С помощью создания электрического соединения металлических конструкций промышленного и бытового оборудования с землей повышают безопасность в процессе его эксплуатации. Такой метод используется для предотвращения поражения человека электрическим током при возникновении аварийных ситуаций.

На рисунке ниже отображены основные принципы функционирования защитной системы. Даже при использовании качественных автоматических устройств, скорость их отключения будет недостаточной, чтобы полностью исключить возможность поражения человека электрическим током. При наличии заземления будет образована цепь с меньшим сопротивлением. Это снизит вредные воздействия на организм человека до безопасного уровня.

Принцип работы

Обычно его устанавливают для защиты при возникновении короткого замыкания. Если фазный проводник отсоединится и прикоснется к металлическому шасси установки, то корпус окажется под напряжением.

Правильно созданное защитное заземление образует электрическую цепь, имеющую низкое сопротивление. Именно этот путь является наиболее благоприятным для электрического тока, поэтому случайное прикосновение человека к корпусу не будет опасным (рис. выше).

Надо отметить, что такое устройство одновременно будет выполнять несколько важных функций:


  1. Оно обеспечит защиту и в том случае, когда потенциально опасное напряжение на корпусе образовано не коротким замыканием, а индукционными токами. Такие ситуации возможны в установках с высоким напряжением и там, где допустимо воздействие излучения СВЧ.
  2. При использовании глухозаземленной нейтрали и некоторых других схем подключения в цепи питания при коротком замыкании возникнут продолжительные и большие по амплитуде импульсы, достаточные для срабатывания автоматов, отключающих напряжение.
  3. Если заземленное оборудование подвергнется удару молнии, то такой проводник обеспечит определенную защиту от повреждений.

Чтобы не ошибаться с терминологией, надо понимать действительное значение следующих названий:

  • Рабочим называют заземление, которое выполняет функции второго проводника. Его используют для электрического питания установок, решения иных задач.
  • Упомянутая выше защита от молнии не является целевым предназначением. Для обеспечения безопасности при грозах применяют специально предназначенные для этого устройства. Они рассчитываются на относительно большие величины токов и напряжений.

Схемы подключения

Чтобы выбрать оптимальный вариант необходимо знать, для каких целей применяется защитное заземление в конкретном случае. Ниже рассмотрены разные системы, их особенности, преимущества и недостатки.

Тип TN, с глухозаземленной нейтралью. По этой схеме подключается промышленное и бытовое оборудование, работающее в сетях с напряжением до и выше 1000 V. Нейтраль генератора (трансформатора) источника питания подключается к заземлителю. Устройства потребителей, а точнее корпуса, экраны, шасси, подсоединяют к общему проводнику.

Если электрическая схема создана в соответствии с международными стандартами, то по надписям можно понять следующее. Латинской буквой «N» обозначают «нулевой» проводник, который используется для работы оборудования. Его так и называют, функциональным. «PE» – проводник, использующийся для создания защитной цепи.  Буквами «PEN» обозначают проводник, предназначенный для решения функциональных и защитных задач.

Чаще всего используют следующие схемы. Их наименования отличаются буквой, которую через дефис добавляют к «TN».

Схемы подключения


Система Принцип работы Преимущества, недостатки, особенности
C В системе «С» проводник выполняет рабочие и защитные функции одновременно. В качестве примера можно вспомнить типовое трехфазное электропитание с глухозаземленной нейтралью, являющейся нулевым проводом. Эта схема относительно проста и экономична. Корпуса устройств потребителей подключают непосредственно к нейтрали. Недостатком является утеря защитных свойств, если электрическая цепь разорвана. Такое повреждение нельзя исключить при аварийном повышении тока, нагреве и разрушении проводника. В такой ситуации на корпусе появится опасное напряжение. При использовании таких систем особо тщательно подбирают автоматы, которые должны быстро и надежно отключать питающее напряжение.
S В этой схеме используются два раздельных нулевых проводника, рабочий и защитный. Несколько проводников увеличивают стоимость системы, но существенно повышают надежность защиты.
C-S Это – комбинированная система. Генерирующий источник подсоединяется к глухозаземленной нейтрали. К потребителю идут только четыре проводника (трехфазное питание). В объекте недвижимости добавляется защитный проводник «PE». Низкая по сравнению с предыдущим вариантом стоимость сопровождается меньшей надежностью. При повреждении проводника на участке до объекта (или к «PE») защитные функции будут утрачены. В соответствии с действующими нормами при использовании таких систем требуется предотвратить механическое повреждение соответствующих проводников.

