В Правилах Устройства Электроустановок (ПУЭ) четко оговорено, что заземление – это система, в которой соединяются какая-то точка электрической сети, оборудования, прибора или установки с заземляющим устройством. С первой половиной этой системы все понятно, а что значит, заземляющее устройство.

Заземляющее устройство – это опять-таки система, состоящая из двух основных элементов: проводник и заземляющий контур (заземлителя). В совокупности с заземляющим устройством все это и называется заземлением. Теперь каждую часть схемы разберем по отдельности.

Защитное заземление

Заземлитель

Это часть заземления, которая располагается в грунте. Вся схема запитывается именно на грунт, куда электрический ток от установки должен войти. И вот тут многое будет зависеть от самого грунта, а точнее сказать, от его плотности, влажности и химического состава.


Считается, что в каменном грунте самая плохая электрическая проводимость. Поэтому в таких грунтах очень сложно создавать заземляющий контур, поэтому чаще всего устанавливается глубинный заземлитель в виде трубы или штыря. Глубина закладки в данном случае может быть достаточно большой до 20 м.

Что касается песчаных или глинистых грунтов, то оптимальный вариант на них устроить именно заземляющий контур, состоящий из трех или четырех глубинных элементов. Чаще всего используется контур в виде квадрата или равностороннего треугольника. При этом размер фигуры определяет мощность электрических установок или их общее количество. К примеру, для частного дома можно заложить контур в виде квадрата со стороной 4 м, или треугольника со стороной 3м. Если это промышленный объект или большое административное здание, то заземляющий контур будет большим, к примеру, штыри забиваются по углам здания с обвязкой между собой.

Штыревое заземление
Штыревое заземление

Внимание! Установка штыревого заземления требует определенного расчета нагрузки на контур и сопротивления грунта. Что касается последнего, то о нем уже было сказано выше, то есть, от чего зависит сопротивление.

Вот несколько параметров сопротивления почвы из разных пород. Кстати, единица измерения данного показателя – Ом*М.

  • Глина – 20.
  • Песок – 10-60 (влажный-сухой).
  • Садовая земля – 40.
  • Солончак – 20.
  • Торф – 25.
  • Чернозем – 60.
  • Гравий – 300.
  • Щебень – 3000.
  • Гранит – 22000.

Контур заземления
Контур заземления

Чем меньше показатель, тем выше электропроводность. То есть, наше утверждение, что в каменных грунтах сложно организовать заземление, подтверждается.

Проводник

Особых требований к проводящему контуру (от электроустановки до контура) нет. Самое главное – это прочность металлического элемента, который способен выдержать и механические нагрузки, и негативное воздействие влаги и температур. Поэтому чаще всего в качестве проводника используются стальные ленты толщиною не меньше 5 мм, тросы сечением не меньше 12 мм, арматура диаметром 10-12 мм.

Что касается частного домостроения, то в них можно использовать даже проволоку диаметром 6 мм ввиду того, что электрические нагрузки на такой проводник будут незначительны. Но¸ как считают специалисты, в этом деле лучше перестраховаться. Поэтому рекомендуется использовать стальную ленту сечением 5×30 мм.

Система заземления

Виды заземления

В классификации видов заземления присутствует два основных его вида:

  • Рабочее.
  • Защитное.

Есть и несколько подгрупп: радиозаземление, измерительное, инструментальное, контрольное.

Рабочее

Существует определенная категория электрических установок, которые не будут работать, если их не заземлить. То есть, основанная цель сооружения заземляющей системы – это необеспечение безопасности эксплуатации, это обеспечение самой эксплуатации. Поэтому в этой статье данный вид нас интересовать не будет.

Защитное

А вот этот вид специально устраивается с целью обеспечить безопасность работы электроустановок. Он делится на три категории в зависимости от назначения:

  • Молниезащита.
  • Защита от импульсного перенапряжения (перегруз линии потребления тока или короткое замыкание).
  • Защита электросети от электромагнитных помех (чаще всего данный вид помех образуется от рядом работающего электрического оборудования).

