С чего всё началось.
На сайте с фирменными комплектами для монтажа заземления, подглядел отличную идею заколачивать штыри не кувалдой, а мощным перфоратором.
Поскольку стоимость таких комплектов для меня не малая, решил использовать аналогичные материалы, но доступные по цене.
К таким вполне можно отнести прфорированный металлопрофиль и резьбовые штанги, свободно продаваемые в строительных магазинах.
К тому же здесь на форуме уже обсуждали такое решение здесь и здесь, что окончательно убедило меня взяться за дело.
При выборе диаметра штанг, я исходил из и здравого смысла. Чтоб и не слишком дорого, и достаточно прочная, не гнулась. Выбор пал на штанги М16 длиной по 2 метра.
Подготовка.
Поход в ближайший сетевой строймаркет меня "убил" своими ценами…
2.jpg
613р за штангу это перебор. Тогда порывшись в сети нашел .

Чтобы воспользоваться перфоратором для заколачивания шпилек, мне понадобилось изготовить переходник под патрон SDS-max. В качестве заготовки была куплена пика за 160р и обработана в токарном станке.


4.jpg 3.jpg 5.JPG 6.JPG
Заодно токарь обработал резьбовые муфты сделав из них конусообразную форму. Ну типа чтобы меньше сопротивлялась и скреблась о грунт при заколачивании. На самом деле этого можно не делать. Позже объясню почему.

Перфоратор я . Вернее даже не перфоратор, а отбойный молоток.

8.JPG 9.JPG

Насколько я понял, в деле забивания железных кольев мощный инструмент только приветствуется. У этого агрегата заявлена энергия удара 22Дж.


Источник: www.forumhouse.ru

Заземление одним штырем

1 часть. Заземление
(общая информация, термины и определения)

2 часть. Традиционные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

3 часть. Современные способы строительства заземляющих устройств
(описание, расчёт, монтаж)

В этой части я расскажу о современных способах строительства заземлителей, которые обладают достоинствами традиционных способов строительства и лишены их недостатков.

Д. Основные способы строительства

Д1. Модульное заземление (для обычных грунтов)

Д1.1. Особенности решения
Д1.1.1. Универсальность и простота применения
Д1.1.2. Долгий срок службы
Д1.1.3. Зависимость уменьшения сопротивления заземления от увеличения глубины электрода
Д1.1.4. Суперкомпактность
Д1.1.5. Никакой сварки
Д1.2. Расчёт получаемого сопротивления заземления
Д1.3. Монтаж
Д1.4. Достоинства и недостатки

Д2. Электролитическое заземление (для вечномёрзлых или каменистых грунтов)

Д2.1. Особенности решения
Д2.1.1. Простота применения в вечномёрзлых или каменистых грунтах
Д2.1.2. Компактность
Д2.1.3. Образование талика
Д2.1.4. Никакой сварки
Д2.2. Расчёт получаемого сопротивления заземления
Д2.3. Монтаж
Д2.4. Достоинства и недостатки

Д. Основные способы строительства

Напомню о достоинствах и недостатках традиционных способов строительства заземлителей, описанных в прошлой части:


Несколько коротких электродов (п. Г1.4)

Достоинства:

  • простота
  • дешевизна материалов и монтажа
  • доступность материалов и монтажа


Недостатки:

  • высокая стоимость доставки материала на объект
  • необходимость применения большого объема грубой силы
  • необходима сварка
  • большая площадь, занимаемая заземлителем
  • небольшой срок службы электродов в 5-15 лет
  • неудобный монтаж

Одиночный глубинный электрод (п. Г2.4)

Достоинства:

  • высокая эффективность
  • компактность
  • сезонная НЕзависимость качества заземления


Недостатки:

  • высокая стоимость буровых работ
  • необходима сварка
  • небольшой срок службы электродов в 5-15 лет


Остановился я на общих словах:

В конце двадцатого века было разработано решение, которое обладает достоинствами обоих описанных выше способов, не имея присущих им недостатков.

Кроме того, сильное влияние засоления грунта на снижение сопротивления заземления (п. Г1.5.) настолько привлекло внимание инженеров, что было найдено “лекарство” от недостатков этого метода — вымывания соли из грунта и коррозии электродов. Оно породило очень интересный способ строительства заземлителя, применимый даже там, где пасуют простые металлические электроды — в вечномёрзлых, а также каменистых грунтах.

Д1. Модульное заземление (для обычных грунтов)

Идеальным сочетанием вышеописанных свойств способов строительства был бы какой-то способ, имеющий такой набор:

Достоинства:

  • простота
  • дешевизна материалов и монтажа
  • доступность материалов и монтажа
  • высокая эффективность
  • компактность
  • сезонная НЕзависимость качества заземления


Недостатки:

  • нет


Увы, чудес не бывает! 🙂
Тем не менее, чего бы нам хотелось:

  • сократить длину (глубину) монтируемых заземляющих электродов для удобства их ручного монтажа (чтобы не забивать эти электроды со стремянки)
  • оставить большую длину (глубину) заземляющих электродов
  • убрать буровую установку
  • убрать кувалду
  • убрать сварку
  • увеличить срок службы электродов без увеличения размеров до… ну пусть будет 100 лет 🙂
  • сохранить адекватную стоимость материалов.

Немного фантастично, но решение оказалось простым: технология, получившее название “модульное штыревое заземление”, сокращено “модульное заземление”

Заземление одним штыремПри таком способе строительства заземляющий электрод необходимой длины (глубины) представляет собой сборную конструкцию из нескольких коротких (1,5 метра) стальных штырей-модулей, имеющих небольшие поперечные размеры (диаметр менее 20 мм) с цинковым или медным покрытием, которые соединяются последовательно друг за другом. Для заглубления используется обычный бытовой электрический отбойный молоток с достаточной энергией удара.

Как и в случае “обсадной трубы” (п. Г2) — большая площадь контакта заземлителя с грунтом достигается большой длиной (глубиной) электрода. За счет достижения глубинных слоев грунта, в большинстве случаев имеющих меньшее удельное электрические сопротивление, такой способ имеет большую эффективность (меньшее сопротивление заземления).

Соединение штырей между собой может производится несколькими способами:

  • «глухое отверстие + шип». На одной стороне штыря имеется глухое отверстие глубиной 50-70 мм, а на другой стороне — шип длиной 50-70 мм, имеющий диаметр чуть больше паза. При монтаже шип запрессовывается в отверстие.

    Заземление одним штырем


  • «глухое отверстие + штифт + глухое отверстие». Штырь с обоих сторон имеет глухое отверстие глубиной 50-70 мм. Штифт длиной 100-140 мм используется в виде отдельной дополнительной детали. При монтаже он вставляется между штырями и запрессовывается в оба отверстия.
    Считается весьма ненадежным способом соединения.

    Заземление одним штырем

  • «резьба + муфта + резьба». Штырь с обоих сторон имеет резьбу длиной 50 мм. Муфта, отрезок трубы с внутренней резьбой, используется в виде отдельной дополнительной детали. При монтаже она накручивается на заглубляемый штырь, после чего в нее закручивается следующий штырь.
    Как показала многолетняя практика — это наиболее надежный способ соединения, позволяющий монтировать сборные заземляющие электроды до 40 метров глубиной с гарантированным сохранением необходимых электрических и антикоррозионных свойств по всех длине.

    Такая глубина является компромиссом между максимальной энергией удара отбойного молотка, силой трения между монтируемым электродом и грунтом, механической прочностью муфты (её стоимостью). Без увеличения энергии удара невозможно еще большее заглубление электрода из-за силы трения. При увеличении энергии удара необходимо увеличивать прочность муфты, что вызывает увеличение её стоимости.

    Заземление одним штырем


Д1.1. Особенности решения. Антикоррозионные свойства.

Д1.1.1. Универсальность и простота применения

Это решение можно назвать “конструктором”, т.к. из унифицированных элементов собирается любая необходимая конструкция. Например, глубинный электрод на 30 метров.
Все детали имеют промышленное производство, что убирает необходимость что-то “допиливать” на объекте. При этом они имеют одинаковое качество и одинаковые свойства, что играет роль при проведении большого объёма монтажных работ на множестве однотипных объектах, а также положительно влияет на предсказуемость результатов.

Обращение со штырями облегчено, т.к. они имеют длину всего 1,5 метра и вес не более 3-х килограмм. Это позволяет перевозить их в небольшом легковом автомобиле.

Д1.1.2. Долгий срок службы

Покрытие стального штыря слоем цинка или меди увеличивает его срок службы до нескольких раз (относительно срока службы штыря таких же размеров без покрытия).

Способы защиты стали от коррозии у покрытий сильно различаются из-за разного участия этих металлов в электрохимических реакциях, оказывающих наиболее разрушительное влияние на штырь. Из-за разности этих реакций, разности производства, разности стоимости производства — ведутся постоянные споры, какое покрытие всё-таки лучше.

Цинковое покрытие

В паре “цинк-железо” цинк является восстановителем/ донором (wiki). Окисляется/ корродирует прежде всего именно цинк, защищая, таким образом, железо.

Когда вся его масса проучаствует в реакции (окислится) — начнет корродировать сталь.

Достоинства:


  • отсутствие необходимости механической защиты покрытия при монтаже. Повреждение целостности покрытия не приводит к последствиям, т.к. цинк всё равно защищает железо, находясь рядом.
  • дешевое, налаженное и широко распространенное производство оцинкованных изделий со стандартной для этого материала толщиной покрытия от 5 до 30 мкм (“горячее” и “холодное” цинкование)
  • антикоррозийная защита не только штырей, но и всех металлоконструкций в зоне действия. Однако эти металлоконструкции чаще всего не нуждаются в такой защите.


Недостатки:

  • сравнительно небольшое увеличение срока службы штыря из-за малой толщины покрытия — до 15-25 лет.
  • Толстый слой цинкового покрытия имеет высокую стоимость. Кроме того, очень редко встречается производство, имеющее техническую возможность для этого.
  • сокращение срока службы штырей в присутствии большого количества металлоконструкций, расположенных рядом с ними

Медное покрытие

В паре “медь-железо” медь является окислителем, а железо — восстановителем/ донором (wiki). Окисляется/ корродирует прежде всего железо, защищая таким образом медь.


Странно… нам необходимо противоположное действие. Но тут кроется особенность электрохимической реакции: она возможна только в присутствии электролита/ воды. Если железо изолировать от него, то реакция останавливается.

Поэтому медное покрытие должно быть толстым и однородным для того, чтобы не допустить его глубокого повреждения при монтаже и таким образом не допустить попадания электролита/ воды к железу.

При этом положительно сказывается мягкость/ пластичность чистой меди: она сильно уменьшает силу трения при сцарапывании, что не позволяет острому элементу в грунте (например, камню) полностью процарапать покрытие по глубине — до стального сердечника. Камень просто скользит по поверхности, снимая небольшой наружный слой. Такое поведение меди можно сравнить с мылом, используемым для снятия застрявшего на пальце кольца.

Достоинства:

  • очень большой срок службы омеднённого штыря — до 100 лет (при соблюдении целостности покрытия)


Недостатки:

  • необходимость создания покрытия большой толщины (от 200 мкм) для его защиты от глубокого повреждения при монтаже. Такое покрытие дороже более тонкого.
  • дорогостоящее и редкое производство омеднённых изделий с большой толщиной покрытия

Моё субъективное мнение
Раз уж добавляем покрытие для защиты от коррозии, то оно должно обеспечивать наиболее долгий срок службы при одинаковой стоимости производства (в сравнении с другими вариантами).
В этой плоскости я считаю, что лучшим выбором являются омеднённые штыри при условии безоговорочного качества покрытия, выраженного в:
— толщине не менее 200 мкм
— высокой адгезии (wiki) обеспечивающей сохранение защитного слоя при изгибе штыря (иногда встречается при монтаже)
Причём омеднённые штыри гораздо выгоднее оцинкованных из-за высоких цен на изготовление последних при стремлении достигнуть сопоставимый срок службы.

Испытания, проведённые одной из лабораторий экспериментально показали, что срок службы омеднённого штыря с покрытием толщиной 250 мкм в агрессивном грунте (кислом или щелочном) составляет не менее 30 лет, а в обычном суглинке достигнет 100 лет.

Также известно испытание, проведённое с 1910 по 1955 год Национальным Институтом Стандартов и Технологий США (The National Institute of Standards and Technology (NIST)). Было реализовано обширное исследование подземной коррозии, во время которого 36 500 образцов, представляющих 333 разновидности покрытий из черных и цветных металлов и защитных материалов, подвергались испытанию в 128 местах по всей территории Соединенных Штатов.
Одним из результатов этого исследования стал факт, что штырь заземления, покрытый 254 мкм меди, сохраняет свои технические характеристики в течение более 40 лет в большинстве типов почвы. А стержневые электроды, покрытые 99,06 мкм цинка, в этих же грунтах могут сохранять свои качества лишь в течение 10-15 лет.

Underground corrosion (United States. National Bureau of Standards. Circular 579)
Автор: Melvin Romanoff; Издатель: U.S. Govt. Print. Off., 1957)

Отдельно хочу отметить использование в качестве материала штырей нержавеющей стали. Этот материал имеет замечательные антикоррозионные свойства в сочетании с отличными механическими характеристиками, облегчающими производство деталей. Его единственный, но перечеркивающий достоинства недостаток — высокая стоимость.

Д1.1.3. Зависимость уменьшения сопротивления заземления от увеличения глубины электрода

Т.к. данное решение имеет все свойства глубинного заземлителя напомню его особенность (из п. Г2.1).

При увеличении глубины электрода необходимо учитывать, что в однородном грунте сопротивление заземления снижается не пропорционально этому увеличению (больше глубина -> меньше уменьшение сопротивления).
Заземление одним штырем
Поэтому при отсутствии на глубине слоев грунта с более низким удельным электрическим сопротивлением стоит рассмотреть вопрос увеличения количества электродов, а не увеличения глубины одиночного электрода. На решение этого вопроса будут влиять и стоимость монтажа дополнительных электродов, и доступность площади для их размещения.

На практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности.

Д1.1.4. Суперкомпактность

Небольшая длина штырей и использование небольшого по величине электроинструмента позволяет монтировать глубинные заземлители там, где раньше это было в принципе невозможно: на объектах при самой стеснённой внутриквартальной застройке и даже в подвалах зданий. При проведении работ вне здания для заглубления электрода достаточно “пятачка” земли диаметром 20 см.

Такая компактность особенно актуальна в свете необходимости получения большого количества документов на вскрытие покрытия, проведения работ и последующего облагораживания территории.

Д1.1.5. Никакой сварки

Все элементы конструкции надежно сопрягаются без электро или газосварки. Используются либо неразъёмные, либо резьбовые соединения. Для присоединения к смонтированному электроду заземляющего проводника используется специальный болтовой зажим из латуни или нержавеющей стали.

Д1.2. Расчёт получаемого сопротивления заземления

Расчёт почти полностью повторяет расчёт одиночного электрода из п. Г2.2. за исключением поперечных размеров — у модульного заземления диаметр электрода не превышает 20 мм.

На примере тридцатиметрового составного электрода из омеднённых штырей диаметром 14 мм, смонтированного в канаве глубиной 0,5 метров. Грунт, в котором будет монтироваться этот электрод, будет для упрощения расчёта однородным суглинком, обычным для России, с удельным электрическим сопротивлением 100 Ом*м.

Расчёт проводится в 1 этап.

Сопротивление заземления одиночного вертикального заземляющего электрода вычисляется по формуле:
Заземление одним штырем

R1 составит 4,7 Ом (при p = 100 Ом*м, L = 30 м, d = 0.014 м (14 мм), T = 15.5 м (T — расстояние от верхнего уровня грунта до середины заглубленного электрода)).

Этот результат хуже, чем у электрода, имеющего диаметр 100 мм, но замечу — уменьшение диаметра электрода в 7 раз (700%) вызвало увеличение сопротивления заземления всего на 27%.

Д1.3. Монтаж

Монтаж модульного заземления очень лёгкий и доступен даже девушке.
Штыри забиваются в грунт друг за другом отбойным молотком постепенно увеличивая глубину заземляющего электрода. Отбойный молоток размещается над штырём.
Задачи монтажника: ровно держать молоток над штырём (не “на весу”, т.е. молоток своим весом давит не на руки, а на монтируемый штырь) и наращивать электрод — устанавливать следующий штырь над уже заглубленным.

Заземление одним штырем

Если монтаж выполняется вне здания то, монтаж модульного заземления/ заземлителя производится в канаве небольшой длины и глубиной 0.5 метра в которую также укладывается заземляющий проводник (медный провод или традиционная стальная полоса), идущий до объекта (электрощита).

Если монтаж выполняется внутри здания (в подвале), то монтаж заземлителя производится на уровне пола. Далее медным проводом полученный заземлитель подключается к щиту.

И при использовании стальной полосы и при использовании медного провода для их соединения со штырём в основном используется болтовой зажим из латуни или нержавеющей стали.

Иногда можно встретить способ соединения с помощью экзотермической сварки (смесь горючего материала с медной пылью заливает место контакта проводника и штыря, сваривая их между собой). Но это экзотика.

Подробнее о монтаже резьбовых штырей можно познакомиться на YouTube (ссылка).

UPD: Отбойный молоток можно взять в аренду на сутки (от 500-700 рублей) или купить почти в любом магазине электроинструмента (от 9-10 т.руб.).

Д1.4. Достоинства и недостатки

Достоинства:

  • простота и лёгкость монтажа. Все операции производит без серьёзного физического труда один человек без особой подготовки.
  • высокая эффективность заземлителя, обеспечивающая низкое сопротивление заземления
  • суперкомпактность, позволяющая монтировать заземлитель на очень маленькой площадке или в подвалах
  • большой срок службы заземляющего электрода (до 100 лет в суглинке)
  • сезонная НЕзависимость качества заземления. Зимой из-за промерзания грунта сопротивление такого заземлителя почти не изменяется из-за нахождения в зоне промерзающего грунта не более 5-10% длины электрода.
  • не нужна сварка. Элементы конструкции надежно сопрягаются без неё.

Недостатки:

  • невозможность монтажа электрода в каменистом грунте. Гвоздь не забить в камень.
    Штырь за счёт высокой механической прочности конструкции может отодвинуть небольшой камень, встреченный на своём пути. Может, изогнувшись в сторону от контакта по касательной с большим камнем, продолжить заглубление не по вертикальной оси. Но попав в достаточно большой камень без возможности отклониться — он встанет.
  • сравнительно высокая цена омеднённых штырей (около 380 рублей за метр) и дополнительной комплектации к ним. Цена много ниже стоимости буровых работ, но она однозначно выше цен на чёрный металлопрокат, используемый при строительства традиционного многоэлектродного заземлителя.
    Однако объективнее сравнивать не “голую” стоимость материалов, а стоимость всех затрат при строительстве заземлителя. Часто оказывается, что суммарные затраты сопоставимы или даже ниже именно у модульного заземления (например, за счёт банальной экономии на доставке материалов на объект).


Д2. Электролитическое заземление (для вечномёрзлых или каменистых грунтов)

Д2.1. Особенности решения
Д2.1.1. Простота применения в вечномёрзлых или каменистых грунтах
Д2.1.2. Компактность
Д2.1.3. Образование талика
Д2.1.4. Никакой сварки
Д2.2. Расчёт получаемого сопротивления заземления
Д2.3. Монтаж
Д2.4. Достоинства и недостатки

Напомню об отмеченном в п. Г1.5. методе иногда применяемом для существенного уменьшения сопротивления заземления.

Засоление грунта в месте размещения электродов путем добавления в него большого объема поваренной соли NaCl. При её растворении в грунте (выщелачивании (wiki)) резко повышается концентрация ионов, участвующих в переносе заряда, а следовательно снижается его (грунта) электрическое сопротивление.

При неоспоримом положительном достоинстве такого метода, а также при его простоте и дешевизне — он имеет два огромных недостатка:

  • за счет вымывания соли из грунта (дожди, весеннее таяние снега), концентрация ионов падает до естественного уровня за 2-3 года
  • соли вызывают сильную коррозию стали, разрушая электроды и заземляющий проводник за 3-5 лет. Эти недостатки грозят восстановлением заземлителя практически “с нуля”.

Нужны были меры противодействия этим недостаткам и ими стали:

  • постоянное поддержание концентрации ионов в грунте. Иными словами, их пополнение новыми порциями.
  • использование в конструкции материалов, минимально подверженных воздействию соли, и менее агрессивных компонентов этих солей

В итоге было разработано решение, получившее название «электролитическое заземление» (электролит — раствор солей).

Электрод такого типа представляет собой трубу небольшой длины (обычно 2-3 метра) из нержавеющей стали, имеющей почти по всей длине перфорацию. Внутри этой трубы находятся гранулы (не порошок) смеси солей.

Кроме привычного NaCl в смеси присутствуют еще 3 компонента. Состав якобы является секретом производителей, но мы то знаем, как это бывает 🙂

Промышленно выпускается два вида труб. В вертикальном исполнении и горизонтальном (в виде повёрнутой буквы “Г” — вот так “I___”.
Такой электрод помещается в грунт: вертикального исполнения — в заранее сделанную скважину необходимой глубины (2,5 — 3,5 метра); горизонтального исполнения — в заранее выкопанную канаву глубиной 0,7 метра длиной 2,5 метра.

Заземление одним штырем

Влага из грунта впитывается солями в электроде и выходит в виде раствора (электролита) в этот же грунт, пропитывая его и вызывая уменьшение его удельного электрического сопротивления.
Из-за чего, уменьшается сопротивление заземления электрода (трубы), размещенной в этом грунте.

Т.к. смесь солей находится в гранулах и в её составе присутствует специальная добавка, она не растворяется всем объемом в весеннее время, когда грунт пропитан водой. Таким образом достигается длительный и равномерный выход электролита из электрода, постепенно увеличивающий (а не просто сохраняющий) концентрацию ионов в окружающем грунте. Обычно заводской “заправки” электрода хватает на 15 лет, после чего возможна неоднократная “дозаправка”.

Применение в качестве материала трубы из нержавеющей стали и использование менее агрессивной, чем NaCl смеси солей, обеспечивают срок службы “оболочки” такого электрода не менее 50 лет.

Д2.1. Особенности решения
Д2.1.1. Простота применения в вечномёрзлых или каменистых грунтах

Конструкция электрода электролитического заземления позволяет использовать его в “проблемных” грунтах.

Вечномёрзлые грунты постоянно (круглогодично в течении сотен лет) находятся в замерзшем состоянии. Встречаются на Севере нашей страны. Глубина промерзания такого грунта достигает 2-х километров (в районе Якутска). Начинается вечная мерзлота с 1-2 метров от уровня земли, т.е. с той глубины, которую не может прогреть солнце в летний период.
Вечномёрзлый грунт очень сложен для строительства заземлителей: он имеет очень высокое электрическое сопротивление (в 100-300 раз больше суглинка) и обладает свойством “выталкивать” из себя металлические электроды из-за эффекта расширения воды при замерзании. Это происходит после летнего оттаивания грунта (перехода грунтовой влаги в жидкое состояние) под этими электродами.

Каменистый грунт, содержащий большое количество камней размером от кулака до метровых валунов, не менее сложен для строительства заземлителей тем, что в него трудно погрузить электроды обычным способом — мешают камни.

Для установки электрода такого типа в горизонтальном исполнении необходима только канава небольшой глубины (0,7 метра), которую сравнительно легко вырыть в обоих типах грунта. Размещение электрода в верхнем слое грунта над вечной мерзлотой избавляет от эффекта “выталкивания”.

Заземление одним штырем

Небольшое заглубление электрода делает возможным и ограниченное применение его в скальниках — если над каменным монолитом есть хотя бы метровый слой рассыпчатого (для “пропитывания” электролитом) грунта.

Д2.1.2. Компактность

Электрод электролитического заземления до 12 раз эффективнее обычного стального электрода такого же размера. Это значит в 12 раз уменьшается необходимое количество элементов заземлителя, а значит значительно уменьшается площадь, занимаемая ими.
При этом, очень ослабевает зависимость сопротивления заземления от сезона из-за уменьшения температуры замерзания воды при увеличении в ней концентрации солей до -5 градусов (температура обычного грунта под снежной шапкой). Это убирает необходимость использования дополнительных заземляющих электродов для компенсации роста сопротивления зимой.

Д2.1.3. Образование талика

У свойства электрода уменьшать температуру замерзания грунта есть и негативный момент. Около электрода образуется зона талика (wiki), могущая представлять опасность для фундамента рядом стоящего здания или дорожного покрытия. Зона талика на поверхности грунта представляет собой овал размером около 3х6 метров. Поэтому в ходе проектных работ необходимо учесть это и отдалить электроды от объектов, могущих быть повреждёнными.

Заземление одним штырем

Д2.1.4. Никакой сварки

Для присоединения к смонтированному электроду заземляющего проводника используется специальный болтовой зажим из латуни или нержавеющей стали.

Д2.2. Расчёт получаемого сопротивления заземления

Приведу пример расчёта сопротивления заземления электрода горизонтального исполнения, т.к. это наиболее распространённый на практике вариант, имеющего длину горизонтальной части 2,4 метра и её диаметр 65 мм. Грунт, как обычно, будет однородным суглинком с удельным электрическим сопротивлением 100 Ом*м.

Сопротивление заземления одиночного горизонтального заземляющего электрода вычисляется по формуле:
Заземление одним штырем

В случае электрода электролитического заземления к формуле добавляется коэффициент, описывающий концентрацию электролита в грунте около этого электрода:
Заземление одним штырем

Коэффициент варьируется от 0,5 до 0,05. Постепенно он уменьшается, т.к. электролит проникает в грунт на бОльший объем, при это повышая свою концентрацию. В обычном грунте он составляет 0,125 через 1-2 месяца выщелачивания солей. Процесс можно ускорить добавлением воды в электрод на заключительной стадии монтажа.

R1 составит 4,14 Ом (при С = 0,125, р = 100 Ом*м, L = 2.4 м, d = 0.065 м (65 мм), T = 0.6 м (Т — расстояние от верхнего уровня грунта до середины заглублённого электрода)).

Отличный результат для одиночного заземлителя размером всего в 2,4 метра!
Но, как всегда, расплата за результат в цене такого электрода… О чём ниже в п. Д2.4. (недостатки).

Д2.3. Монтаж

Монтаж электрода электролитического заземления горизонтального исполнения самый простой из всех встреченных мной способов. По сути это банальное закапывание электрода на небольшую глубину.
Роется канава глубиной 0,7 метра и длиной 2,5 метра. На дно опускается электрод. Используя болтовой зажим, подключается заземляющий проводник. Канава закапывается.

Дополнительно можно залить в горловину электрода литров 5 воды для ускорения процесса выщелачивания.

Д2.4. Достоинства и недостатки

Достоинства:

  • простота и лёгкость монтажа
  • очень высокая эффективность заземлителя, обеспечивающая низкое сопротивление заземления
  • компактность, позволяющая монтировать заземлитель на небольшой площадке.
    Однако, с учётом негативной особенности, описанной в п. Д2.1.3.
  • большой срок службы заземляющего электрода (не менее 50 лет) при его “дозаправке” смесью солей.
    Решение изначально создавалось с таким свойством.
  • очень слабая сезонная зависимость качества заземления
  • не нужна сварка. Элементы конструкции надежно сопрягаются без неё.


Недостатки:

  • высокая цена электрода (40-60 тысяч рублей за электрод), которая ограничивает широкое использование.
    Рекомендуется применение электролитического заземления в вечномёрзлых или каменистых грунтах, в которых обычные способы строительства не позволяют добиться необходимого результата или ещё дороже.
  • необходимость отдаления от фундаментов зданий и дорог


На этом всё. Спасибо за внимание! Извините за большой объём информации.

Вопросы можно задать в комментариях или напрямую по моим координатам, указанным в профиле. Я всегда рад помочь в меру своих возможностей и знаний всем интересующимся.
Не стесняйтесь 🙂 Помните: нет глупых вопросов — есть глупые ответы.

PS Мои знания в области защитных устройств и электросетей весьма скудны и поверхностны. Пожалуйста, имейте это в виду.

Источник: habr.com

Вопрос №1: а нужно ли заземление в частном доме или коттедже?

Заземление одним штырем

Пользуясь сетью, которая не имеет защиты от воздействия электротока, жители рискуют попасть в опасную для жизни ситуацию, даже если проводка в деревянном жилище выполнена безукоризненно. Поэтому на вопрос, нужно ли заземление в частном доме, следует отметить функции, которые оно выполняет:

  • Предохранение человека от поражения электрическим напряжением при касании к неисправному бытовому прибору.
  • Снижение уровня магнитных помех высокочастотного диапазона, излучаемых электрической сетью и бытовыми устройствами.
  • Обеспечение безопасной работы приборов, работающих в условиях повышенной влажности (бойлеры, стиральные машины и т.п.).
  • Снижение порога электромагнитного излучения сети, которое негативно влияет на самочувствие человека.

Нужно отметить, что защитный контур представляет собой неотъемлемый компонент системы молниезащиты. Также возможно его применение в конструкциях, отвечающих за недопущение импульсного перенапряжения.

Где разместить контур?

Чтобы заземление частного дома своими руками и схема контура работали эффективно, важно определить месторасположение для установки заземляющих электродов. Поскольку их длина довольно внушительна, то есть риск повреждения трасс коммуникаций. Поэтому в этом случае есть смысл ознакомиться с планами их прокладки в горадминистрации. Кроме этого существует несколько правил, которые не стоит отвергать:

Заземление одним штырем

  • Устанавливая место расположения электродов, обратите внимание на характеристики грунта. Если есть возможность ознакомиться с геоморфологическими отчетами местности, то для монтажа нужно выбирать как можно низкие точки верхнего водоупора.
  • Исследовать уровень нахождения грунтовых вод и отношение длины погружаемых электродов к нему. При наличии на даче, гараже или в доме вентилируемого подвала – воспользоваться этим фактом в полной мере и устроить контур на дне погреба.
  • Размещать детали контура следует не ближе 1 метра от фундамента.

В коттеджном строительстве в основном применяется система защиты TT, когда контур заземления изготовлен в индивидуальном порядке, а не от подстанции, как в TN-S-C. Такая конструкция весьма устойчива к повреждениям, но требует использования УЗО, без которого защита от поражения электротоком неэффективна.

Какие схемы контуров заземления для частного дома можно изготовить своими руками: ищем решение

На нынешний день свою практичность доказали две конструкции заземлителей:

  1. Замкнутого типа – система собрана в виде треугольника из металлических элементов. Основное преимущество заключается в надежности, поврежденная перемычка между электродами не влияет на работоспособность системы – она будет функционировать с другой стороны.
  2. Линейного типа – штыри устанавливаются в одну линию и соединяются последовательно металлической полосой. Недостаток в том, что повреждение перемычки влечет выход из строя всей системы.

Заземление одним штырем

Домовладельцам, интересующимся, как правильно сделать заземление в частном доме, специалисты рекомендуют делать систему по схеме «треугольник». Так как по сути, объем монтажных работ не отличается от линейного типа, но эффективность замкнутой системы делает ее предпочтительнее. Кроме этого, возможен и собственный вариант в виде квадрата или овала.

Сопротивление грунтов и методика расчета электродов

Передача потенциала в землю осуществляется по всей плоскости металлических электродов через частицы почвы и грунтовые воды. Такой принцип работает как при питающем напряжении 220 Вольт, так и в системах на 380 Вольт трехфазного типа. При сооружении конструкции учитываются многие факторы: от пористости грунта до уровня шероховатости металла.

За основу расчета сопротивления протеканию тока через электроды берутся таблицы удельного сопротивления почв и геоморфологиеский профиль. Профессионалы пользуются трудами Карякина Р.Н. «Нормы устройства сетей заземления», где предоставлены все данные для вычисления многих параметров. На практике подробный расчет редко когда выполняется. Нужных результатов добиваются методом увеличения длины электродов или их числа.

В большинстве случаев применяются профили из стали с сечением не менее 80 мм², для «нержавейки» показатель чуть меньше – 60-70 мм². Для изготовления своими руками любых схем заземления в частном доме нужно применять угловую сталь, двутавр или тавр. Главное, чтобы сечение электрода не имело замкнутой формы и контактировало бы с грунтом всеми сторонами.

Инструмент и материалы

Для выполнения работ по организации заземляющего контура в загородном доме понадобятся следующий инструмент:

  • Болгарка.
  • Кувалда 7-10 кг.
  • Штыковая лопата.
  • Комплект гаечных ключей.
  • Сварочный аппарат и электроды.
  • Битум или антикоррозийная краска.
  • Сварочная маска и рабочие рукавицы.

Конструкция контура построена на принципе равнобедренного треугольника, со сторонами 1,2 м. Чтобы контур заземления соответствовал техническим нормам, следует применить следующие материалы:

  • Уголки из металла 50х50 и длиной не менее 2 метров. Возможно приобретение комплектов из омедненной стали, например, Elmast.
  • Три полосы из металла 40х4 и длиной не менее 1,2 м, а также металлическая полоса с такими же параметрами, но длиной от места залегания контура до фундамента с загибом.
  • Медный провод сечением не менее 6 мм² для соединения ЗШ с электрическим щитом.
  • Болт М8 или М10.

Заземление одним штырем

Важно! Заземляющая линия должна увеличиваться в сечении по направлению от щита к контуру. Например, если от щитка идет 6 мм², то полоса должна быть минимально 10 мм², а электроды – не менее 20 мм².

Технология: как правильно сделать заземление замкнутого типа в частном доме без помощи специалистов?

После этапа подготовительных работ наступает очередь монтажа. На первый взгляд, обычная задача забить заземлители в грунт может, как минимум, обернуться испорченным металлопрокатом. И все это по причине незнания технологии процесса.

Электроды перед забивкой важно грамотно заточить. Электромонтажники, которые знают, как правильно сделать защитное заземление в частном доме, делают острие со скосами 30-35°. От его края нужно отступить 40-45 мм и сделать спуск порядка 45-50°. Швеллер, двутавр или тавр могут иметь несколько скосов, прутья рекомендуется острить ковкой. Дальнейший процесс можно наблюдать на видео, он заключается в выполнении следующих переходов:

Заземление одним штырем

  • С помощью штыковой лопаты выкопать равностороннюю треугольную траншею со сторонами 1,2 метра, а также ров по направлению к строению для прокладки заземляющей шины. Глубина траншеи 50-70 см.
  • Для удобства забивки по углам треугольника можно пробурить лунки глубиной до 50 см.
  • При помощи кувалды или перфоратора с насадкой забить электроды, оставив над поверхностью дна канавы 20-30 см.
  • При помощи электросварки хорошо приварить металлические полосы к выступающим частям заземлителей.
  • Уложить полосу, соединяющую угол контура и фундамент строения, предварительно выгнув ее по профилю.
  • Приварить заземляющую шину к углу треугольника. Со стороны дома на полосу приварить болт для крепления медного провода.
  • Обработать места сварки антикоррозийной краской или битумом. Дать просохнуть краске и закопать канаву.

Проверка параметров заземляющего контура

Завершающей стадией в организации системы принято считать измерение сопротивления готового контура, ведь качественная защита нужна не только при использовании городской линии, но и при подключении резервного генератора электропитания. Этот этап укажет на то, как правильно сделать защитное заземление в частном доме или коттедже. Определить сопротивление можно несколькими способами:

  • При помощи электролампы на 220 Вольт, подключив один контакт к фазе, а другой – к заземляющей шине. Ярко горящая лампочка указывает на качественно работающую систему, тускло горящая – заставляет проверить надежность сварных швов.
  • При помощи грунтового мегаомметра, который измеряет сопротивление между элементами контура и контрольными электродами, забитыми в грунт на глубину в 15 и 20 метрах от заземления на глубину 50 см.
  • При помощи тестера в состоянии измерителя напряжения. Значения измерений «фаза-ноль» и «фаза-земля» не должны иметь значительной разницы (не более 10 единиц).

Как такового, обслуживания система защиты не требует, достаточно не допускать проведения земляных работ в районе контура и увлажнять вовремя грунт. Попадание агрессивных веществ также не допустимо, поскольку они сокращают срок службы конструкции до 2-3 лет.

Конструктивные особенности

Что собой представляет и из чего состоит такая система? Устройство состоит из стальных полутораметровых штырей, которые обрабатываются медью и соединяются с помощью соединительных муфт. Также в комплект входит зажим из латуни, с помощью которого соединяются горизонтальные и вертикальные контуры. Ниже указана схема конструкции.

Заземление одним штырем

Модульно-штыревая система заземления устанавливается следующим образом: на верхнюю часть штыря монтируется посадочная площадка (насадка), которая в свою очередь соединяется с муфтой. Насадка необходима для передачи силы вибромолота. На нижнюю часть конструкции устанавливается стальной наконечник. Он упрощает вбивание установки в землю. Есть несколько разновидностей наконечников, область применения которых зависит от твердости грунта.

Заземление одним штырем

Помимо этого, к комплекту прилагается специальная электропроводящая жидкая паста, назначение которой – защита от коррозии и постоянное поддерживание электрического сопротивления при эксплуатации. Электропроводящая паста наносится на все резьбовые соединения конструкции. Также можно использовать от коррозии специальную влагонепроницаемую клейкую ленту. Она устойчива к кислотам, солям и газам, не пропускает влагу.

Этапы монтажа

Модульно-штыревое заземление устанавливается по простому принципу. В первую очередь надевается на первый штырь наконечник. Но перед установкой его следует обработать электропроводящей пастой от коррозии. На другой конец навинчиваем соединительную муфту и также обрабатываем ее антикоррозионной пастой. Затем на устройство накручивается посадочная площадка для приложения сил вибромолота.

Заземление одним штырем

Модульно-штыревое заземление, которое собрали, помещаем в заранее подготовленную яму в земле. Нужно максимально глубоко ввинтить ее в грунт своими руками. Затем необходимо подключить к сети вибромолот и приставить его к площадке стержня. Таким образом штырь погружается в грунт на всю свою длину. Нужно лишь оставить 20 см для того, чтобы подсоединить другой стержень.

После этого следует замерить сопротивление заземления. Для этого необходимо снять посадочную насадку и к тому месту, где она располагалась подсоединить специальный прибор, омметр, как на фото ниже:

Заземление одним штырем

Когда первый стержень расположен в земле на всю свою длину, посадочная насадка для вибромолота снимается и через соединительную муфту монтируется другой штырь. Специальный зажим, который удерживает штырь в вертикальном положении, поднимается по установленному устройству вверх. А на смонтированную конструкцию снова устанавливается соединительная муфта и насадка под вибромолот, после чего процесс повторяется.

Проверять сопротивления растеканию следует после установки каждого вертикального стержня. Установка штырей происходит до тех пор, пока не будет установлено необходимое сопротивление. На рисунке ниже указывается схема изменения сопротивления в зависимости от длины:

Заземление одним штырем

Далее нужно соединить горизонтальный заземлитель и вертикальный проводник. Для этого к концу стержня, что выступает из земли, крепится латунный зажим и к нему подсоединяем горизонтальный заземлитель. Между штырем и горизонтальным кабелем размещается специальная пластинка, которая защищает от коррозии при контакте разнородных металлов. После того как система была подсоединена, места соединения обрабатываются специальной клейкой лентой. Она служит дополнительной защитой от коррозии.

Преимущества и недостатки системы

Модульно-штыревое заземление, как и любая система, обладает своими плюсами и минусами. По сравнению с классическим и стандартным контуром, штыревое заземление имеет такие преимущества:

  • легкость и простота в установке;
  • занимает небольшую территорию;
  • монтаж осуществляется минимальным количеством работников (1–2 человека);
  • установка происходит без сварочных работ, так как все соединения осуществляются с помощью соединительных муфт;
  • благодаря вибромолоту, нет тяжелых земельных работ;
  • модульно-штыревое заземление устойчиво к коррозии, так как обрабатывается специальными смазками и покрытиями, благодаря этому они служат несколько десятков лет;
  • в независимости от грунта штыревая система легко вбивается в землю;
  • элементы конструкции производятся промышленным образом, благодаря чему обладают высоким качеством и готовы к моментальной установке без дополнительных подготовительных работ.

Модульно-штыревое заземление обладает одним, но существенным минусом – это его высокая стоимость. Но, несмотря на такой недостаток, система выгодна, если учитывать все ее преимущества.

Промышленность производит множество разнообразных комплектов, которые объединяют в себе такие элементы, что необходимы для надежного и качественного монтажа. Модульно-штыревое заземление имеет важное назначение – это защита дома от пожара, а людей, находящихся в помещении от поражения электрическим током.

Что еще важно знать

Также следует отметить, что для того чтобы сделать штыревое заземление своими руками, следует оформить некоторый пакет документов. Например, к ним относят протокол измерений, акт скрытых работ и паспорт монтажа со схемой. Эти документы должны храниться у владельца частного дома.

Заземление одним штырем

Напоследок рекомендуем просмотреть видео, на котором наглядно демонстрируется монтаж штыревого заземлителя отбойным молотком:

Надеемся, теперь вы знаете, что такое модульно-штыревое заземление, в чем его преимущества и как установить контур своими руками!