Достаточно высокие риски возникают при использовании воздушных линий электропередач. Они могут быть повреждены ураганом, иными негативными внешними воздействиями. Для обеспечения высокого уровня безопасности применяют схему TT.

Глухозаземленную нейтраль подсоединяют к генератору. Передача энергии осуществляется по четырем проводам. У потребителя устанавливают автономную систему заземления, к которой подключаются корпуса оборудования.

IT – последняя схема на рисунке. Здесь нейтральный провод генератора (другого источника) изолирован. Корпуса электрических установок заземлены. Подобные решения применяются часто в исследовательских центрах, чтобы паразитные наводки не искажали показания чувствительной аппаратуры.

Виды

Чтобы сопротивление было минимальным, желательно сократить длину защитного проводника. Это обеспечивают с помощью создания заземляющего контура по периметру объекта.

Заземлители разделяют также на искусственные и естественные. Это распределение по группам условно, так как в обоих случаях используются металлические части конструкций, находящиеся в земле:

  • В первом – их создают специально, для системы заземления. Такой подход позволяет точно рассчитать сопротивление, размеры отдельных частей, иные важные параметры.

  • Второй вариант предусматривает подсоединение к металлическим частям конструкции здания, арматуре фундаментных блоков. Он экономичнее, так как для защиты применяются некоторые готовые детали. Однако надо учитывать, что для подключения оборудования понадобится прокладка соответствующих линий, которые будут иметь определенное нормативами сопротивление. Недостатком является относительная доступность обычному персоналу.

В частности, имеет значение уровень влажности.  При расчете проверяют удельное сопротивление и другие особенности грунтов.

elquanta.ru

Основные цели, задачи заземления

Основной задачей защитного заземления, согласно требованиям ГОСТа – предупреждение воздействия на людей пиковыми токами при КЗ и отведения напряжения с корпусов электроустановок через устройство заземления в грунт. Все меры принимаются для предупреждения возможностей получения электротравм.

Принцип действия защитного зануления и заземления – понижение до минимального уровня силы тока и поражающих факторов при прикосновении к короткозамкнутым деталям электроприборов и установок. При этом происходит понижение уровня напряжения на корпусах защищенных приборов, потенциалы выравниваются в связи с ростом этой величины на поверхности до уровня равного потенциала оборудования с земляным проводом.


Защитное заземление

Областью применения являются трехфазное оборудование и цепи. Они должны оборудоваться глухозаземленной нейтралью при напряжении ниже 1000. В, при большем напряжении цепи выбирается любой способ проведения нейтрального провода.

Основной целью устройства защиты является снижение уровня напряжения до безопасного значения на корпусе оборудования и контуре защиты, а также снижение силы тока, идущего через корпус человека при касании участка под напряжением. Номинальное значение напряжения цепи переменного тока свыше 380 В и значении постоянного тока в 440 В – такие электрические цепи подлежат обязательному оснащению заземлением, особенно при особо опасных условиях и местах повышенной опасности.

Обязательно должны заземляться устройство с металлическим корпусом:

  • Защитное заземлениестанки;
  • приборы;
  • корпуса электрощитовых;
  • пульты управления механизмами;
  • металлический корпус кабеля и муфт;
  • металлические трубы для укладки проводов.

При КЗ фазного провода на корпуса устройств, и касании человека их рукою, через его тело проходит опасный по величине электрический ток. При заземлении, основная часть напряжения уйдет на контур, потому, что его сопротивление меньше чем человеческого тела.

Отличие рабочего заземления от защитного

Рабочее заземление. Принцип работы – это выполнение соединения с землей несколько отдельно стоящих объектов электросхемы здания. Это могут быть нейтраль обмотки генератора, и других различных устройств. Оно предназначено для обеспечения правильной работы электроустановки, независимо от условий его применения. Осуществление этого вида защиты происходит, непосредственно соединяя заземляемые корпуса электроустановок с заземлителями.

Защитное заземление

Достаточно редко, рабочее заземление может проводиться с помощью специализированных приспособлений – это могут быть пробивные предохранители, резисторы.

Защитное зануление и заземление, как указывалось выше, выполнение работ по электрическому соединению с металлическими нетоковедущими частями устройств. При этом основной работой защитного контура, является предохранение нанесения электротравм при касании человеком корпуса оборудования, потому, что ток с него отводится на заземляющий контур, сопротивление которого меньше чем сопротивление человеческого тела.


Поэтому отличием этих двух защитных устройств, является принцип их работы. Если рабочее уравнивает потенциалы, то защитное отводит ток на заземляющий контур, как правило, по глухозаземленной нейтрали. Но при оснащении своего помещения любым из видов защиты, наибольшая эффективность работы, будет достигаться при условии, что токи короткого замыкания не будут увеличиваться в связи с уменьшением уровня сопротивления заземлителя.

Защитное заземление

Еще о чем следует помнить. Ни один заземляющий контур не сможет выполнить работу автоматов отключения тока и устройства защитного отключения при утечках тока. А также эти приборы, не смогут выполнить свою работу надежно, без защитного заземления.

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника. Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.


Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства. Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

Защитное заземлениеКак правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм. Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование. При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

evosnab.ru

Что это такое?

Итак, что называется защитным заземлением. Традиционно процесс заземления представляет собой объединение любой точки электросети или оборудования, а также электрических установок с устройствами заземляющего типа. Данный вид устройств является совокупностью одного или сразу нескольких эффективных заземляющих элементов и специальных проводников, пригодных для заземления.

Защитные заземлители в виде одного элемента или совокупности проводящих частей, чаще всего прибывают в стандартном электрическом контакте с грунтом. К важным конструкционным особенностям заземлителя относится количество проводящих частей, их длина и тип размещения электродов, что рассчитывается в зависимости от предъявляемых к заземлителю требований и способностей земли выполнять защиту от электрического тока.

Применяемые в настоящее время защитные заземлители бывают не только естественными, но и искусственного типа. Первый вариант является наиболее распространенным, и чаще всего бывает представлен:

  • водопроводными трубами, проложенными в грунтах;
  • конструкциями построек из металла, имеющих достаточное соединение с грунтом;
  • кабельными оболочками из металла, за исключением алюминиевых проводов;
  • обсадными трубами, установленными внутри артезианских скважин.

Заземлитель естественного типа подсоединяется к сети заземления минимум в паре мест.

Все используемые на сегодняшний день искусственные защитные заземлители могут быть представлены:

  • стальными трубами, диаметр которых составляет 30-50 мм при толщине стенок в 3,5 мм и длине 200-300 см;
  • стальными полосами, имеющими толщину в 0,4 см и более;
  • стальным уголком толщиной в 0,4 см и более;
  • стальными прутами, имеющими диаметр в 1 см и более, при длине около 10-11 м.

Следует отметить, что применение искусственных заземлителей в грунтах агрессивного типа, включая излишне кислые или щелочные почвы, сопровождается коррозийными изменениями металлов. Именно поэтому заземлители в таких почвах должны быть представлены медью, омедненными или оцинкованными элементами.

При выборе искусственного заземлителя нужно избегать использования алюминиевых кабельных оболочек и голых алюминиевых проводников, потому что под воздействием почвы происходит окисление.

Назначение

Рассмотрим, для каких целей применяется защитное заземление. На сегодняшний день, к основным сферам применения традиционной системы защитного заземления относятся:

  • использование электрических установок с напряжением не выше 1 тыс. V, внутри сети с заизолированной централью токового источника;
  • использование электрических установок с напряжением свыше 1 тыс. V, внутри сетей с заизолированной или глухо-заземленной централью токового источника.

