо поставить человека, который будет выполнять функции сторожа, чтобы любопытные не решили потрогать торчащие провода голыми руками. Обязательно везде вывешиваются плакаты о том, что проводятся испытания.

Теперь можно проводить тестирование. Для этого проверяется каждая жила. То есть, две свободные заземляются, а к проверяемой подключается один вывод мегаомметра, а его второй вывод подключается к земле (заземлению). Далее, измеряют сопротивление мегаомметром на 2500 вольт. Длительность испытания – одна минута. Точно также проверяются и другие.

Испытание низковольтных кабелей

Измерение сопротивления изоляции кабеля

Предварительные этапы здесь точно такие же. А вот схема самого измерения сильно отличается от вышеописанной. В низковольтных линиях несколько схем подключения и испытания. Вот они с учетом маркировки жил (А; В и С).

  • Сначала испытываются жилы между собой. То есть, А-С, А-В и С-В.
  • Далее, производится проверка между каждой жилой и нулем. То есть, N-А, N-В и N-С.
  • Затем между жилами и заземляющим контуром. То есть, PE-А, PE-В, PE-С.
  • И обязательно проверяется сопротивление нулевого контура. При этом подключение мегаомметра производится по схеме N-PE. Не забывайте, что в этом случае ноль необходимо отключить от заземления.

Испытание контрольных кабельных систем

Измерение сопротивления изоляции контрольных систем кабелей производится по той же технологии с единственным отличием. То есть, сначала производится определение отсутствия напряжения на жилах, выставляется мегаомметр на проверку 500-2500 вольт.

Один конец (выход) прибора подключается к концу испытуемого кабеля, второй к заземлению. Остальные жилы соединяются между собой и подключаются к заземляющему контуру. Можно второй выход мегаомметра подключить к одной из свободных жил. Проверка проводится в течение одной минуты. Точно также проверяются все жилы кабеля.

Полученные результаты обязательно записываются, а в последствии сравниваются с табличными. Таблицы можно найти в ПУЭ и ПТЭЭП. Если фактическое значение не ниже табличного, то проверяемый кабель можно дальше эксплуатировать. Кстати, на основе проводимых испытаний должно быть сделано заключение и обязательно составлен протокол, где указаны фактические показатели тестирования.

Другие позиции

Измерение сопротивления изоляции кабеля

Кроме силовых и контрольных линий мегаомметром можно измерять и другие, работающие от электрического тока. К примеру:

  • Машины постоянного тока, а точнее, их обмотки и бандажи со всеми присоединенными к ним кабелями и проводами. При этом настройка мегомметра производится: при номинале напряжения до 500 В устанавливается предел 500 вольт, при номинале выше 500 на предел 1000 вольт. Сопротивление изолирующего слоя не должно быть ниже 0,5 МОм.
  • Варочные бытовые электрические плиты проверяются испытательным прибором при 1000 вольт. Норма – 1 МОм.
  • Проверка электрооборудования лифтов и различных подъемных кранов также производится мегомметром, который выставляется на 1000 В. 0,5 МОм – это норма сопротивления.

Заключение по теме

Подходить к измерению сопротивления изоляции кабельных линий магаомметром необходимо строго, учитывая временные нормы. Для некоторых линий тестирования проводятся один раз в год, для других один раз в несколько лет. Пропущенный срок – это нарушение безопасности эксплуатации, что может в один миг привести к неприятным последствиям.

Как правильно проверить сопротивление мультиметром

  • Измерение сопротивления изоляции кабеля

    Как правильно пользоваться измерителем сопротивления измерения ИС 10

  • Измерение сопротивления изоляции кабеля

    Как прозвонить провод мультиметром – нюансы процесса

    Измерение сопротивления изоляции электропроводки

    По токоведущим жилам проводов и кабелей ток течет в нужном направлении. А изолирующее покрытие этих жил препятствует прохождению тока в места, где ему нельзя появляться. Это исключает случайное прикосновение людей к токоведущим частям, предотвращает короткие замыкания в распределительных сетях.

    Измерение сопротивления изоляции кабеля

    Измерение сопротивления изоляции

    Но оболочки проводников – вещь непрочная. Уже в процессе прокладки кабеля их можно передавить или содрать об острые кромки предметов, попадающихся на трассе. При разделке концов кабеля можно случайно порезать ножом изоляцию токоведущих жил. При пайке поливинилхлорид плавится и теряет изоляционные свойства, а резина со временем высыхает и трескается, обнажая покрытые ею проводники.

    Причины ухудшения изоляции

    Способствует ухудшению изоляционных свойств кабелей и локальные нагревы контактных соединений. Тепло, распространяясь по металлической жиле, нагревает материал покрытия, снижая его изоляционные свойства. Это относится и к соединительным коробкам, и к местам подключения проводников к автоматическим выключателям, нулевым шинам, розеткам.

    Измерение сопротивления изоляции кабеля

    Повреждение изоляции из-за перегрева

    Корпуса коммутационных аппаратов: выключателей, автоматов, рубильников – выполняются из изоляционных материалов. Снижение изоляции происходит, если на них оседает пыль, грязь, металлические опилки. Уменьшению изоляционных свойств содействует перегрев корпусов, обугливание их после коротких замыканий.

    Бич электрощитовых – влажность. Повреждения трубопроводов, образование конденсата, подтопление подвальных помещений с распределительными устройствами – все это приводит к появлению капелек воды между выводами электрооборудования, находящихся под разными электрическими потенциалами. Вода в чистом виде электрический ток не проводит. Но, попадая на грязь и пыль, покрывающую корпуса электроприборов, она растворяет находящиеся в ней вещества, становясь проводником электрического тока. Происходит короткое замыкание.

    Измерение сопротивления изоляции кабеля

    Повреждение изоляции кабеля в процессе монтажа

    Наибольший риск встретить поврежденную изоляцию возникает после монтажных работ. Второй пик проблем встречается уже в эксплуатации. через некоторое количество лет после монтажа. Отдельным видом выделяются повреждения, связанные с неправильной эксплуатацией электроприборов и электропроводки, затопления квартиры соседями и вбитые в трассу гвозди при попытке повесить картину на стену.

    Отличие мегаомметра от мультиметра

    Отключился автомат, квартира погрузилась во мрак. Причина – короткое замыкание. Нужно найти место повреждения, иначе света не будет. Если в результате перегрева замкнулись между собой две жилы в соединительной коробке или в кабеле, найти его можно и мультиметром в режиме измерения сопротивления. На неисправной паре жил он покажет ноль. Но это – простой случай.

    Обугленный участок изоляции имеет сопротивление, далекое от нуля. Через него протекает небольшой ток, подогревая оболочку, постепенно ухудшая изоляцию. В какой-то момент происходит пробой, ток резко возрастает, срабатывает защита. Поврежденный участок мгновенно остывает, его сопротивление увеличивается. Мультиметр покажет, что оно равно бесконечно большой величине. Чтобы нейти такое повреждение, нужен прибор, выдающий при измерениях в тестируемую цепь напряжение, соизмеримое или большее, чем напряжение в сети. Таким прибором является мегаомметр.

    Устройство мегаомметра

    Для измерений этот прибор выдает в проверяемую цепь постоянный ток. Переменный для этой цели не годится, поскольку все кабельные линии обладают емкостным сопротивлением. А конденсаторы переменный ток проводят. Это приведет к искажению результатов измерений.

    В зависимости от рабочего напряжения сети и тестируемой аппаратуры, выпускаются мегаомметры с напряжением 100, 500, 1000 и 2500 В. Стовольтовые используются для проверки изоляции низковольтных кабелей и полупроводниковой техники, на 500 В – обмоток электрических машин небольшой мощности. Приборы с напряжением 2500 В предназначены для измерений на высоковольтных аппаратах, кабельных и воздушных линиях. Какой прибор выбрать для проведения измерений – указано в нормативно-технической документации по наладке или эксплуатации, ПУЭ, паспортах на электрооборудование.

    Для измерения сопротивления изоляции в бытовых осветительных и розеточных сетях используются мегаомметры на напряжение 1000 В .

    В устаревших конструкциях мегаомметров для выработки измерительного напряжения использовался генератор, ротор которого приводился во вращение рукояткой. Ее раскручивали до скорости 120 оборотов в минуту, иначе напряжение на выходе оказывалось ниже номинального. Измерительный механизм у таких устройств – аналоговый, со шкалой и стрелкой. Шкала делилась на две части – верхнюю и нижнюю, соответствующие двум диапазонам измерения сопротивлений. Отметки на шкале располагались неравномерно, что усложняло отсчет показаний. Да и снимать эти показания, одновременно вращая ручку мегаомметра, было не очень-то удобно – корпус прибора дергался, стрелка прыгала. К тому же у пользователя были заняты обе руки: одной он удерживал прибор на месте, другой – крутил ручку. Измерительные щупы на контактах удерживал его помощник, либо к ним припаивали зажимы типа «крокодил».

    Измерение сопротивления изоляции кабеля

    Для каждого измерительного напряжения выпускался свой мегаомметр. Лишь модель типа ЭСО 202 содержала переключатель на 500, 1000 или 2500 В. Для выполнения измерений в электролабораториях содержали целый парк мегаомметров.

    Измерение сопротивления изоляции кабеля

    Мегаомметр ЭСО 202/2

    Современные приборы стали полупроводниковыми. Выбор пределов измерений у них происходит автоматически, а испытательное напряжение выбирается перед измерениями в меню или с помощью переключателя. Габариты прибора позволяют его удерживать в руке совместно с одним из щупов, что позволяет проводить измерения единолично. Некоторые модели снабжаются кнопкой запуска на одном из щупов.

    Измерение сопротивления изоляции кабеля

    Но многие современные мегаомметры имеют один существенный недостаток, переводящий их в режим обычного пробника. По правилам, измеренным сопротивлением изоляции является величина, показанная прибором через 60 секунд после начала испытания. Большинство же моделей выдают испытательное напряжение на несколько секунд и не имеют режима длительной генерации напряжения. Не все дефекты можно выявить за столь короткое время.

    Правила проведения измерений мегаомметром

    Мегаомметр относится к приборам, измеряющим характеристики электрооборудования, связанные с определением возможности его безопасной эксплуатации. А на его выводах при измерениях присутствует опасное для жизни напряжение. Поэтому его применение возможно в случаях:

    1. Прибор должен проходить метрологическую поверку один раз в год.
    2. Пользоваться мегаомметром дозволяется обученному персоналу.
    3. Правом выдачи протокола с заключением о пригодности электропроводки к дальнейшей эксплуатации обладает только лицензированная электротехническая лаборатория. Измерения, проведенные другими лицами, юридической силы не имеют.

    Если в вашем распоряжении оказался мегаомметр, то измерять сопротивление изоляции вы можете только по личной инициативе. Закончили монтаж электропроводки соседу, измерили — убедились в отсутствии дефектов. Но если при подключении соседского домика к сети энергоснабжающая организация потребует протокол измерений – ваши труды не зачтутся. Соседу придется вызывать специалистов и платить им деньги за ту же самую работу.

    В детских садах, школах, учреждениях и на предприятиях сопротивление изоляции электропроводок измеряется регулярно. Результаты оформляются протоколами, которые требуют представители пожарной охраны и энергонадзора. К протоколам прикладываются регистрационные документы лаборатории, выполнившей измерения. Без них они – никому не нужная бумажка.

    Измерение сопротивления изоляции кабеля

    Протокол измерения сопротивления изоляции

    Если в помещении организации произойдет пожар, первым делом от ее руководителей требуют протоколы измерений изоляции. Если их нет – виновные определяются автоматически. То же происходит и при поражении сотрудника электрическим током. Даже, если он сам засунул в розетку отвертку, держась за ее стержень. Если при расследовании несчастного случая не обнаружится протокол измерений изоляции – проблемы руководству обеспечены.

    Тем не менее, мегаомметр – прибор, полезный для людей, занимающихся монтажом электропроводки. Лучше найти дефект сразу. до приезда специально обученных персон. Иначе они приедут еще раз, после устранения дефекта. Искать его самостоятельно персонал лаборатории не обязан. Вернувшись, они заставят владельца выложить дополнительную сумму за труды. Скорее всего, он вычтет ее из вашего гонорара.

    После замены электропроводки в квартире измерения изоляции официально не требуются. Поэтому их не помешает выполнить для самоуспокоения, а в глазах клиента ваш рейтинг в итоге только возрастет.

    Правила измерения изоляции мегаомметром

    Перед каждым использованием у любого мегаомметра проверяют целостность изоляции измерительных проводов. Это важно, так как повреждения приводят к электротравмам.

    На мегаомметре устанавливают необходимое испытательное напряжение. затем проверяют исправность измерительной цепи и прибора. Для этого щупы соединяют накоротко, производят измерение. Прибор покажет ноль. Щупы рассоединяют и снова проводят измерение. Прибор покажет бесконечность. Эти манипуляции производят регулярно, чтобы своевременно обнаружить сбитые настройки, оборвавшийся провод, ослабевший контакт или неисправность мегаомметра.

    Правила измерений сопротивления изоляции требуют, чтобы для кабельной линии была измерена изоляция между жилами во всех возможных комбинациях. Для трехжильного кабеля – три измерения, для четырехжильного – шесть, пятижильного – десять. В реальности реализовать эту проверку можно, имея в наличии кабель с отключенными жилами. Отключать их для проверки после монтажа – операция сложная.

    Измерение сопротивления изоляции кабельной линии

    Поскольку в системах с глухозаземленной нейтралью нулевой рабочий и защитный проводники соединены между собой. то и прибор между ними покажет ноль. Но, даже если отключить от объекта питающий кабель, все нулевые рабочие и защитные проводники, объединенные на шинах, покажут одно и то же сопротивление между собой. Если оно укладывается в норму, то все хорошо. А если нет – придется их отсоединять от шин по очереди, следя за изменениями изоляции.

    Упрощенный способ измерения для розеточных групп – измерить сопротивление фазного проводника от автоматического выключателя питания относительно нулевой и РЕ шины.

    Для осветительной сети все сложнее. Под фазным потенциалом при работе светильников оказывается участок от автомата питания до осветительного прибора, проходящий через выключатель. Если не вывернуть лампу из светильника, прибор покажет его сопротивление. Поэтому при измерениях сопротивления изоляции осветительных сетей лампы выворачивают, а выключатели переводят во включенное положение. Так тестируется участок, реально находящийся под напряжением в эксплуатации.

    И не забываем про полупроводниковые ПРА. У них на входе выпрямитель. Чтобы его не повредить, провода от светильника отключают. Хотя современные мегаомметры, почуяв неладное, резко снижают испытательное напряжение до минимальной величины. Полупроводниковые элементы редко выходят из строя, но испытывать судьбу лишний раз не стоит.

    Результаты измерений для бытовой электропроводки должны уложиться в предел 0,5 МОм. Все, что ниже этой планки, подлежит устранению. На самом деле, новые кабельные линии имеют сопротивление изоляции сотни и тысячи мегаом. Значения ниже сотни характерны для старой электропроводки, да еще и порядком изношенной.

    Оцените качество статьи. Нам важно ваше мнение:

    Как выполняется проверка изоляции кабеля

    Измерение сопротивления изоляции кабеляКачество изоляционного слоя кабеля очень сильно влияет на надежность работы электроустановки в целом. Оно может меняться как при изготовлении на заводе, так и во время хранения, транспортировки, монтажа схемы, а, особенно, при ее эксплуатации.

    Например, попавшая внутрь изоляции влага при отрицательных температурах замерзнет и изменит свои электропроводящие свойства. Определить ее наличие в этой ситуации весьма проблематично.

    Качеству изоляции уделяется постоянное внимание, которое комплексно реализуется:

    периодическими обязательными проверками обученным персоналом;

    автоматическим отслеживанием специальными приборами контроля во время выполнения постоянного технологического цикла.

    Во время оценки кабеля персоналом определяется его механическое состояние и проверяются электрические характеристики.

    При внешнем осмотре, который является обязательным во время любой проверки, довольно часто можно увидеть только выведенные для подключения концы кабеля, а остальная его часть скрыта от обзора. Но даже при полном доступе определить качество изоляционного слоя невозможно.

    Электрические проверки позволяют выявить все дефекты изоляции, что разрешает сделать вывод о пригодности кабеля к дальнейшей эксплуатации и дать гарантии на его использование. Они по степени сложности подразделяются на:

    Первый способ применяется для оценки качества в следующих случаях:

    после приобретения до начала укладки в электросхему, чтобы не тратить время на прокладку и последующий демонтаж неисправного кабеля;

    после выполнения монтажных работ для оценки их качества;

    когда закончены испытания. Это позволяет оценить исправность изоляции, подвергшейся действию повышенного напряжения;

    периодически в процессе эксплуатации для контроля сохранности технических характеристик под воздействием рабочих токовых нагрузок или факторов окружающей среды.

    Испытания изоляции кабеля проводятся после его монтажа до подключения в работу или периодически при эксплуатации по мере необходимости.

    Как устроен кабель

    Для объяснения принципа электрических проверок рассмотрим структуру простого, часто встречающегося кабеля марки ВВГнг.

    Измерение сопротивления изоляции кабеля

    Каждая из его токоведущих жил снабжена собственным слоем диэлектрического покрытия, которое изолирует ее от соседних жил и утечек на землю. Токоведущие провода помещены в заполнитель и защищены оболочкой.

    Другими словами, любой электрический кабель состоит из металлических проводов, чаще всего на основе меди или алюминия и слоя изоляции, предохраняющего жилы от возникновения токов утечек и коротких замыканий между всеми фазами и землей.

    Каждый кабель предназначен для передачи определенного вида энергии при различных условиях эксплуатации. К нему предъявляются определенные, специфические требования, оговоренные ПУЭ. С ними необходимо ознакомиться до проведения электрических измерений.

    Приборы для проверок

    Иногда начинающие электрики для замера изоляции кабеля или электропроводки пользуются тестерами или мультиметрами, на которых нанесена шкала замера сопротивлений в килоОмах и мегаОмах. Это является грубой ошибкой. Такие приборы предназначены для оценки параметров радиодеталей, работают от маломощных элементов питания. Они не способны создать необходимую нагрузку на изоляцию кабельных линий.

    Этим целям служат специальные приборы — мегаомметры. называемые на жаргоне электриков «мегомметрами». Они имеют много конструктивных исполнений и модификаций.

    Измерение сопротивления изоляции кабеля

    До начала пользования любым прибором необходимо каждый раз проверять его исправность:

    оценкой сроков прохождения проверок метрологической лабораторией по состоянию ее клейма на корпусе. Правила безопасности не разрешают пользоваться измерительным прибором с нарушенным клеймом даже когда есть паспорт о проведенной проверке до окончания ее действия;

    проверкой сроков периодических испытаний изоляции у высоковольтной части прибора электротехнической лабораторией. Неисправный мегаомметр или поврежденные соединительные провода могут быть причиной поражения персонала электрическим током.

    контрольным замером известного сопротивления.

    Внимание! Все работы с мегаомметром относятся к категории опасных! Их имеет право выполнять только обученный, прошедший проверку и допущенный комиссией персонал с группой по электробезопасности III и выше.

    Технические вопросы подготовки кабеля к замеру изоляции и испытаниям

    Обратите внимание на то, что организационная часть здесь рассматривается очень кратко и не полностью. Это большая, важная тема для другой статьи.

    1. Все работы по измерению должны проводиться на кабеле со снятым с него напряжением и, как правило, окружающего оборудования. Действие наведенных электрических полей на схему замера должно быть исключено.

    Это диктуется не только безопасностью, но и принципом работы прибора, который основан на подаче калиброванного напряжения в схему от собственного генератора и замере возникших в ней токов. Деления шкалы аналоговых приборов и отсчеты цифровых моделей в Омах пропорциональны величине возникающих токов утечек.

    2. Кабель, подключенный к оборудованию, необходимо отключать со всех сторон.

    Измерение сопротивления изоляции кабеля

    Иначе будет замеряться сопротивление изоляции не только его жил, а всей оставшейся подключенной схемы. Иногда этим приемом пользуются для ускорения работы. Но, в любом случае, для получения достоверных сведений схему подключения оборудования необходимо учитывать.

    Для отключения кабеля выполняется расшиновка его концов или отключаются коммутационные аппараты, к которым он подключен.

    В последнем случае при получении отрицательных результатов необходимо проверять изоляцию цепей этих аппаратов.

    3. Длина кабеля может достигать большой величины порядка километра. На удаленном конце в самый неожиданный момент могут появиться люди и своими действиями повлиять на результат измерения или пострадать от высокого напряжения, приложенного к кабелю от мегаомметра. Это необходимо предотвратить выполнением организационных мероприятий.

    Особенности безопасного использования мегаомметра и технология выполнения замера

    Длинные кабели, проложенные в электрических сетях вблизи работающего высоковольтного оборудования. могут находиться под наведенным напряжением, а при отключении от контура заземления иметь остаточный заряд, энергия которого способна нанести вред организму человека. Мегаомметр вырабатывает повышенное напряжение, которое прикладывается к жилам кабеля, изолированным от земли. При этом тоже создается емкостной заряд: каждая жила работает как обкладка конденсатора.

    Оба этих фактора вместе накладывают условие безопасности — применять при замерах сопротивления каждой жилы, как по отдельности, так и в комплексе, переносное заземление. Без него прикасаться к металлическим частям кабеля без применения защитных электротехнических средств категорически запрещено.

    Как измерить сопротивление изоляции жил относительно земли

    Рассмотрим в качестве примера проверку сопротивления изоляции одной жилы относительно земли.

    Первый конец переносного заземления вначале надежно крепится к контуру земли и больше не снимается до полного окончания электрических проверок. Сюда же подключается один из двух проводов мегаомметра.

    Второй конец заземления, оборудованный изолированным наконечником с предохранительным кольцом и зажимом для быстрого подключения типа «Крокодил» с соблюдением правил безопасности подключают на металлическую жилу кабеля для снятия с нее емкостного заряда. Затем, без снятия заземления, сюда же коммутируется вывод второго провода от мегаомметра.

    Только после этого «крокодил» заземления разрешается снять для проведения замеров подачей напряжения на подготовленную электрическую цепь. Время измерения должно составлять не менее одной минуты. Это необходимо для стабилизации переходных процессов в схеме и получения точных результатов.

    Когда генератор мегаомметра остановлен отключать прибор от схемы нельзя из-за присутствующего на ней емкостного заряда. Для его отвода необходимо повторно использовать второй конец переносного заземления, наложить его на проверяемую жилу.

    Проводник, идущий от мегаомметра, снимается с жилы после подключения на нее переносного заземления. Таким образом, цепи измерительного прибора всегда коммутируются к испытательной схеме только при установленном заземлении, которое убирается на момент проведения замера.

    Описанная проверка состояния изоляции кабеля мегаомметром для фазы С демонстрируется последовательностью рисунков.

    Измерение сопротивления изоляции кабеля

    В приведенном примере для упрощения понимания технологии не описаны действия с другими жилами, оставшимися под наведенным напряжением, которое должно сниматься установкой закоротки с дополнительным переносным заземлением, что значительно усложняет схему и выполнение измерений.

    На практике с целью ускорения работы по проверке изоляции фаз относительно земли все жилы кабеля подключают к закоротке. Эту операцию должен выполнять персонал, допущенный к работе под напряжением. Она опасна.

    В рассматриваемом примере это фазы РЕ, N, А, В, С. Далее осуществляют измерения по вышеперечисленной технологии для всех параллельно включенных цепочек сразу.

    Измерение сопротивления изоляции кабеля

    Обычно кабели эксплуатируются в исправном состоянии, то такой проверки бывает достаточно. Если получается неудовлетворительный результат, то придется пофазно осуществлять все замеры.

    Как измерить сопротивление изоляции между жилами кабеля

    С целью улучшения понимания процесса сделаем упрощение, что кабель не находится под влиянием наведенного напряжения и имеет короткую длину, которая не создает значительных емкостных зарядов. Это позволит не описывать действия с переносным заземлением, которые необходимо выполнять по уже рассмотренной технологии.

    Перед замером обязателен осмотр собранной схемы и проверка с помощью индикатора отсутствия напряжения на жилах. Их необходимо развести в стороны без касания друг друга и каких-либо окружающих предметов. Мегаомметр подключают одним концом к фазе, относительно которой будет выполняться замер, а вторым проводом поочередно коммутируются оставшиеся фазы для проведения измерений.

    Измерение сопротивления изоляции кабеля

    В нашем примере выполняется замер изоляции всех жил поочередно относительно фазы РЕ. Когда он закончится, то выбираем за общую очередную фазу, например, N. Аналогичным образом осуществляем замеры относительно ее, но с предыдущей фазой уже не работаем. Ее изоляция между всеми жилами проверена.

    Измерение сопротивления изоляции кабеля

    Затем выбираем очередную фазу в качестве общей и продолжаем замеры с остальными жилами. Таким способом перебираем все возможные комбинации соединения жил между собой для анализа состояние их изоляции.

    Еще раз хочется обратить внимание, что эта проверка описана для кабеля, не подвергающегося наведенному напряжению и не обладающего большим емкостным зарядом. Слепо копировать ее на все возможные случаи нельзя.

    Как документально оформить результаты измерений

    Дату и объем проверки, сведения о составе бригады, применяемые измерительные приборы, схему подключения, температурный режим, условия выполнения работы, все полученные электрические характеристики необходимо сохранить в записи. Они могут потребоваться в будущем для исправного кабеля и служить доказательством неисправности забракованному изделию.

    Поэтому на проведенные измерения составляется протокол, заверенный подписью производителя работ. Для его оформления можно использовать обыкновенный блокнот, но более удобно применить заранее подготовленный бланк, содержащий сведения о последовательности операций, напоминания по мерам безопасности, основные технические нормативы и таблицы, подготовленные к заполнению.

    Такой документ удобно составить один раз с помощью компьютера, а затем просто распечатывать его на принтере. Этот способ экономит время на подготовку, оформление результатов измерений, придает документу официальный вид.

    Особенности испытания изоляции

    Эта работа проводится с помощью специальных стендов, содержащих посторонние источники повышенного напряжения с измерительными приборами, относится к категории опасных. Ее выполняет специально обученный и допущенный персонал, который организационно на предприятиях входит в состав отдельной лаборатории или службы.

    Технология испытаний во многом напоминает процесс измерений изоляции, но при этом используются более мощные источники энергии и высокоточные измерительные приборы.

    Результаты испытаний, как и при измерениях, оформляются протоколом.

    Работа приборов контроля изоляции

    Автоматической проверке состояния изоляции электрооборудования в энергетике уделяется много внимания. Она позволяет значительно повысить надежность электроснабжения потребителей. Однако это отдельная большая тема, которая требует дополнительного раскрытия в другой статье.

    Полезное для электрика

    Источники: http://onlineelektrik.ru/elaboratoriya/eizmereniya/izmerenie-soprotivleniya-izolyacii-kabelnyx-linij-megaommetrom.html, http://electric-tolk.ru/izmerenie-soprotivleniya-izolyacii-elektroprovodki/, http://electricalschool.info/main/ekspluat/1561-kak-vypolnjaetsja-proverka-izoljacii.html

    electricremont.ru


  • Categories: Заземление

    Добавить комментарий

    Ваш e-mail не будет опубликован. Обязательные поля помечены *

    Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

    Adblock
    detector