Нас интересует именно импульсное перенапряжение. Назначение заземления данного типа – это безопасность обслуживающего персонала и самой установки в процессе аварии или поломки оборудования. Обычно такая поломка внутри электрического агрегата – это замыкание провода электрической схемы на корпус прибора. Замыкание может происходить непосредственно или через любой другой проводник, например, через воду. Человек, коснувшийся корпус установки, подвергается воздействия электрического тока, потому что становится его проводником в землю. По сути, он сам становится частью заземляющего контура.


Схема заземления в частном доме
Схема заземления в частном доме

Вот почему, чтобы устранить такие ситуации и устанавливается заземление корпуса на контур, расположенный в земле. При этом срабатывание заземляющей схемы – это толчок для системы автоматов, которые тут же отключают подачу электроэнергии к оборудованию. Все это располагается в специальных силовых и распределительных щитах.

Сопротивление заземлению

Есть такой термин, как сопротивление растеканию тока. Для простых обывателей легче будет воспринимать, как сопротивление заземлению. Вся суть этого термина заключается в том, что схема заземления должна работать корректно с определенными параметрами. Так вот сопротивление является основным из них.

Оптимальный вариант этого значения – ноль. То есть, лучше всего использовать материалы для сборки контура, у которых электропроводность самая высокая. Конечно, добиться идеала никак не получится, поэтому старайтесь выбирать именно те, у которых сопротивление самое низкое. К ним относятся все металлы.


Электропроводность металлов

Есть специальные коэффициенты, с помощью которых производится определение показателя сопротивления заземляющего контура, эксплуатируемого в разных условиях. К примеру:

  • в частном домостроение, где используются сети на 220 и 380 вольт (6 и 10 кВ), необходимо устанавливать контур с сопротивлением 30 Ом.

Внимание! Если используется заземляющий контур через нейтраль трансформатора, то сопротивление заземляющей цепи должно быть не больше 4 Ом.

  • монтируемая газопроводная система, входящая в дом, должна заземляться схемой в 10 Ом.
  • молниезащита должна иметь сопротивление не более 10 Ом.
  • Телекоммуникационное оборудование заземляется контуром 2 или 4 Ом.
  • Подстанции от 10 кВ до 110 кВ – 0,5 Ом.

То есть, получается так, что чем больше мощность силы тока внутри оборудования или приборов, тем ниже должно быть сопротивление.

Качество заземления

Выше уже говорилось о том, что тип грунта и материал для системы влияют на качество заземляющего контура. Но кроме этого есть еще несколько позиций.


Зависимость силы тока от сопротивления

Площадь заземления

Сразу скажем так, чем больше площадь заземления, тем его качество выше. Поэтому, когда стоит вопрос, что использовать: стержень заземления или пластину, то выбирается второй вариант. Почему? Все дело в ее большей площади. Площадь соприкосновения у пластины для заземления в разы больше, чем у штыря. При этом данную площадь можно, в принципе, увеличивать до бесконечности. А это большой плюс. Для этого обычно используют пластины «PTCE» из сплава никеля и меди.

Поэтому чаще всего, когда планируется заземление высоковольтных линий, к примеру, опор ВЛ 10 кВ, используется именно пластинчатый вариант (PTCE). Хотя показатель площади можно увеличить и по-другому. Можно просто использовать стержень заземления, только не один, а несколько, обвязав их вокруг опор ВЛ 10 кВ контуром из хорошего проводника. Вот почему в частном домостроение используется контур из трех или четырех штырей. Для ВЛ 10 кВ количество может быть увеличено до бесконечности. Для производственных мощностей не обязательно применять квадрат или треугольник, здесь может быть использована линейная структура. Главное – побольше стержней установить на линии.