Согласно установленным нормативам ГОСТ-12.1.030-8, защитным заземлением должны обладать все электрические установки в условиях:

  • номинальных показателей напряжения, равного 380 V или больше;
  • переменных токовых величин, равных показателям 440 V или больше;
  • любого постоянного тока.

Обязательным является эффективное защитное заземление всех металлических элементов электрической установки или оборудования, которые доступны для людей, а также не обладают другими видами надежной защиты.

Особое внимание уделяется защитному заземлению при номинальном напряжении в пределах 42-380 V, переменных показателей — в диапазоне 110-440 V и при постоянном токе, если работы осуществляются в зоне повышенной опасности.

Принцип действия

контур заземленияГлавным действием является снижение показателей напряжения при прикосновении к корпусу электрических приборов до безопасных для жизни и здоровья величин, что обуславливается малым сопротивлением заземлителя.

Таким образом, основное защитное воздействие системы заземления базируется на паре принципов, представленных:

  • Снижением до безопасных показателей разности потенциалов, которые возникают между подлежащим заземлению токопроводящим прибором и токопроводящими предметами, обладающими естественным типом заземления.
  • Токоотводом утечки в результате контакта токопроводящего предмета, подлежащего заземлению и фазной жилы кабеля. Грамотно спроектированная система при проявлении токовой утечки вызывает немедленное срабатывание устройств защиты или УЗО.

Системы, имеющие глухо-заземлённую нейтраль, характеризуются стандартным срабатыванием предохранителя в результате попадания фазного потенциала на поверхность с заземлением.

Как показывает практика, наибольшую эффективность система заземления показывает исключительно в комплексе с установкой УЗО-приборов. При таких условиях значительные нарушения в изоляции потенциала на заземлённом предмете не превышают безопасные величины.

Устройство защитного заземления

Главный элемент представлен заземляющим контуром, состоящим из электродов металлического типа, которые размещаются внутри земли.

Чаще всего электроды являются стержнями, уголками, трубами или листами, которые рассеивают токовые величины, а показатели эффективности такого процесса напрямую зависят от качественных характеристик грунта и климатических особенностей.

Прежде чем приступить к самостоятельному обустройству эффективной системы заземления, требуется правильно определиться с параметрами электрической проводимости грунта и уровнем сопротивления:

  • для глинистых грунтов — 20 Ом х М;
  • для песчаных грунтов — 10-60 Ом х М;
  • для садового грунта — 40 Ом х М;
  • для гравийного грунта — 300 Ом х М.

Правильное устройство заземления является необходимым условием при использовании сетей электрического снабжения, включая частные домовладения и квартиры.

Такая не слишком сложная система безопасного пользования электричеством позволяет предотвратить поражение током.

Подсоединение корпуса к заземлителю может осуществляться при помощи стального провода с сечением в 2,4 см. Внутри грунта элементы соединяются стальной шиной с сечением 5,0-12,0 см, а также медным проводом с сечением в 2,5 см.

Монтаж защитного заземления

В процессе самостоятельного монтажа системы защитного заземления, на треугольном контуре надежно фиксируется проводник заземляющего типа.

Особенностью установки электродов является отсутствие покрытия в виде диэлектрических антикоррозионных составов.

В этом случае допускается только нанесение лака на свариваемые участки.

Особые требования предъявляются также к проводнику, который протягивается от контура до электрической установки:

  • высокие показатели прочности;
  • гарантированная долговечность;
  • устойчивость к коррозийным изменениям.

В качестве проводников рекомендуется применять стальные ленты размерами 0,5х3,0 см или металлические стержни диаметром не менее 1,0 см. При незначительных нагрузках может также применяться традиционная катанка.

В соответствии с современными требованиями и стандартами, электрическая проводка внутри жилых зданий производится трёхжильными кабелями, в которых один из проводов является заземляющим. Защиту требуется подключать на участках от контура до корпуса эксплуатируемого электрического прибора.