Также рекомендуем прочитать:

Эксплуатация современной бытовой и компьютерной техники без заземления чревата ее выходом из строя. На значительной части нашей страны, особенно в сельской местности, системы электропередач старого образца. В них наличие защитного заземления не предусмотрено или они находятся в таком состоянии, что просто не удовлетворяют требованиям электробезопасности. Потому приходится владельцам делать самим заземление частного дома или дачи.

Что оно дает

Защитное заземление необходимо для обеспечения электробезопасности в доме. Правильно выполненное, появлении тока утечки оно ведет к немедленному срабатыванию УЗО (повреждение электроизоляции или при прикосновение к токоведущим частям). Это — главная и основная задача этой системы.

Вторая функция заземления — обеспечение нормальной работы электрооборудования. Для некоторых электроприборов наличия защитного провода в розетке (если он есть) недостаточно. Необходимо подключение к заземляющей шине напрямую. Для этого обычно есть специальные зажимы на корпусе. Если говорить о бытовой технике, то это микроволновая печь, духовка и стиральная машина.

Заземление одним штырем

Основная задача заземления — обеспечить электробезопасность частого дома

Мало кто знает, но микроволновка без прямого подключения к «земле» во время работы может существенно фонить, прием уровень излучения может быть опасным для жизни. В некоторых моделях на задней стенке можно увидеть специальную клемму, хотя в инструкции обычно только одна фраза: «необходимо заземление» без уточнения как именно его желательно сделать.

При прикосновении мокрыми руками к корпусу стиральной машины часто ощущается пощипывание. Оно неопасно, но неприятно. Избавиться можно подключив «землю» напрямую на корпус. В случае с духовкой ситуация аналогична. Даже если она не «щиплет», прямое подключение более безопасно, так как проводка внутри установки работает в очень тяжелых условиях.

С компьютерами дело обстоит еще интереснее. Подключив напрямую «земляной» провод к корпусу, вы можете разы поднять скорость работы Интернета и свести к минимуму количество «зависаний». Вот так просто из-за наличия прямого соединения с заземляющей шиной.

Нужно ли заземление на даче или в деревянном доме

В дачных поселках делать заземление надо обязательно. Особенно, если дом построен из горючего материала — деревянный или каркасный. Дело в грозах. На дачах очень много элементов, притягивающих молнии. Это колодцы, скважины, трубопроводы, лежащие на поверхности или закопанные на минимальную глубину. Все эти объекты притягивают молнии.

Заземление одним штырем

На дачах высока вероятность попадания молнии

Если громоотвода и заземления нет, попадание молнии почти равнозначно пожару. Пожарной части поблизости нет, так что огонь распространится очень быстро. Потому в паре с заземлением делайте еще и молниеотвод — хоть пару стержней метровой длины, прикрепленных к коньку и соединенных при помощи стальной проволоки с заземлением.

Системы заземления частного дома

Всего систем шесть, но в индивидуальной застройке применяется, в основном, только две: TN-S-C и TT. В последние годы рекомендована система TN-S-C. В этой схеме нейтраль на подстанции глухозаземлена, а оборудование имеет непосредственный контакт с землей. К потребителю земля (PE) и нейтраль/ноль (N) ведется одним проводником (PEN), а на входе в дом снова разделяется на два отдельных.

Заземление одним штырем

Система заземления TN-S-C

При такой системе достаточная степень защиты обеспечивается автоматами (УЗО не обязательны). Недостаток — при отгорании или повреждении провода PEN на участке между домом и подстанцией на земляной шине в доме появляется фазное напряжение, которое ничем не отключается. Потому ПУЭ предъявляет жесткие требования к такой линии: должна быть обязательная механическая защита провода PEN, а также периодическое резервное заземление на столбах через 200 м или 100 м.

Тем не менее, многие линии электропередачи в сельской местности этим условиям не удовлетворяют. В этом случае рекомендована к использованию система TT. Также эта схема должна использоваться в отдельно стоящих открытых хозяйственных пристройках с земляным полом. В них есть риск прикоснуться одновременно к заземлению и грунту, что может быть опасным при системе TN-S-C.

Заземление одним штырем

Система заземления частного дома TT

Разница в том, что «земляной» провод на щиток идет от индивидуального контура заземления, а не от трансформаторной подстанции, как в предыдущей схеме. Такая система устойчива к повреждениям защитного провода, но требует обязательной установки УЗО. Без них защиты от поражения электрическим током нет. Поэтому ПУЭ определяет ее только как резервную, если имеющаяся линия не удовлетворяет требованиям системы TN-S-C.

Заземление одним штырем

Система заземления ТТ в более понятном изображении

Устройство заземления частного дома

Некоторые старые линии электропередачи вообще не имеют защитного заземления. Все они должны меняться, но когда это произойдет — вопрос открытый. Если у вас именно такой случай, необходимо сделать отдельный контур. Варианта два — сделать заземление в частном доме или на даче самостоятельно, своими руками или доверить исполнение кампании. Услуги кампаний дороги, но имеется важный плюс: если в процессе эксплуатации возникнут проблемы, вызванные неправильным функционированием системы заземления, возмещает ущерб кампания, которая производила монтаж (должно быть прописано в договоре, внимательно читайте). В случае самостоятельного исполнения все на вас.

Заземление одним штырем

Устройство заземления в частном доме

Состоит система заземления частного дома из:

  • заземлителей-штырей,
  • металлических полос, их объединяющих в одну систему;
  • линии от контура заземления до электрощитка.

Из чего делать заземлители

В качестве штырей можно использовать металлический прут диаметром 16 мм и больше. Причем брать арматуру нельзя: поверхность у нее каленая, что меняет распределение тока. Также каленый слой в земле быстрее разрушается. Второй вариант — металлический уголок с полочками 50 мм. Эти материалы хороши тем, что в мягкий грунт их можно забить кувалдой. Чтобы это было легче делать, один конец заостряют, на второй приваривают площадку, по которой проще бить.

Заземление одним штырем

В качестве стержней можно использовать трубы, уголок, металлический стержень

Иногда используют металлические трубы, один край которых сплющен (заварен) в конус. В нижней их части (около полуметра от края) сверлятся отверстия. При пересыхании грунтов распределение тока утечки значительно ухудшается, а в такие стержни можно заливать соляной раствор, восстанавливая работу заземления. Минус этого способа — приходится под каждый стержень копать/бурить скважины — забить их кувалдой на нужную глубину не получится.

Глубина забивания штырей

Штыри-заземлители должны уходить в грунт ниже глубины промерзания как минимум на 60-100 см. В регионах с засушливым летом желательно чтобы штыри находились хотя бы частично во влажном грунте. Потому используются в основном уголки или прут длиной 2-3 м. Такие размеры обеспечивают достаточную площадь соприкосновения с грунтом, создающую нормальные условия для рассеивания токов утечки.

Чего делать нельзя

Работа защитного заземления состоит в том, чтобы рассеивать по большой площади токи утечки. Происходит это за счет плотного контакта металлических заземлителей — штырей и полос — с грунтом. Поэтому элементы заземления никогда не красят. Это очень сильно снижает токопроводимость между металлом и землей, защита становится неэффективной. Предотвратить коррозию в местах сварки можно антикоррозионными составами но не краской.

Второй важный момент: заземление должно иметь маленькое сопротивление, а для этого очень важен хороший контакт. Он обеспечивается сваркой. Все соединения провариваются, причем качество шва должно быть высоким, без трещин, каверн и других дефектов. Еще раз обращаем внимание: заземление в частном доме нельзя делать на резьбовых соединениях. Со временем металл окисляется, разрушается, сопротивление многократно возрастает, защита ухудшается или вообще не работает.

Заземление одним штырем

Использовать только сварные соединения

Очень неразумно использовать в качестве заземлителя трубопроводы или других металлические конструкции, находящиеся в земле. Какое-то время такое заземление в частном доме работает. Но со временем стыки труб из-за электрохимической коррозии, активизированной токами утечки, окисляются и разрушаются, заземление оказывается нерабочим, как и трубопровод. Потому такие виды заземлителей лучше не использовать.

Как правильно сделать

Сначала разберемся с формой заземлителя. Наиболее популярный — в виде равностороннего треугольника, в вершинах которого забиты штыри. Есть еще линейное расположение (те же три штуки, только в линию) и в виде контура — штыри забиваются вокруг дома с шагом около 1 метр (для домов площадью более 100 кв. м). Штыри между собой соединены металлическими полосами — металлосвязью.

Заземление одним штырем

Самая популярная модель заземлителя

Порядок действий

От края отмостки дома до места установки штыре должно быть не менее 1,5 метров. На выбранном участке копают траншею в виде равностороннего треугольника со стороной 3 м. Глубина траншеи 70 см, ширина — 50-60 см — чтобы было удобно варить. Одну из вершин, как правило, расположенную ближе к дому, соединяют с домом траншеей имеющей глубину не менее 50 см.

Заземление одним штырем

В вершинах треугольника забивают штыри (круглый пруток или уголок длиной по 3 м). Над дном котлована оставляют около 10 см. Обратите внимание, заземлитель на выводят на поверхность земли. Он находится ниже уровня грунта на 50-60 см.

К выступающим частям стержней/уголков приваривают металлосвязь — полосу 40*4 мм. Созданный заземлитель с домом соединяют металлической полосой (40*4 мм) или круглым проводником (сечением 10-16 мм 2 ). Полосу с созданным треугольником из металла тоже сваривают. Когда все готово, места сварки очищают от шлака, покрывают антикоррозионным составом (не краской).

Заземление одним штырем

После проверки сопротивления заземления (в общем случае оно не должно превышать 4 Ом), траншеи засыпают землей. В грунте не должно быть крупных камней или строительного мусора, земля послойно утрамбовывается.

На входе в дом к металлической полосе от заземлителя приваривают болт, к которому крепится медный проводник в изоляции (традиционно окраска заземляющих проводов — желтая с зеленой полосой) сечением жилы не менее 4 мм 2 .

Заземление одним штырем

Выход заземления у стены дома с приваренным на конце болтом

В электрощитке заземление подключается к специальной шине. Причем, только на специальную площадку, начищенную до блеска и смазанную консистентной смазкой. От этой шины «земля» подключается к каждой линии, которая разводится по дому. Причем разводка «земли» отдельным проводником по ПУЭ недопустима — только в составе общего кабеля. Это значит, что если у вас проводка разведена двухжильными проводами, вам придется ее полностью менять.

Почему нельзя делать отдельные заземления

Переделывать проводку во всем доме, конечно долго и дорого, но если вы хотите без проблем эксплуатировать современные электроприборы и бытовую технику, это необходимо. Отдельное заземление определенных розеток неэффективно и даже опасно. И вот почему. Наличие двух или более таких устройств рано или поздно приводит к выходу включенного в эти розетки оборудования. Все дело в том, что сопротивление контуров зависит от состояния почвы в каждом конкретном месте. В какой-то ситуации между двумя устройствами заземления возникает разница потенциалов, которая приводит к поломке оборудования или электротравме.

Модульная штырьевая система

Все описываемые ранее устройства — из забиваемых уголков, труб и стрежней — называют традиционными. Их недостаток — большой объем земельных работ и большая площадь, которая требуется при устройстве заземлителя. Все потому, что необходима определенная площадь контакта штырей с грунтом, достаточная для того чтобы обеспечить нормальное «растекание» тока. Сложность может вызвать и необходимость сварки — по другому соединять элементы заземления нельзя. Зато плюс этой системы — относительно небольшие затраты. Если делать традиционное заземление в частном доме своими руками, оно по-максимуму обойдется в 100$. Это если покупать весь металл и платить за сварку, а остальные работы проводить самостоятельно

Заземление одним штырем

Набор модульной системы заземления

Несколько лет назад появились модульные штыревые (штырьевые) системы. Это комплект штырей, которые забиваются на глубину до 40 м. То есть получается очень длинный заземлитель, который уходит на глубину. Фрагменты штыря соединяются друг с другом при помощи специальных хомутов, которые не только фиксируют их, но и обеспечивают качественное электрическое соединение.

Плюс модульного заземления — малая площадь и меньший объем работ, которые необходимы. Требуется небольшой приямок со сторонами 60*60 см и глубиной 70 см, траншея, соединяющая заземлитель с домом. Штыри длинные и тонкие, забивать их в подходящий грунт несложно. Вот тут и подошли к основному минусу: глубина большая, и если на пути встретиться, например, камень, придется начинать сначала. А вынуть стержни — это проблема. Они не сварены, а выдержит или нет хомут — вопрос.

Второй минус — высокая цена. Вместе с установкой обойдется вам такое заземление в 300-500$. Самостоятельная установка проблематична, так как забивать эти стержни кувалдой не получится. Нужен специальный пневматический инструмент, который научились заменять перфоратором с ударным режимом. Еще необходима проверка сопротивления после каждого забитого стержня. Но если вы не хотите связываться со сваркой и земельными работами, модульное штыревое заземление — неплохой вариант.

Источник: ostwest.su

Что оно дает

Защитное заземление необходимо для обеспечения электробезопасности в доме. Правильно выполненное, появлении тока утечки оно ведет к немедленному срабатыванию УЗО (повреждение электроизоляции или при прикосновение к токоведущим частям). Это — главная и основная задача этой системы.

Вторая функция заземления — обеспечение нормальной работы электрооборудования. Для некоторых электроприборов наличия защитного провода в розетке (если он есть) недостаточно. Необходимо подключение к заземляющей шине напрямую. Для этого обычно есть специальные зажимы на корпусе. Если говорить о бытовой технике, то это микроволновая печь, духовка и стиральная машина.

Мало кто знает, но микроволновка без прямого подключения к «земле» во время работы может существенно фонить, прием уровень излучения может быть опасным для жизни. В некоторых моделях на задней стенке можно увидеть специальную клемму, хотя в инструкции обычно только одна фраза: «необходимо заземление» без уточнения как именно его желательно сделать.

При прикосновении мокрыми руками к корпусу стиральной машины часто ощущается пощипывание. Оно неопасно, но неприятно. Избавиться можно подключив «землю» напрямую на корпус. В случае с духовкой ситуация аналогична. Даже если она не «щиплет», прямое подключение более безопасно, так как проводка внутри установки работает в очень тяжелых условиях.

С компьютерами дело обстоит еще интереснее. Подключив напрямую «земляной» провод к корпусу, вы можете  разы поднять скорость работы Интернета и свести к минимуму количество «зависаний». Вот так просто из-за наличия прямого соединения с заземляющей шиной.

Нужно ли заземление на даче или в деревянном доме

В дачных поселках делать заземление надо обязательно. Особенно, если дом построен из горючего материала — деревянный или каркасный. Дело в грозах. На дачах очень много элементов, притягивающих молнии. Это колодцы, скважины, трубопроводы, лежащие на поверхности или закопанные на минимальную глубину. Все эти объекты притягивают молнии.

Если громоотвода и заземления нет, попадание молнии почти равнозначно пожару. Пожарной части поблизости нет, так что огонь распространится очень быстро. Потому в паре с заземлением делайте еще и молниеотвод — хоть пару стержней метровой длины, прикрепленных к коньку и соединенных при помощи стальной проволоки с заземлением.

Системы заземления частного дома

Всего систем шесть, но в индивидуальной застройке применяется, в основном, только две: TN-S-C и TT. В последние годы рекомендована система TN-S-C. В этой схеме нейтраль на подстанции глухозаземлена, а оборудование имеет непосредственный контакт с землей. К потребителю земля (PE) и нейтраль/ноль (N) ведется одним проводником (PEN), а на входе в дом снова разделяется на два отдельных.

При такой системе достаточная степень защиты обеспечивается автоматами (УЗО не обязательны). Недостаток — при отгорании или повреждении провода PEN на участке между домом и подстанцией на земляной шине в доме появляется фазное напряжение, которое ничем не отключается. Потому ПУЭ предъявляет жесткие требования к такой линии: должна быть обязательная механическая защита провода PEN, а также периодическое резервное заземление на столбах через 200 м или 100 м.

Тем не менее, многие линии электропередачи в сельской местности этим условиям не удовлетворяют. В этом случае рекомендована к использованию система TT. Также эта схема должна использоваться в отдельно стоящих открытых хозяйственных пристройках с земляным полом. В них есть риск прикоснуться одновременно к заземлению и грунту, что может быть опасным при системе TN-S-C.

Разница в том, что «земляной» провод на щиток идет от индивидуального контура заземления, а не от трансформаторной подстанции, как в предыдущей схеме. Такая система устойчива к повреждениям защитного провода, но требует обязательной установки УЗО. Без них защиты от поражения электрическим током нет. Поэтому ПУЭ определяет ее только как резервную, если имеющаяся линия не удовлетворяет требованиям системы TN-S-C.

Устройство заземления частного дома

Некоторые старые линии электропередачи вообще не имеют защитного заземления. Все они должны меняться, но когда это произойдет — вопрос открытый. Если у вас именно такой случай, необходимо сделать отдельный контур. Варианта два — сделать заземление в частном доме или на даче самостоятельно, своими руками или доверить исполнение кампании. Услуги кампаний дороги, но имеется важный плюс: если в процессе эксплуатации возникнут проблемы, вызванные неправильным функционированием системы заземления, возмещает ущерб кампания, которая производила монтаж (должно быть прописано в договоре, внимательно читайте). В случае самостоятельного исполнения все на вас.

Состоит система заземления частного дома из:

  • заземлителей-штырей,
  • металлических полос, их объединяющих в одну систему;
  • линии от контура заземления до электрощитка.

Из чего делать заземлители

В качестве штырей можно использовать металлический прут диаметром 16 мм и больше. Причем брать арматуру нельзя: поверхность у нее каленая, что меняет распределение тока. Также каленый слой в земле быстрее разрушается. Второй вариант — металлический уголок с полочками 50 мм. Эти материалы хороши тем, что в мягкий грунт их можно забить кувалдой. Чтобы это было легче делать, один конец заостряют, на второй приваривают площадку, по которой проще бить.

Иногда используют металлические трубы, один край которых сплющен (заварен) в конус. В нижней их части (около полуметра от края) сверлятся отверстия. При пересыхании грунтов распределение тока утечки значительно ухудшается, а в такие стержни можно заливать соляной раствор, восстанавливая работу заземления. Минус этого способа — приходится под каждый стержень копать/бурить скважины — забить их кувалдой на нужную глубину не получится.

Глубина забивания штырей

Штыри-заземлители должны уходить в грунт ниже глубины промерзания как минимум на 60-100 см. В регионах с засушливым летом желательно чтобы штыри находились хотя бы частично во влажном грунте. Потому используются в основном уголки или прут длиной 2-3 м. Такие размеры обеспечивают достаточную площадь соприкосновения с грунтом, создающую нормальные условия для рассеивания токов утечки.

Чего делать нельзя

Работа защитного заземления состоит в том, чтобы рассеивать по большой площади токи утечки. Происходит это за счет плотного контакта металлических заземлителей — штырей и полос — с грунтом. Поэтому элементы заземления никогда не красят. Это очень сильно снижает токопроводимость между металлом и землей, защита становится неэффективной. Предотвратить коррозию в местах сварки можно антикоррозионными составами но не краской.

Второй важный момент: заземление должно иметь маленькое сопротивление, а для этого очень важен хороший контакт. Он обеспечивается сваркой. Все соединения провариваются, причем качество шва должно быть высоким, без трещин, каверн и других дефектов. Еще раз обращаем внимание: заземление в частном доме нельзя делать на резьбовых соединениях. Со временем металл окисляется, разрушается, сопротивление многократно возрастает, защита ухудшается или вообще не работает.

Очень неразумно использовать в качестве заземлителя трубопроводы или других металлические конструкции, находящиеся в земле. Какое-то время такое заземление в частном доме работает. Но со временем стыки труб из-за электрохимической коррозии, активизированной токами утечки, окисляются и разрушаются, заземление оказывается нерабочим, как и трубопровод. Потому такие виды заземлителей лучше не использовать.

Как правильно сделать

Сначала разберемся с формой заземлителя. Наиболее популярный — в виде равностороннего треугольника, в вершинах которого забиты штыри. Есть еще линейное расположение (те же три штуки, только в линию) и в виде контура — штыри забиваются вокруг дома с шагом около 1 метр (для домов площадью более 100 кв. м).  Штыри между собой соединены металлическими полосами — металлосвязью.

Порядок действий

От края отмостки дома до места установки штыре должно быть не менее 1,5 метров. На выбранном участке копают траншею в виде равностороннего треугольника со стороной 3 м. Глубина траншеи 70 см, ширина — 50-60 см — чтобы было удобно варить. Одну из вершин, как правило, расположенную ближе к дому, соединяют с домом траншеей имеющей глубину не менее 50 см.

В вершинах треугольника забивают штыри (круглый пруток или уголок длиной по 3 м). Над дном котлована оставляют около 10 см. Обратите внимание, заземлитель на выводят на поверхность земли. Он находится ниже уровня грунта на 50-60 см.

К выступающим частям стержней/уголков приваривают металлосвязь — полосу 40*4 мм. Созданный заземлитель с домом соединяют металлической полосой (40*4 мм) или круглым проводником (сечением 10-16 мм2). Полосу с созданным треугольником из металла тоже сваривают. Когда все готово, места сварки очищают от шлака, покрывают антикоррозионным составом (не краской).

После проверки сопротивления заземления (в общем случае оно не должно превышать 4 Ом), траншеи засыпают землей. В грунте не должно быть крупных камней или строительного мусора, земля послойно утрамбовывается.

На входе в дом к металлической полосе от заземлителя приваривают болт, к которому крепится медный проводник в изоляции (традиционно окраска заземляющих проводов — желтая с зеленой полосой) сечением жилы не менее 4 мм2.

В электрощитке заземление подключается к специальной шине. Причем, только на специальную площадку, начищенную до блеска и смазанную консистентной смазкой. От этой шины «земля» подключается к каждой линии, которая разводится по дому. Причем разводка «земли» отдельным проводником по ПУЭ недопустима — только в составе общего кабеля. Это значит, что если у вас проводка разведена двухжильными проводами, вам придется ее полностью менять.

Почему нельзя делать отдельные заземления

Переделывать проводку во всем доме, конечно долго и дорого, но если вы хотите без проблем эксплуатировать современные электроприборы и бытовую технику, это необходимо. Отдельное заземление определенных розеток неэффективно и даже опасно. И вот почему. Наличие двух или более таких устройств рано или поздно приводит к выходу включенного в эти розетки оборудования. Все дело в том, что сопротивление контуров зависит от состояния почвы в каждом конкретном месте. В какой-то ситуации между двумя устройствами заземления возникает разница потенциалов, которая приводит к поломке оборудования или электротравме.

Модульная штырьевая система

Все описываемые ранее устройства — из забиваемых уголков, труб и стрежней — называют традиционными. Их недостаток — большой объем земельных работ и большая площадь, которая требуется при устройстве заземлителя. Все потому, что необходима определенная площадь контакта штырей с грунтом, достаточная для того чтобы обеспечить нормальное «растекание» тока. Сложность может вызвать и необходимость сварки — по другому соединять элементы заземления нельзя. Зато плюс этой системы — относительно небольшие затраты. Если делать традиционное заземление в частном доме своими руками, оно по-максимуму обойдется в 100$. Это если покупать весь металл и платить за сварку, а остальные работы проводить самостоятельно

.

Несколько лет назад появились модульные штыревые (штырьевые) системы. Это комплект штырей, которые забиваются на глубину до 40 м. То есть получается очень длинный заземлитель, который уходит на глубину. Фрагменты штыря соединяются друг с другом при помощи специальных хомутов, которые не только фиксируют их, но и обеспечивают качественное электрическое соединение.

Плюс модульного заземления — малая площадь и меньший объем работ, которые необходимы. Требуется небольшой приямок со сторонами 60*60 см и глубиной 70 см, траншея, соединяющая заземлитель с домом. Штыри длинные и тонкие, забивать их в подходящий грунт несложно. Вот тут и подошли к основному минусу: глубина большая, и если на пути встретиться, например, камень, придется начинать сначала. А вынуть стержни — это проблема. Они не сварены, а выдержит или нет хомут — вопрос.

Второй минус — высокая цена. Вместе с установкой обойдется вам такое заземление в 300-500$. Самостоятельная установка проблематична, так как забивать эти стержни кувалдой не получится. Нужен специальный пневматический инструмент, который научились заменять перфоратором с ударным режимом. Еще необходима проверка сопротивления после каждого забитого стержня. Но если вы не хотите связываться со сваркой и земельными работами, модульное штыревое заземление — неплохой вариант.

Источник: stroychik.ru



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.