Чем больше больше площадь заземления, тем выше его качество
Чем больше больше площадь заземления, тем выше его качество

Есть еще один вариант увеличения площади контакта с грунтом. Это увеличить размеры штырей. То есть, сделать их длиннее и толще. Кстати, такой вариант используется, если верхние слои грунта имеют высокое сопротивление, а нижние, наоборот, низкое. Такое глубинное заземление прекрасно работает даже в том случае, если устанавливается один металлический штырь. Правда, для 10 кВ линий придется количество заземляющих проводников увеличить, один ничего здесь не решит. Но лучше установить PTCE.

Расчет заземления

Не будем останавливаться на этом разделе долго. Все дело в том, что рассчитать заземление непросто. Существует достаточно большая и сложная формула, по которой и производится расчет. Но, как показала практика, ее конечный результат – всего лишь неточная цифра. Почему? Потому что все зависит от типа грунта. Наша земля во многих участках – слоеный пирог из разных наполнителей. Поэтому точно определить, где и какой слой находится, можно только по специальной карте геологической разведки.

Устройство заземления

Вот почему выбирая глубинное заземление, необходимо ориентироваться на максимальный показатель, подставляя в формулу разные величины сопротивления грунта.

Заключение по теме


Итак, в этой статье мы постарались ответить на интересующий многих начинающих электриков вопросы, что такое заземление, и как работает оно? Усвойте один нюанс. Заземление – необходимая система в сетях электрического снабжения (неважно, это 6, 10 кВ, или 100). Поэтому ее сегодня используют не только в производственных цехах, заводах и фабриках, это неотъемлемая часть электрической схемы частных жилых домов и городских квартир.

onlineelektrik.ru

Задачи для заземляющих систем

Главные задачи систем безопасности, работающих на принципе заземления:

  1. Безопасность для жизни человека, с целью защиты от поражения электрическим током. Предусматривает альтернативный путь прохождения аварийного тока, чтобы он не нанес повреждение пользователю.
  2. Защиты зданий, машин и оборудования в условиях сбоя электросети, чтобы открытые токопроводящие части оборудования не достигли смертельного потенциала.
  3. Защита от перенапряжения из-за удара молнии, который может привести к опасным высоким напряжениям в электрической распределительной системе или от непреднамеренного контакта человека с линиями высокого напряжения.
  4. Стабилизация напряжения. Существует много источников электроэнергии. Каждый трансформатор можно рассматривать, как отдельный источник. У них должна быть общая доступная точка сброса негативной энергии. Земля является единственной такой токопроводящей поверхностью для всех источников энергии, поэтому она была принята в качества универсального стандарта для сброса тока и напряжения. Если бы не было такой общей точки, то чрезвычайно трудно было бы обеспечить безопасность в энергосистеме в целом.

Требования к системе заземления:


  • Она должна иметь альтернативный путь для протекания опасного тока.
  • Отсутствие опасного потенциала на открытых токопроводящих частях оборудования.
  • Должна иметь низкий импеданс, достаточный для обеспечения необходимого тока через предохранительное устройство, чтобы он отключил питание (<0,4 сек).
  • Должна иметь хорошую коррозионную стойкость.
  • Должна быть способной рассеивать большой ток короткого замыкания.

Описание систем заземления

Процесс соединения металлических частей электрических аппаратов и оборудования с массой земли металлическим устройством, имеющим незначительное сопротивление, называется заземлением. При заземлении токоведущие части приборов непосредственно соединены с землей. Заземление обеспечивает обратный путь для тока утечки и, следовательно, защищает оборудование энергосистемы от повреждений.

Когда неисправность возникает в оборудовании, во всех трех его фазах образуется дисбаланс тока. Заземление разряжает ток повреждения на землю и, следовательно, восстанавливает рабочий баланс системы. У этих защитных систем есть несколько преимуществ, таких как устранение перенапряжения через разрядку ее на землю. Заземление обеспечивает безопасность оборудования и повышает надежность обслуживания.

Метод зануления


Зануление означает подключение несущей части оборудования к земле. Когда неисправность возникает в системе, создается опасный потенциал на внешней поверхности оборудования, и любой человек или животное, случайно прикоснувшись к поверхности, могут получить удар током. Зануление сбрасывает опасные токи на землю и, следовательно, нейтрализует токовый удар.

Оно также защищает оборудование от молниеносных ударов и обеспечивает путь разряда от разрядников и других гасящих устройств. Это достигается путем соединения частей установки с землей заземляющим проводником или электродом в тесном контакте с почвой, размещенной на некотором расстоянии ниже уровня грунта.

Разница между заземлением и занулением

Одним из основных различий между заземлением и занулением является то, что при заземлении несущая токопроводящая часть соединена с землей, тогда как при занулении поверхность приборов соединяются с землей. Другие различия между ними объясняются ниже в виде сравнительной таблицы.

Сравнительная таблица

Основы для сравнения

Заземление

Зануление

Определение

Токопроводящая часть соединена с землей

Корпус оборудования подключен к земле

Местонахождение

Между нейтралью оборудования и землей

Между корпусом оборудования и землей, который помещен под земную поверхность

Нулевой потенциал

Не имеет

Есть

Защита

Защитить оборудование энергосистемы

Защитить человека от поражения электрическим током

Путь

Указывается путь возврата к текущему заземлению

Разряжает электрическую энергию на землю

Типы

Три (сплошное сопротивление)

Пять (труба, плита, заземление электрода, заземление и зануление)

Цвет провода

Черный

Зеленый

Использование

Для балансировки нагрузки

Для предотвращения поражения электрическим током

Примеры

Нейтраль генератора и силового трансформатора подключенная к земле

Корпус трансформатора, генератора, двигателя и т. д. подключен к земле

Защитные провода TN

Данные типы систем заземления имеют одну или несколько непосредственно заземленных точек от источника энергии. Открытые проводящие части установки подключаются к этим точкам с помощью защитных проводов.

В мировой практике используется двухбуквенный код.

Используемые буквы:

  • T (французское слово Terre означает «земля») — прямое соединение точки с землей.
  • I — ни одна точка не подключена к земле из-за высокого импеданса.
  • N — прямое подключение к нейтрали источника, который, в свою очередь, подключен к земле.

Основываясь на сочетании этих трех букв, существуют виды систем заземления: TN, TN-S, TN-C, TN-CS . Что это означает?

В системе заземления типа TN одна из точек источника (генератор или трансформатор) подключается к земле. Эта точка обычно является точкой звезды в трехфазной системе. Корпус подключенного электрического устройства подключается к земле через эту точку заземления со стороны источника.

На рисунке выше: PE — Акроним для Protective Earth — это проводник, который соединяет открытые металлические части электрической установки потребителя с землей. N называется нейтральным. Это проводник, соединяющий звезду в трехфазной системе с землей. По этим обозначениям на схеме, сразу понятно, какая система заземления относится к системе TN.

Нейтральная линия TN-S

Это система, имеющая отдельные нейтральные и защитные проводники по всей схеме электроустановок.

Защитный проводник (PE) представляет собой металлическое покрытие кабеля, питающего установки или отдельный проводник.

Все открытые проводящие части с установкой подключены к этому защитному проводнику через основную клемму установки.

Система TN-C-S

Это типы систем заземления система, в которых нейтральные и защитные функции объединены в один проводник системы.

В системе заземления нейтрали TN-CS, также известной как Protective Multiple Earthing, проводник PEN называется объединенным проводником нейтральной и заземленной частей.

Проводник PEN системы питания заземлен в нескольких точках, а заземляющий электрод расположен на месте установки потребителя или рядом с ним.

Все открытые проводящие части с установкой соединены проводником PEN с помощью главной заземляющей клеммы и нейтральной клеммы и связаны друг с другом.

Защитная схема TT

Это система защитного заземления, имеющая одну точку источника энергии.

Все открытые проводящие части с установкой, которые соединены с заземленным электродом, электрически не зависят от источника земли.

Изолирующая система IT

Система защитного заземления, не имеющая прямого соединения между токоведущими частями и землей.

Все открытые проводящие части с установкой, которые соединены с заземленным электродом.

Источник либо подключен к земле через сознательно введенный импеданс системы, либо изолирован от земли.

Конструкции защитных систем

Соединение между электроприборами и устройствами с заземляющей пластиной или электродом через толстый провод с низким сопротивлением для обеспечения безопасности называется заземлением или занулением.

Система заземления или зануления в электрической сети работает в качестве меры безопасности для защиты жизни людей, а также оборудования. Основная цель — обеспечить альтернативный путь для прохождения опасных потоков, чтобы можно было избежать несчастные случаи из-за поражения электрическим током и повреждения оборудования.

Металлические части оборудования заземлены или подключены к земле, и если по какой-либо причине изоляция оборудования не срабатывает, то высокие напряжения, которые могут присутствовать во внешнем покрытии оборудования, будут иметь путь сброса на землю. Если оборудование не заземлено, это опасное напряжение может быть передано любому, кто его коснется, что приведет к поражению электрическим током. Цепь замыкается, и предохранитель немедленно срабатывает, если токоведущий провод касается заземленного корпуса.

Существует несколько способов исполнения системы заземления электроустановок, таких как заземление провода или полосы, пластины или штока, заземление занулением или через водопровод. Наиболее распространенными методами являются зануление и устройство пластины.

Заземляющий мат

Заземляющий мат изготавливается путем соединения количества стержней через медные провода. Это уменьшает общее сопротивление схемы. Эти системы электрических заземлений помогают ограничить потенциал земли. Заземляющий мат в основном используется в месте, где должен быть испытан большой ток повреждения.

При проектировании заземляющего мата принимаются во внимание следующие требования:

  1. В случае неисправности напряжение не должно быть опасным для человека при касании токопроводящей поверхности оборудования электрической системы.
  2. Постоянный ток короткого замыкания, который может протекать в заземляющий мат, должен быть довольно большим для работы защитного реле.
  3. Сопротивление грунта низкое, чтобы ток утечки протекал через него.
  4. Конструкция заземляющего мата должна быть такой, чтобы ступенчатое напряжение было меньше допустимого значения, которое будет зависеть от удельного сопротивления грунта, необходимой для изоляции неисправной установки от человека и животных.

Электродная противотоковая защита

При такой системе заземления здания любой провод, стержень, труба или пучок проводников помещается горизонтально или вертикально в грунт рядом с защитным объектом. В распределительных системах заземляющий электрод может состоять из стержня длиной около 1 метра и располагаться в вертикальном положении в земле. При изготовлении подстанций используется заземляющий мат, а не отдельные стержни.

Трубный контур токозащиты

Это наиболее распространенная и лучшая система заземления электроустановок по сравнению с другими системами, подходящими для тех же условий земли и влаги. В этом способе оцинкованная сталь и перфорированная труба с расчетной длиной и диаметром расположены вертикально на постоянно влажной почве, как показано ниже. Размер трубы зависит от текущего тока и типа почвы.

Как правило, размер трубы для системы заземления дома имеет диаметр 40 мм и 2,5 метра в длину для обычной почвы или большей длины в случае сухой и каменистой почвы. Глубина, при которой труба должна быть зарыта, зависит от влажности грунта. Обычно труба располагается вглубь на 3,75 метра. Дно трубы окружено небольшими кусками кокса или древесного угля на расстоянии около 15 см.

Альтернативные уровни угля и соли используются для увеличения эффективной площади земли и, соответственно, для уменьшения сопротивления. