При эксплуатации жилых помещений и производственных зданий должно периодически проводиться диагностирование изоляции электропроводки и энергетического оборудования с осуществлением замеров устойчивости изоляционного слоя для предотвращения аварийных ситуаций. (см. Рис. 1)

Измерение показателя изоляции электросети

Условия эксплуатации электрических сетей

В процессе эксплуатации электрических сетей происходит воздействие множества различных факторов:

  1. Возможны повреждения, допущенные в ходе проведения ремонтных работ.
  2. Внешнее воздействие погодных условий (повышенной и отрицательной температуры, воздействия солнечных лучей, осадков).
  3. Повышенной нагрузки по причине подключения приборов большой мощности.
  4. Разрушается изоляции электропроводки в результате длительной эксплуатации.
  5. Выявления скрытых дефектов изоляции.

Для выявления повреждений изоляции необходима регламентная ревизия, проводимая строго по графику с осуществлением диагностики состояния электропроводки на объекте.

Оборудование, используемое для проведения замеров

Прибор для проведения измерений изоляционного слоя электропроводки

Для проведения измерения показателя изоляции электропроводки используется специальный прибор – мегомметр (см. Рис. 2). Причем внутренняя проводка измеряется с допустимым установленным уровнем до 1000 В, а кабель силовой – до 2500 В.

Процесс замера изоляции выполняется в следующей последовательности:

  1. Снимается показатель сопротивления между токоведущими проводами.
  2. Замеряется потенциал между каждым проводом и приводом заземления.

Измерение должно производиться с соблюдением определенных правил, а процесс продолжаться более 1 мин. с показателем изоляции более 0.5 Мом.

Периодичность выполнения замеров изоляции

Основополагающим документом является приложение 3 ПТЭЭП, когда устанавливается количество плановых инспекций для осуществления замеров изоляционного покрытия токопроводящих сетей –  1 проверка в течение 3 лет (п.2.12.17). По  ГОСТ Р 50571 16-99 регламент проведения проверок тот же с учетом дополнительных замеров непрерывности изолирующих проводников, полного сопротивления действующей сети фаза-нуль и состояния УЗО.

Периодичность проведения проверок ПТЭЭП зависит от специализации предприятия и условий эксплуатации электросетей и оборудования.

В помещения, где существует возможность поражения током из-за внешних факторов:


  • экстремального температурного режима;
  • повышенной концентрации влаги;
  • наличия токопроводящих полов;
  • большого количества установленного и используемого энергетического оборудования, замеры должны проводиться 1 раз за год.

На предприятиях оснащенных большим количеством электрооборудования необходимо проводить профилактический ремонт, что поможет избежать преждевременного выхода действующего оборудования из строя.

Плановые проверки согласно ПТЭЭП по замеру изоляции должны выполняться с привлечением специалистов специализированных электроизмерительных лабораторий имеющих регистрацию в Ростехнадзоре.

Согласно действующим нормативным документам (ПТЭЭП) проверка должна, проводится:

  1. В административных зданиях – 1 раз в течение 3 лет.
  2. В эксплуатируемых многоэтажных домах – 1 раз в течение 3 лет.
  3. В зданиях торговых предприятий – 1 раз в течение года.
  4. Электротехнического оборудования – 1 раз в течение 6 месяцев.

Результаты предоставляются заказчику в виде специального отчета (по ГОСТ Р 50571), где указывается вся необходимая информация о фактическом состоянии электрооборудования и кабельных сетей. Данный акт предъявляется при проверке предприятия инспектору госпожарнадзора или Ростехнадзора.

Периодичность проведения проверок предприятий, учреждений и жилых помещений по видам проводимых замеров:


  • сопротивления изоляционного покрытия – 1 раз в течение 3 лет;
  • переходных значений сопротивлений – 1 раз в течение 3 лет;
  • значение сопротивления петли фаза-нуль – 1 раз в течение 3 лет;
  • УЗО – 1 раз с периодичностью 3 лет.

Особые требования предъявляются (по ПТЭЭП), когда осуществляются замеры показателей, проверка оборудования и кабельных сетей в лечебных заведениях, дошкольных учреждениях, школах, а также лифтового оборудования установленного в жилых домах и учреждениях.

Периодичность проверок должна осуществляться:

  • сопротивления изоляционного покрытия – 1 раз в течение 1 года;
  • переходных значений сопротивлений – 1 раз в течение 1 года;
  • значений сопротивления петли фаза-нуль – 1 раз в течение 1 года;
  • УЗО – 1 раз в течение 1 года.

Плановая периодичность проведения проверок составляется заказчиком самостоятельно, но с учетом нормативных документов (ПТЭЭП, ГОСТ). При вводе нового объекта в строй проводится полная ревизия всех энергосистем согласно графику и оформляется акт соответствия требуемым нормам.

При использовании оборудования с напряжением до 1000 В с заземленным нейтральным проводом — 1 раз в период 2 года, с обязательной проверкой автоматического отключения энергоснабжения.


При проведении текущего или капитального ремонта электрооборудования сроки испытаний и проведения измерений устанавливаются, руководителем предприятия на основе действующих нормативных документов.

Для каждой отрасли промышленного производства разработаны особые нормы проведения проверок, которые должны строго, выполнятся с учетом обеспечения безопасной эксплуатации энергетического оборудования и электрических сетей.

elquanta.ru

Как все устроено?

В идеальном случае каждая организация составляет график планово-предупредительного ремонта (ППР) всего своего электрооборудования. Для выполнения этого вида работ на каждом предприятии, где есть электрооборудование, назначают лицо ответственное за электрохозяйство. В график ППР электрооборудования вносят все эксплуатационные (межремонтные, периодические, профилактические) электрические измерения и испытания. Периодичность подобных работ для каждой электроустановки определяет технический руководитель с учетом требований правил технической эксплуатации электроустановок потребителей (ПТЭЭП) и другой нормативно-технической документации.

Измерение сопротивления изоляции в соответствии с ПТЭЭП

При тщательном изучении таблицы 37 приложения 3.1. к ПТЭЭП можно найти ответы на большинство вопросов относительно периодичности измерения параметров электрической изоляции. В соответствии с этим нормативным документом измерение характеристик электрической прочности изоляции проводят:


  1. В наружных установках и помещениях с особой опасностью – один раз в год.
  2. Во всех других случаях один раз в три года.

Правила устройства электроустановок (ПУЭ) описывают особо опасное помещение, как помещение со следующими факторами:

  • высокая температура на протяжении длительного периода времени;
  • наличие в окружающем воздухе повышенного содержания токопроводящей пыли;
  • возможность одновременного прикосновения человека к заземленным частям и корпусу электрооборудования;
  • повышенный уровень влажности;
  • полы, которые изготовлены из токопроводящих материалов;
  • наличие в окружающей среде химически или органически активных веществ;
  • сочетание двух и более опасных факторов;
  • территория ОРУ относится к помещениям с особой опасностью.

На практике для большинства электроустановок периодичность проверки сопротивления изоляции по ПТЭЭП составляет один раз в три года. Исключение можно сделать для следующих объектов:тепловые пункты индивидуального типа (ИТП), промышленные здания и сооружения, помещения для распределительных устройств, автомобильные стоянки и др.


Как это выглядит в реальной жизни?

В реальности большинство компаний не назначают лицо ответственное за электрохозяйство. При этом график ППР либо отсутствует, либо не выделен отдельным документом из общего документооборота. Для подобных случаев, руководителям компании будет полезно ознакомиться с содержанием нашей статьи. На основании ПТЭЭП п. 3.6.2, технический руководитель в соответствии с приложением №3 этих же правил определяет конкретные сроки для измерений и испытаний характеристик электрического оборудования во время технического обслуживания. Указанная в ПТЭЭП периодичность является рекомендацией, поэтому может изменяться соответствующим решением технического руководителя.

ПТЭЭП содержат максимально допустимый интервал между профилактическими работами различного типа. При этом чаще производить электроизмерения разрешено, реже – нет. Для наглядности приведем выдержку из ПТЭЭП таблица 28 приложение 3:

Нормы испытаний которых не определены в разделах 2–27

В этой таблице представлены разновидности испытаний и измерений для электроустановок с номинальным рабочим напряжением до 1 кВ. В колонке №2 «Вид испытания» фигурируют следующие обозначения:

  • «К» — капитальный ремонт;
  • «Т» — текущий ремонт;
  • «М» межремонтный испытания.

Понятия капитального и текущего ремонта достаточно знакомы для технических специалистов. Но, межремонтные виды работ у многих вызывают недоумение. К подобным работам относят широкий перечень операций:

  • проверка УЗО;
  • измерение сопротивления петли фаза-нуль;
  • проверка переходного сопротивления между установками, которые подлежат заземлению и элементами заземляющего устройства;
  • проверка работы защитных устройств в системе с заземленной нейтралью;
  • измерение сопротивления изоляции электрооборудования.

Исходя из ПТЭЭП проверка работы УЗО выполняется не реже, чем раз в квартал. Периодичность проверки величины сопротивления изоляции приведена в таблице 37 приложения 3.1. к ПТЭЭП. Для двух последних видов измерений интервалы межремонтных периодов не указаны вовсе.

В реальной жизни период для проведения всех типов измерений определяют с учетом периодичности измерения сопротивления изоляции по нескольким причинам:

1.      Этот тип измерений определен для всех типов электроустановок и имеет фиксированные сроки.

2.      Определение сопротивления изоляции для электроустановок с напряжением до 1 кВ является наиболее востребованным испытанием.

Исключения из общих правил

Во многих сферах деятельности существуют свои внутренние требования и правила, которые регламентируют периодичность электрических измерений. Во многих случаях требования этой документации идентичны с ПТЭЭП или дублируют их. Но, в некоторых случаях отраслевые правила устанавливают более жесткие требования к проведению испытаний и измерений. В объеме данной статьи нет возможности перечислить полный перечень всех исключений, но основные из них мы приведем ниже:


1. Для заведений начального профессионального и высшего образования следует руководствоваться приказом N 662 от 11 марта 1998 г. Министерства общего и профессионального образования РФ:

В этом случае руководство каждого образовательного учреждения обязано контролировать своевременное проведение испытаний и измерений параметров электрооборудования в соответствии с ПТЭЭП.

2. Периодичность замера сопротивления изоляции в средних учебных заведениях (школах) г. Москвы регламентирует приказ №156 от 29.03.2012 года городского департамента образования:

Для школьных учреждений сроки замеров сопротивления изоляции четко определены, что освобождает руководство на местах от штудирования приложений ПТЭЭП.

3. Для объектов здравоохранения следует ориентироваться на Правила пожарной безопасности для учреждений здравоохранения ППБО 07-91:

Подобные по содержанию требования включает ГОСТ Р 50571.28-2006 "Электроустановки зданий. Часть 7-710. Требования к специальным электроустановкам. Электроустановки медицинских помещений" и приказ №46
от 27.01.2015 департамента здравоохранения г. Москвы (ДЗМ):

Для заведений здравоохранения законодательная база уже четко определила сроки проведения замеров сопротивления изоляции, поэтому не потребуется прибегать к изучению другой нормативно-технической документации.

4. В соответствии с ПТЭЭП для лифтов и кранов действует норматив по измерению сопротивления изоляции кабелей не реже одного раза в год. Для определения нормы для подъемников необходимо дополнительно искать в Правилах  устройства и безопасной эксплуатации строительных подъемников ПБ 10-518-02:

Руководство этими пунктами позволяет построить график ППР с учетом всех возможных случаев технического обслуживания подъемников и кранов.

5. Для заведений общественного питания актуальны требования Межотраслевых правил по охране труда в общественном питании ПОТ РМ-011-2000.

6. Компании по предоставлению услуг стирки и химчистки должны руководствоваться положениями Межотраслевых правил по охране труда при химической чистке и стирке ПОТ РМ-013-2000:

7. Для предприятий розничной торговли совсем недавно в соответствии с приказом Минтруда РФ от 23.01.2013 №24 были отменены ПОТ РМ-014-2000. По этой причине для объектов розничной торговли следует руководствоваться ПТЭЭП.

Этот перечень включает только самые главные отраслевые документы, поэтому осталось еще много направлений деятельности не охваченных этой статьей.

Заключение


Несмотря на многочисленную нормативно-техническую базу документации для различных сфер деятельности. Потребитель должен самостоятельно осознавать необходимость в эксплуатационных испытаниях для своего электрооборудования. Это связано с высоким риском для персонала при обслуживании неисправного электрооборудования. Своевременный контроль и обнаружение дефектов электрооборудования на ранних стадиях развития позволяет предупредить сложные системные аварии и человеческие жертвы.

www.energyc.ru

Приемо-сдаточные измерения

Аналогичные замеры сопротивления изоляции осуществляются по окончании всех электромонтажных работ. Технический отчет, который составляется в соответствии с выполненными испытаниями, является частью комплекта документов и необходим для ввода в эксплуатацию электрической установки.

Регулярные измерения

Регулярные измерения сопротивлений изоляции, устройств, имеющих заземляющее назначение и т. д. необходимы в соответствии с требованиями контролирующих органов (энергонадзор, пожарный надзор, санитарно-эпидемический надзор). Срок между периодическими проверками зависит от вида установки, условий эксплуатации, а также требований нормоутверждающих документов.

Замеры сопротивления изоляции нормативные документы«>

Профилактические электроизмерения

Проведение замеров сопротивления изоляции с профилактической целью осуществляются для выявления неисправного или не отвечающего нормам и правилам эксплуатации электрических установок. Такое выполняется для того, чтобы предотвратить случаи травмирования работника, возгорание электрических проводов.

Замеры сопротивления изоляции нормативные документы«>

Показатели изоляционного сопротивления электропроводов

К основным показателям относятся следующие:

  1. Изоляционное сопротивление постоянному току. Существование внутри и внешне дефектных недостатков (повреждение, появление влаги, загрязнение на поверхности) понижает изоляционное сопротивление. Этот коэффициент достигается способом замера тока утечки, который проходит сквозь изоляционный материал, когда прилагается к последнему напряжение выпрямленное.
  2. Абсорбционный коэффициент. Этот показатель показывает влажность изоляционного материала. Он представляет собой соотношение значение сопротивления через минуту после того как приложено напряжение мегаомметра (R60) к сопротивлению изоляционного материала через 15 секунд (R15). В случае, когда сухой изоляционный материал, то этот коэффициент превышает 1, а когда изоляция увлажнена, абсорбционный коэффициент приближается к 1. Число этого коэффициента должно разниться с промышленными показателями не более 20 процентов, а его показание должно соответствовать 1,3 и более в условиях температуры от 10 до 30 оС. Если по результатам измерений изоляционный материал определяется увлажненным, то устройство необходимо подсушить.
  3. Коэффициент поляризации. Он говорит о перемещении заряженных частиц в диэлектрическом материале под влиянием электрического поля, это же и указывает на уровень изношенности изоляционного материала. Такой коэффициент обязательно должен быть больше 1. Такой показатель представлен в виде отношения замеренного сопротивления через 10 минут после напряжения мегаомметра (R600) к изоляционному сопротивлению через 30 с. (R60).

Замеры сопротивления изоляции нормативные документы«>

Квалифицированные замеры сопротивления изоляции

Квалифицированные замеры осуществляются при помощи специальной аппаратуры — мегаомметра и непосредственно специалистами, имеющими соответствующий разрешительный документ для осуществления подобного рода измерительных работ. Число замеров зависит от количества электрических проводов в электролинии — обычно от пяти до пятнадцати раз. Результатом измерения изоляции выступают ранее упомянутые основные коэффициенты, от их значения и зависит принятое решение о возможности использования изоляционного материала или его замене.

В процессе осуществления измерений электросистемы составляется технический отчет по определенной форме (в том числе и протокол замера сопротивления изоляции). Техотчет, который составляется по результатам проверки электросистемы, заверяется круглой печатью электроизмерительного заведения, который и проводил соответствующие измерения.

Измерение (замер) сопротивления изоляции кабеля

Испытаниям подвергаются все распределительные групповые сети. Осуществление испытаний по измерению изоляционного материала проводится исключительно с соблюдением существующих правил по технике безопасности, это непременно должно соблюдаться для избегания допущения в работе нарушений или хотя бы для сведения возникающих проблем к минимуму.
Замеры сопротивления изоляции нормативные документы«>

Утвержденные замеры сопротивления изоляции, периодичность которых в соответствии с нормативными документами предусматривается раз в 3 года, не исключают осуществления подобных проверок чаще, потому как возможно появление нежелательных явлений, которые потом могут повлиять на нормальное функционирование всей системы или ее части.

В соответствии со специальными нормоустанавливающими документами проводятся замеры сопротивления изоляции. Нормативные документы, действующие на современном этапе, определяют технические нормы, которые необходимо использовать при производстве подобных работ.

Действующие технические нормы определяют следующую периодичность проведения испытательных работ, предусматривающих замеры сопротивления изоляции (нормативные документы — ПТЭЭП и др.):

  • ежегодно — на кране и лифте;
  • один раз в три года — на электрической проводке (в том числе и осветительная линия);
  • ежегодно — в помещениях, относящихся к опасным и на наружной установке;
  • ежегодно на электрических плитах стационарного типа.

Замеры сопротивления изоляции нормативные документы«>

Управление по энергоконтролю, а также противопожарная контрольная служба правомочны обязать производить испытательные работы в соответствии с выдвинутыми требованиями. При этом ими указываются сроки исполнения подобных испытаний.

Замеры сопротивления изоляции осветительных сетей

Испытательные работы на осветительных сетях осуществляются мегаомметром на наличие напряжения 1000 В и состоят в нижеследующем:

  • замеры изоляционного материала магистральных сетей — от сборок 0,4 кВ (ГРЩ, ВРУ) до автовыключателей (ЩЭ) распределительных или групповых (зависит от схемы) щитков;
  • замеры сопротивления изоляционного материала от места установки распределительных (на этажах) щитков до точек местных щитков (в квартирах);
  • произведение замеров изоляционного материала сети от точки установки предохранителя (автовыключателя) местных, групповых щитков (ЩК) до осветительных приборов (в том числе и светильников).

Значение сопротивления изоляционного материала на любом отрезке линии должно соответствовать не меньше 0,5 МОм.

Условия произведения измерительных работ

Измерения производятся при наружной температуре от 15 и до 35 °С и относительной влажности меньше 80%.

Оценка состояния изоляционного материала производится по вышеуказанным параметрам (коэффициентам).

www.syl.ru

Для чего производятся замеры

Данное контрольное действие является обязательной частью комплекса мер по обслуживанию электрической сети.

Основная цель замера сопротивления изоляции — слежение за работой электролиний и своевременное предотвращение любых неисправностей и поломок.

Поврежденная электропроводка может привести к нанесению вреда здоровью людей (в том числе поражению электрическим током и серьезным ожогам), нештатным аварийным ситуациям. Если речь идет о производственных компаниях, то вследствие перебоев с электричеством, возникших из-за изъянов, разрывов, порчи электрокабелей и пр. электрооборудования, могут возникнуть сбои в производственных процессах и как следствие, крупные финансовые потери.

Исходя из этого, все предприятия заинтересованы в том, чтобы обслуживание электрокоммуникаций проводилось качественно и своевременно. По результатам каждой проверки состояния электросетей формируются особые отчетные документы, в том числе и акты замера сопротивления изоляции.

Что подразумевается под «изоляцией»

Любой электрокабель должен быть специальным образом изолирован. Изоляционное покрытие позволяет разделить между собой провода, по которым идет ток, а также отсоединить эти провода от земли.

Для того, чтобы оценить, насколько хорошо «работает» такая изоляция, осуществляются замеры ее сопротивления – их результаты являются основным значением в работе специалистов по электрике.

Первое измерение проводится еще на заводе-изготовителе кабеля, затем – при монтаже и впоследствии в течение всего периода использования кабельного изделия. Связано это с тем, что на изоляцию оказывают влияние такие факторы, как погода, срок ее применения, количество, частота повреждений на линии и проч.

Кто проводит замеры

Для проведения замеров привлекаются электрики и другие специалисты, у которых есть допуск к работе с электрокоммуникациями и электрооборудованием.

Если речь идет о периодических проверках в организации, то для контроля за электроизоляцией создается специальная комиссия, в которую включается работник предприятия и специалист монтажной или обслуживающей компании.

В комиссию должно входить как минимум два человека, но при необходимости ее состав можно расширить за счет сторонних экспертов.

Задача комиссии – проверить состояние кабеля и провести замеры сопротивления изоляционного покрытия, а затем внести все показатели в акт.

Особенности составления документа

Если перед вами встала задача по формированию акта замера сопротивления изоляции, а вы никогда прежде не делали такого документа, мы дадим вам некоторые рекомендации. Посмотрите и готовый пример – на его основе вы без особых усилий оформите собственный бланк.

Перед тем как перейти к подробностям, обрисуем некоторые свойственные для всех подобного рода бумаг, детали.

  1. Во-первых, любой акт на сегодняшний день можно писать в свободном виде. Однако, если внутри организации есть его форма – лучше сделать документ по ее типу, поскольку она скорее всего разработана с учетом всех потребностей и содержит нужные столбцы, строки и таблицы.
  2. Во-вторых, акт можно составлять вручную или набирать на компьютере. Во втором случае, заполненный бланк нужно распечатать. Это надо для того, чтобы участвующие в контрольных мероприятиях лица могли поставить в документе свои подписи – без этих автографов он не будет считаться действительным. Если предприятие применяет штемпельные изделия для визирования своей документации, в акте следует поставить оттиск печати.
  3. В-третьих, акт нужно делать как минимум в двух одинаковых экземплярах – по одному для каждой из сторон, участвующих в измерениях. Кроме того, по мере надобности можно сделать и дополнительные копии, также заверив их надлежащим образом.

После того, как акт будет сформирован и подписан, он подлежит обязательному хранению. Период хранения определяется либо действующим законодательством, либо внутренними нормативными документами предприятия (но не меньше трех лет).

В случае возникновения каких-либо непредвиденных нештатных ситуаций, этот документ может помочь установить виновных лиц и взыскать с них нанесенный ущерб. Пригодится акт и тогда, когда придут представители электроснабжающей организации – они также могут проводить свои проверки.

Образец акта замера сопротивления изоляции

В начале бланка пишется его наименование, дата и место составления. Затем дается следующая информация:

  • данные об объекте, на котором производятся замеры;
  • сведения о приборе, при помощи которого они осуществляются;
  • рабочее напряжение в электросети;
  • данные о комиссии, члены которой проводят измерения (здесь надо указать место их работы, должность и ФИО).

Ниже идет табличка, в которую вписываются показания измерительного прибора и дается заключение проверяющих.

Таблица, приведенная в примере, не является строго обязательной – ее можно дополнить информацией, в зависимости от потребностей и задач, которые стоят перед теми, кто делает замеры.

Если выявлены какие-то неисправности, члены комиссии должны обязательно указать их наличие, а также дать советы по их устранению. В случае, если к акту прилагаются какие-то дополнительные документы (фото-видео свидетельства поломок, разрывов кабелей, показаний приборов и проч.), это нужно также отразить в документе.

В конце бланк подписывается членами комиссии, автографы расшифровываются.

Акт замера сопротивления изоляции

assistentus.ru

Измерение сопротивления изоляции

Системы охранной безопасности, розетки, силовые и компьютерные сети, видеонаблюдение, работа серверов и коммутационных систем, и, конечно, основного оборудования производственных организаций – все это зависит от состояния проводов и кабелей. Важно регулярно проверять их изоляцию, поскольку в активно используемых людьми системах происходит быстрый износ защиты: и из-за воздействия окружающей среды, как уже было сказано выше, и из-за человеческого фактора, морального старения, естественного износа изоляции и высокой нагрузки происходит выход из строя проводов, кабелей. Чтобы избежать аварийных ситуаций и выхода оборудования из строя, рекомендуется проводить замеры сопротивления изоляции кабеля и проводов по графику. В СПб замеры сопротивления изоляции осуществляет, в том числе и наша организация, которая имеет и собственную электроизмерительную лабораторию.

Основными параметрами, по которым можно определить состояние изоляции, являются сопротивление изоляции постоянному току, коэффициент поляризации изоляции и коэффициент абсорбции изоляции. Замеры сопротивления изоляции кабеля и проводов в СПб проводятся с учетом того, что при условиях высокого износа в кабелях появляются участки с некачественной изоляцией, что приводит к утечкам тока. Следовательно, замеры должны проводиться по всем трем параметрам.

Согласно справочникам, параметры определяются следующим образом:

  1. Сопротивление изоляции постоянному току Riso (Ом) — находится замером тока утечки Iy при протекании через проводник постоянного тока (приложении выпрямленного напряжения Uv);
  2. Коэффициент поляризации изоляции Rpol — определяется отношением измеренного сопротивления через 600 секунд после приложения напряжения мегаомметра R(600) к замеренному сопротивлению через 60с R(60);
  3. Коэффициент абсорбции изоляции Kabs — отношение сопротивления R(60), измеренного мегаомметром через 60 секунд с момента приложения испытательного напряжения, к сопротивлению R(15), замеренному через 15 секунд после приложения испытательного напряжение от мегаомметра.

Для качественного замера сопротивления изоляции кабеля и проводов требуется соблюсти требования к внешней среде: температура воздуха не должна быть ниже 15 градусов Цельсия и выше 35 градусов, относительная влажность воздуха – не превышать 80%. Если измерение изоляции проводов и кабеля проводится на шнурах, проводах и кабелях в особых условиях эксплуатации или на оборудовании спецприменения, то для них используются особые ТУ, оговоренные в паспорте.

Нормативы и методы измерения сопротивления изоляции

На сегодняшний день регулируют процедуру измерения сопротивления изоляции проводов и кабеля нормативно-технические документы и действующие ГОСТы, некоторые из которых были приняты в 1976-1985 гг.:

  • 7-е издание ПУЭ;
  • Объем и нормы испытаний электрооборудования
  • ГОСТ 26567-85. Преобразователи электроэнергии полупроводниковые. Методы испытаний;
  • ГОСТ 3345-76. Кабели, провода и шнуры. Метод определения электрического сопротивления изоляции;
  • ГОСТ 3484-88. Трансформаторы силовые. Методы электромагнитных испытаний;
  • ГОСТ 3484.3-83. Трансформаторы силовые. Методы измерений диэлектрических параметров изоляции.
  • ГОСТ Р 17025-2006 Требования к измерительным и калибровочным лабораториям

Нормативные документы регламентируют сроки проведения измерений. Формы протоколов измерения сопротивления изоляции однофазной и трехфазной цепей являются рекомендованными ГОСТ Р 17025-2006. По ПТЭЭП такой протокол должен составляться раз в год для наружных систем, лифтов, и особо опасных электроустановок, и раз в три года – для объектов, не вошедших в первый перечень. В протокол вносятся результаты десяти замеров по RISO для трехфазной пятипроводной линии и 3 замеров — для однофазной трехпроводной линии. Данные замеров проверяются на соответствие требованиям ПУЭ п. 1.8.37 (7-е изд.) для электропроводок и ПУЭ п. 1.8.40 (7-е изд.) для кабельных линий после монтажа. По срокам замеров сопротивления изоляции кабеля и проводов в СПб можно сказать, что на оформление протокола тратится от одного до двух рабочих дней. Стоимость измерения сопротивления изоляции можно узнать непосредственно на сайте, посмотрев постоянно обновляемый прайс-лист.

Как заказать замер сопротивления изоляции

Замер сопротивления изоляции кабеля и проводов в СПб можно заказать, позвонив по телефону (909) 577-65-84, либо заполнив заявку на сайте. После уточнения стоимости работ по конкретному объекту, вам будет выставлен счет, по которому составляется договор. Обычное условие – 50% предоплаты за работу, и после подтверждения авансового платежа наши специалисты уточняют время и место, выезжают на объект и проводят оговоренные замеры. В течение максимум двух рабочих дней по образцу протокола, установленного НД, составляются Технический отчет или протоколы измерений, который передается Заказчику. К отчету прилагается вся необходимая разрешительная документация по замеру изоляции проводов и кабеля.

После того, как замер сопротивления изоляции кабеля и проводов в СПб завершен и принят Заказчиком, оплачивается оставшуаяся сумма. Остается только отметить, что наши специалисты-эксперты регулярно проходят экзамены у инспекторов Ростехнадзора, получили знания, умения и навыки в ходе переподготовки в учебно-методическом инженерно-техническом центре и регулярно проходят стажировки по различным специализациям для повышения уровня квалификации. Сама электроизмерительная лаборатория имеет свидетельство о регистрации и все необходимые лицензии и сертификаты, которые подтверждают право на проведение различных видов измерений и испытаний электроустановок до 110кВ включительно. В том числе – и замеров сопротивления изоляции кабеля и проводов в СПб.

При проведении пуско-наладочных работ после монтажа сопротивление изоляции кабельных линий нормируется согласно ПУЭ гл.1.8 табл.1.8.34

Испытуемый элемент Напряжение мегаомметра, В Нормируемое значение Rиз, МОм
Шины постоянного тока на щитах управления и в распределительных устройствах 500-1000 10
Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей 500-1000 1
Цепи управления, защиты, автоматики и измерений, а также цепи управления машин постоянного тока, присоединенные к силовым цепям 500-1000 1
Вторичные цепи и элементы при питании от отдельного источника или через разъединительный трансформатор, рассчитаные на рабочее напряжение 60 В и ниже 500 0,5
Электропроводки, в том числе осветительные сети 1000 0,5
Распределительные устройства, щиты и токопроводы 500-1000 0,5

Сопротивление изоляции кабельных линий находящихся в эксплуатации нормируется ПТЭЭП прил. 1 табл. 37

Наименование элемента Напряжение мегаомметра, В Сопротивление изоляции, МОм Примечание
Электроизделия и аппараты на номинальное напряжение, В:   Должно соответствовать указаниям изготовителей, но не менее 0,5 При измерениях полупроводниковые приборы в изделиях должны быть зашунтированы
до 50 100
свыше 50 до 100 250
свыше 100 до 380 500 – 1000
свыше 380 1000 – 2500
Распределительные устройства, щиты и токопроводы 1000 – 2500 не менее 1 Измерения производятся на каждой секции распределительного устройства
Электропроводки, в том числе осветительные сети 1000 не менее 0,5 Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены
Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т.п. 1000 – 2500 не менее 1 Измерения производятся со всеми при соединенными аппаратами (катушки, контакторы, пускатели, выключатели, реле, приборы, вторичные обмотки трансформаторов напряжения и тока)
Краны и лифты 1000 не менее 0,5 Производится не реже 1 раза в год
Стационарные электроплиты 1000 не менее 1 Производится при нагретом состоянии плиты не реже 1 раза в год
Шинки постоянного тока и шинки напряже ния на щитах управления 500 – 1000 не менее 10 Производится при отсоединенных цепях
Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500 – 1000 В, присоединенных к главным цепям 500 – 1000 не менее 1 Сопротивление изоляции цепей напряжением до 60 В, питающихся от отдельного источника, измеряется мегаомметром на напряжение 500 В и должно быть не менее 0,5 МОм
Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение, В:      
до 60 100 не менее 0,5  
свыше 60 500 не менее 0,5  

www.gorod812.com

СОГЛАСОВАНО
Управление Ростехнадзора РФ
по Ярославской области

1. Общие положения

1.1. Настоящий документ устанавливает методику выполнения измерения сопротивления изоляции электрооборудования, проводов и кабелей в действующих и реконструируемых электроустановках для всех потребителей электроэнергии независимо от их ведомственной принадлежности.

1.2. Настоящий документ разработан для применения персоналом электроизмерительной лаборатории ООО «БЭТЛ» при проведении приемо-сдаточных и периодических испытаний в электроустановках, напряжением до и выше 1000 В.

1.3. В электроустановках напряжением выше 1000 В измерения производятся по наряду, а в установках напряжением до 1000 В по распоряжению. В тех случаях, когда измерения мегаомметром входят в содержание работ, оговаривать эти измерения в наряде или распоряжении не требуется.

1.4. К выполнению измерений и испытаний допускают лиц, прошедших специальное обучение и аттестацию, имеющих запись о допуске к испытаниям и измерениям в электроустановках до 1000 В

1.5. Измерение сопротивления изоляции должен проводить только квалифицированный персонал единолично или в составе бригады. Производитель работ должен иметь группу по электробезопасности не ниже III. В состав бригады может включаться ремонтный персонал с группой по электробезопасности не ниже II.

2. Нормативные ссылки

При разработке методики использованы следующие нормативные документы:

2.1. Мегаомметры ЭСО202/1-Г, ЭСО202/2-Г. Паспорт Ба 2.722.056ПС.

2.2. Правила технической эксплуатации электроустановок потребителей (ПТЭЭП).

2.3. Правила устройства электроустановок (ПУЭ).

2.4. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. ПОТ Р М — 016-2001. РД 153-34.0-03.150-00.

2.6. ГОСТ Р 50571.1-93 «Электроустановки зданий».

2.7. ГОСТ Р 50571.16-99 «Электроустановки зданий. Испытания».

2.8. ГОСТ Р 8.563-96 «Методики выполнения измерений»

3. Характеристика измеряемой величины, нормативные значения измеряемой величины.

3.1. Объектом измерения являются электрооборудование и электропроводки напряжением до и выше 1000 В

3.2. Измеряемой величиной является сопротивление изоляции.

3.3. Измеренное сопротивление изоляции электрооборудования напряжением до 1000 В должно быть не ниже, минимально допустимого значения, приведенного в таблице.

Минимально допустимые значения сопротивления изоляции элементов электрических сетей напряжением до 1000 В

Наименование элемента

Напряжение мегаомемтра, В

Сопротивление изоляции, МОм

Примечание

Электроизделия и аппараты на номинальное напряжение, В: Должно соответствовать указаниям изготовителей, но не менее 0,5 При измерениях полупроводниковые приборы в изделиях должны быть зашунтированы

до 50

100

свыше 50 до 100

250

свыше 100 до 380

500-1000

свыше 380

1000-2500

Распределительные устройства, щиты и токопроводы

1000-2500

не менее 1 Измерения производятся на каждой секции распределительного устройства
Электропроводки, в том числе осветительные сети

1000

не менее 0,5 Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены.
Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т.п.

1000-2500

не менее 1 Измерения производятся со всеми присоединенными аппаратами (катушки, контакторы, пускатели, выключатели, реле, приборы, вторичные обмотки трансформаторов напряжения и тока)
Краны и лифты

1000

не менее 0,5 Производится не реже 1 раза в год
Стационарные электроплиты

1000

не менее 1 Производится при нагретом состоянии плиты не реже 1 раза в год
Шинки постоянного тока и шинки напряжения на щитах управления

500-1000

не менее 10 Производится при отсоединенных цепях
Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500-1000 В, присоединенных к главным цепям

500-1000

не менее 1 Сопротивление изоляции цепей напряжением до 60 В, питающихся от отдельного источника, измеряется мегаомметром на напряжение 500 В и должно быть не менее 0,5 МОм
Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение, В:
до 60

100

не менее 0,5
выше 60

500

не менее 0,5

4. Условия измерений

4.1 Измерение проводят в помещениях при температуре 25±10°С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шну¬ры и оборудование не предусмотрены другие условия.

4.2 Значение электрического сопротивления изоляции соедини¬тельных проводов измерительной схемы должно превышать не ме¬нее чем в 20 раз минимально допускаемое значение электрическо¬го сопротивления изоляции испытуемого изделия.

4.3. Характеристики изоляции электрооборудования рекомендуется измерять по однотипным схемам и при одинаковой температуре. Сравнение характеристик изоляции должно производиться при одной и той же температуре изоляции или близких ее значениях (разница температур не более 5°С). Если это невозможно, то должен производиться температурный пересчет.

5. Требования безопасности

ВНИМАНИЕ! Не приступайте к измерениям, не убедившись в отсутствии напряжения на измеряемом объекте.

5.1. Перед началом испытаний необходимо убедиться в отсутст¬вии людей, работающих на той части электроустановки, к которой присо¬единен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.

5.2. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.

5.3. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг).

5.4. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления.

6. Подготовка к выполнению измерений

Для выполнения измерений используются мегаомметры ЭСО202/1-Г или ЭСО202/2-Г в зависимости от требований к испытательному напряжению.

6.1. Перед началом измерений необходимо изучить электроустановку здания и убедиться в отсутствии напряжения на испытываемом объекте, принять меры препятствующие допуску на испытуемый объект лиц, не участвующих в испытаниях, при необходимости выставить наблюдающего. Произвести отключение электроприборов, снять предохранители, отключить аппараты (автоматические выключатели, переключатели), отсоединить электронные схемы и электронные приборы, электрические части электроустановки с пониженной изоляцией или пониженным испытательным напряжением.

6.2. Установить на мегаомметре переключатель измерительных напряжений в нужное положение (в соответствии с требованиями к испытательному напряжению), а переключатель диапазонов в положение I.

Схема проверки изоляции мегомметром

Измерение сопротивления:

Сопротивление изоляции

Измерение изоляции кабеля:

Измерение изоляции кабеля

6.3. Проверить исправность мегаомметра. При вращении ручки генератора должен светиться индикатор «ВН».

7. Выполнение измерений

7.1. Убедившись в отсутствии напряжения на объекте, подключить объект к гнездам «rx». При необходимости экранирования, для уменьшения влияния токов утечки, экран объекта подсоединить к гнезду «Э». Для уменьшения времени установления показаний перед измерением сопротивления по шкале II в течении 3-5 сек. вращать ручку генератора при закороченных зажимах «rx».

7.2. Для проведения измерений вращать рукоятку генератора со скоростью 120-144 оборотов в минуту.

7.3. Отсчет значений электрического сопротивления изоляции при измерении проводят по истечении 1 мин с момента приложе¬ния измерительного напряжения к образцу, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования. Перед повторным измерением все металлические элементы ка¬бельного изделия должны быть заземлены не менее чем за 2 мин.

7.4. При измерении параметров изоляции электрооборудования должны учитываться случайные и систематические погрешности, обусловленные погрешностями измерительных приборов и аппаратов, дополнительными емкостями и индуктивными связями между элементами измерительной схемы, воздействием температуры, влиянием внешних электромагнитных и электростатических полей на измерительное устройство, погрешностями метода и т.п

7.5. Электрическое сопротивление изоляции многожильных ка¬белей, проводов и шнуров должно быть измерено:

— для изделий без металлической оболочки, экрана и брони — между каждой токопроводящей жилой и остальными жилами, со¬единенными между собой или между каждой токопроводящей; жилой и остальными жилами, соединенными между собой и заземлением.

— для изделий с металлической оболочкой, экраном и броней — между каждой токопроводящей жилой и остальными жилами, со¬единенными между собой и с металлической оболочкой или экра¬ном, или броней.

8. Оформление результатов испытаний (измерений).

8.1. Результаты проверки отражаются в протоколе соответствующей формы.

8.2. Перечень замеченных недостатков должен предъявляться заказчику для принятия мер по их устранению.

8.3. Протокол испытаний и измерений оформляется в виде электронного документа и хранится в соответствующей базе данных. Второй экземпляр протокола распечатывается и хранится в архиве электроизмерительной лаборатории.

8.4. Копии протоколов испытаний и измерений подлежат хранению в архиве электролаборатории не менее 3 лет.

 

betl.ru



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.