Все электрические розетки и вилки приборов должны в обязательном порядке иметь специальные заземляющие контакты, подсоединяемые с корпусу.

Попадание фазы на прибор в условиях нарушения изолирующего слоя, сопровождается возникновением токовой утечки, в результате чего срабатывает УЗО или защитные автоматы.

proprovoda.ru

Назначение защитного заземления

Уже из самого названия понятно, что цель заземления – это защита человека от поражения электрическим током. Где он (ток) может появиться? На всех металлических частях и корпусах различных электроприборов, которые работают от электричества. Но, скажите Вы, сейчас такие хорошие изоляционные материалы, высокие технологии и т. д. И будете правы. Но не стоит забывать и случайности, которые в нашей жизни происходят довольно часто.

Простой пример из нашего быта. Представьте обыкновенную небольшую духовку для приготовления курочки, тортиков, выпечки. Она имеет, как и многие бытовые приборы (холодильник, боллер, микроволновка, насос и т.д.) металлический корпус. Со временем изоляция на проводах может разрушиться, подплавиться или просто отгорит какой-нибудь провод. Причин много: длительное время эксплуатации, высокая температура, вибрация, заводской брак, нарушение правил эксплуатации прибора и многое другое.

Этот «голый провод», находящийся под напряжением  может случайно оказаться на металлическом корпусе, значит, он весь окажется под напряжением (корпус). Что может произойти в данном случае? Может быть короткое замыкание, и тогда автоматика просто отключит электричество. А может ничего не произойти, всё будет работать до тех пор, пока человек не затронет корпус духовки.

Во время прикосновения к металлической части (токопроводящей), человек получит электрический удар. Какой силы он будет, не знает никто. Здесь всё индивидуально и зависит от сотни факторов. Рассматривать их не будем (факторы), но любой удар током – это сильный стресс для организма, особенно для сердца. Благо, если всё закончится хорошо, а ведь бывают и смертельные случаи. Никого не хочу пугать и отказываться от электротехники, но статистика не умолима и показывает конкретные факты.

Итак, для чего делают заземление, думаю понятно. Не случайно в любой бытовой технике питающие провода выполнены трёхжильным проводом и вилка имеет заземляющую клемму. Кстати, требования к электропроводке, сейчас значительно изменились, и для питания любых приборов применяют только трёхжильный провод. Одним словом — наличие защитного заземления обязательно. Если раньше двух жил проводов (фаза и нуль) в электропроводке дома или квартиры было достаточно, то сейчас уже «такое безобразие» монтировать нельзя. Наличие «земли» обязательное и нужное требование. Даже светильники для бани имеют на клемнике заземляющий провод, подключенный к корпусу.

Устройство защитного заземления

Начнём с определения, выскажусь простыми словами без электрических терминов и определений. Защитное заземление – это преднамеренное (специальное) соединение электрическим проводом металлического корпуса бытового прибора и заземляющего контура (заземлителя). В нормальном состоянии этот корпус находиться под напряжением никогда не должен. А если уже случится непредвиденное, то электрический заряд уйдёт в землю при помощи заземления.

Почему именно в землю? Тут уже действуют элементарные законы физики. Любой электрический заряд «стремится куда-то уйти». И лучшее место для этого «куда-то» — это наша с Вами планета Земля. Простой пример – железная дорога. Трамвай или электровоз, проводя через свои электродвигатели ток, уводит его через рельсы именно в землю. Это закон нашей природы, от него никуда не деться, а надо грамотно использовать.

Устроено защитное заземление довольно просто. Схема работы примерно такая: бытовой прибор (потребитель электроэнергии) электрический проводник заземляющий контур.

В качестве электрического проводника могут быть провода, железные конструкции, металлические ленты и так далее. Многие, наверно, видели узкие металлические ленты, которые спускаются со зданий и уходят в землю. Часто их можно встретить на больницах, школах, садах. Это потому, что современные требование к медицинской аппаратуре, оргтехнике, устройствам пищеприготовления очень высоки, и нарушать их никак нельзя.

Элементарный заземляющий контур представляет собой железный штырь, вбитый в землю. Через него случайный ток будет уходить в землю. Ещё заземляющими контурами могут быть естественные сооружения. К ним можно отнести металлические трубопроводы, отдельные железные фрагменты зданий и их фундаментов, какие-то железобетонные конструкции и прочие схожие объекты. Главное – чтобы они удовлетворяли определённым требованиям. Какие эти требования, тем более цифры – рассматривать пока не будем.

С назначением и устройством защитного заземления понятно. Теперь перейдём к следующему вопросу  — как сделать заземляющий контур своими руками.

Монтаж защитного заземления своими руками

Вообще, качество защитного заземления напрямую зависит от грунта. Например, сложно сделать хорошее заземление на камнях. Здесь нужно создать «надёжный контакт» с землёй, что в данном случае очень проблематично. Но и здесь существуют свои методы и разработки, которые рассматривать не будем. Просто затронем обычный житейский вариант.

Самые подходящие почвы для надёжного контура заземления – это суглинок, глина и торф. На песчанике устроить хорошее заземление гораздо сложнее. Не маловажным показателем будет глубина залегания грунтовых вод. Чем выше грунтовые воды, тем лучше будет заземление. Как известно, вода отличный проводник электричества, поэтому, она играет важную роль в данном вопросе.

Для изготовления надёжного заземляющего контура Вашей бани или дома нужно выбрать примерно в метре от фундамента, влажное тенистое место возле постройки. Людям здесь ходить нежелательно, можно организовать цветник с тенелюбивыми растениями. После этого выкапывается траншея в виде периметра треугольника шириной на штык лопаты. Глубину выбираем в зависимости от грунта. Чем суше и каменистее почва – тем глубже копаем. Но в среднем углубляться следует не меньше полуметра.

Приготовив траншеи, переходим к заземлителям. В их роли могут быть использованы железные трубы, уголки, швеллера, металлические прутья и арматура. Конечно, стеклопластиковая арматура здесь применяться не может, так как является идеальным диэлектриком. Более продвинутый вариант – специальные электроды из стали или меди, которые изготавливают именно для этих целей. В этом видео как раз рекламный ролик этой темы.

Отрезав выбранный или имеющийся материал длиной примерно 2 метра, забиваем заземлители в грунт по углам приготовленного треугольника. Затем при помощи сварки или специальных зажимов (плашек) соединяем забитые уголки или электроды между собой. В роли соединителя лучше всего применить металлическую полосу. Если соединения происходят при помощи сварки, то эти места очищаются от шлака и прокрашиваются суриком. Только не стоит красить все металлические части, это значительно ухудшит результат. Цель этой работы – создать большую площадь соприкосновения металлических частей с землёй. Чем больше будет площадь, тем лучше. Электрическое сопротивление при этом значительно снизится. Чего мы и добиваемся.

Следующий этап – проводом (лучше голым) соединяем сделанный заземляющий контур с заземляющей шиной в электрическом распределительном щите дома или бани. Сечение провода лучше взять 16 мм2  или больше. Соединяем с помощью болтовых соединений: для лучшего контакта целесообразно воспользоваться наконечниками. Если вводной щит металлический – его также заземляем через специальный болт. Это делается обязательно.

После того, как заземляющий контур смонтирован и подключен к сборке, можно его немного засыпать землёй, посыпать обычной поваренной солью, полить водой и хорошо утрамбовать. Соль и вода создадут наименьшее электрическое сопротивление между грунтом и контуром. Затем вся траншея засыпается остатками земли и выравнивается.

На этом монтаж защитного заземления можно считать законченным. Если всё сделано правильно, то при замерах, сопротивление контура не должно превышать 4 Ом. Но этого, как правило, никто никогда не делает. Существуют фирмы, которые занимаются электрическими замерами, но цены на эти услуги ощутимо «кусаются». Так что лучший вариант – всё устройство защитного заземления сделать самостоятельно и правильно, соблюдая те моменты, которые описаны выше.

Цитата мудрости: Настоящая жизнь совершается там, где она не заметна.

postroibanu.ru

Назначение и устройство защитного заземления

Устанавливается такой тип заземляющего устройства для защиты человека от поражения электрическим током при замыкании электрической цепи вследствие различных причин. Самая распространенная причина поражения током — короткое замыкание фазы на нетоковедущие элементы электроустановки.

Согласно материалам нормативной документации ПУЭ (глава 1.7), в зависимости от выполняемой функции существует два вида устройства заземляющей системы: рабочее (функциональное) и защитное заземление.

Функциональный тип применяется чаще для защиты производственных объектов. Посредством рабочих заземляющих устройств реализуется надежная эксплуатация оборудования электроустановки. Эффективность как рабочего, так и защитного устройства напрямую зависит от правильного выбора конфигурации заземляющих элементов и четкого производства электромонтажа.

Основным элементом системы выступает контур заземления. Он состоит из металлических заземлителей (электродов). Функциональность всей системы зависит от возможности этих заземлителей рассеивать ток. Монтировать заземляющие элементы необходимо с учетом множества факторов, напрямую влияющих на основной показатель эффективности заземлителей, — значение их сопротивления.

Следует помнить! При создании заземляющего устройства дома или квартиры важный момент — характеристика внутренней электропроводки объекта. Провод должен быть трехжильный, с фазой, нулем и заземлением.

Монтаж устройства защитного заземления востребован практически повсеместно.

Проверка защитного заземления

Заземляющая система: область применения и принцип работы

При правильной организации заземляющей системы защиты должны быть реализованы такие эксплуатационные принципы:

  1. Образование электрической цепи, обладающей низким сопротивлением, при коротком замыкании. Электрический ток беспроблемно пойдет по этой магистрали. Реализуется обеспечение электрической безопасности пользователя. При случайном прикосновении человека к бытовому прибору во время пробития фазы на корпусе устройства не будет потенциально опасного напряжения.
  2. Обеспечение защиты от индукционных токов. Проявляться такие типы токов могут вследствие прямого удара молнии, при этом образуется электромагнитная и электростатическая индукция.

Учитывая значимость названных выше принципов действия системы, защитное заземление широко применяется в:

  1. Электрической сети напряжением менее 1 кВт:
  • с переменным током трех трехфазных проводников с изоляцией нейтрали;
  • с переменным током двух однофазных проводников, которые изолированы от земли;
  • с постоянным током двух проводников при наличии изоляции обмотки источника тока.
  1. Электросети напряжением свыше 1 кВт. Возможен любой режим точек обмоток источника питания постоянного и переменного тока.

Схема электросети с изолированной нейтралью

Помните! Функциональность защитной системы будет надлежащего уровня только при наличии сети с изолированной нейтралью.

Заземление — это комплексная система. Все этапы в ней взаимосвязаны и влияют на надежность ее последующей эксплуатации. Важнейшая задача начального этапа производства — выбор конфигурации заземлителей.

Классификация заземляющих устройств

В соответствии с Правилами устройства электроустановок (ПУЭ), защитное заземление может быть реализовано с использованием заземлителей двух типов — естественных или искусственных. Заземляющие элементы этих двух категорий имеют определенные структурные отличия и особенности монтажа:

  1. Естественные заземляющие устройства. Такие заземлители могут быть представлены посредством:
  • объектов сторонних проводящих частей, которые имеют прямой контакт с грунтом;
  • объектов, контактирующих с почвой через специальную промежуточную токопроводящую среду.

Самыми распространенными конструкциями такого типа заземлителей выступают:

  • металлоконструкции зданий и фундаментов;
  • металлические оболочки проводников;
  • обсадные трубы.

Железобетонный фундамент в качестве естественного заземлителя

Подключать элементы этой категории заземлителей необходимо минимум в двух местах.

Важно! Запрещено применять в качестве естественных заземляющих элементов: трубы теплотрасс; газопроводы; трубопроводы горючих жидкостей и горячего водоснабжения; оболочки подземных проводов с алюминиевой основой.

  1. Искусственные заземлители. Подразумевается специальное производство таких конструкций. В качестве материалов для искусственного создания защиты применяют:
  • определенного размера стальные трубы;
  • сталь полосовую толщиной свыше 4 мм;
  • сталь прутковую.

Важно знать! Большой популярностью пользуются искусственные заземлители глубинного типа. Электроды таких конструкций оцинкованные или омедненные. Преимущества — малозатратность производства и долговечность элементов.

Установка глубинного заземлителя

Специфические различия искусственных и естественных устройств заземления обязательно учитываются при производстве расчетов, определяющих их оптимальную конфигурацию.

Как производится расчет параметров основных заземляющих элементов

На основании результатов подобных расчетов проектируется чертеж заземляющего устройства объекта.

Важно! Устройство, смонтированное в соответствии со всеми расчетными данными схемы заземления, позволяет добиться максимальной эксплуатационной эффективности всего комплекса защитного заземления.

Основа вычислений — допустимые пределы напряжения шага и прикосновения. На их основании рассчитывается конфигурация (размер, количество) заземлителей и принцип их размещения.

Выполняются расчеты на основании таких данных:

  1. Описание характеристик конкретного электрического оборудования: тип установки; основные структурные элементы прибора; рабочее напряжение; возможные варианты, позволяющие осуществить заземление нейтралей как трансформирующих, так и генерирующих устройств.
  2. Конфигурация заземлителей. Такие данные необходимы для определения оптимальной глубины погружения электродов.
  3. Информация о проведенных исследованиях по измерению удельного сопротивления грунта на конкретной территории. Дополнительно учитываются климатические сведения зоны, на которой обустраивается система.
  4. Информация о пригодных естественных элементах заземления, которые можно использовать в работе. Необходимы данные о реальных значениях растекания токов у этих объектов. Получить их можно путем специальных измерений.
  5. Результат стандартного вычисления точных показателей расчетного замыкания тока на почве.
  6. Расчетные значения нормативной стандартизации допустимых характеристик напряжений по ПУЭ.
  7. Показатели сопротивления сезонного промерзания слоя грунта, в период высыхания и промерзания. Учет таких значений необходим для расчета заземляющих элементов, которые располагаются в однородной среде. Применяются специальные стандартизированные коэффициенты.
  8. При необходимости монтажа сложной группы заземлителей, состоящей из нескольких элементов, необходимы сведения всех потенциалов, которые будут наведены на монтируемые электроды. Для этого нужны данные о значениях сопротивления всех слоев грунта.

Конфигурация контура заземления

Важно! Если система будет размещаться в двух слоях грунта, учитывается показатель сопротивления каждого из них. Это необходимо для определения точных данных о мощностных параметрах верхнего слоя почвы.

Принцип расчета сопротивления заземлителей

Способов расчета характеристик основных заземляющих элементов достаточно много, но основной параметр у таких вычислений один — показатель сопротивления. Оптимальное его значение определяется посредством данных нормативной регламентации ПУЭ. Реализовать надежное защитное заземление объекта невозможно без расчета сопротивления его основных элементов.

К примеру, необходимо определить сопротивление заземления для электрооборудования напряжением свыше 1 кВт, с изолированной нейтралью. В соответствии с профильными данными документации ПУЭ 1.7.96, необходимо воспользоваться формулой R≤250/I, где:

  • I — показатель расчетного тока заземления;
  • R — показатель сопротивления заземляющего устройства, который не должен превышать 10 Ом.

В соответствии с ПУЭ (1.7.104), при учете нормативных сведений показателей тока прикосновения (для примера подойдет — 50 В), формула видоизменяется: R≤U/I, где U — это ток прикосновения (50 В).

Важно! При изолированной нейтрали, как правило, не требуется доравнивать показатель сопротивления ниже четырех Ом. Однако идеальным показателем сопротивления заземляющей системы считается 0. Основная задача, к которой сводится производство всех профильных расчетов, неизменна — достичь максимально низкого сопротивления системы.

Помимо производства расчетов параметров, важный момент при производстве заземления — выбор схемы подключения устройства.

Схема заземления частного дома

220.guru



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.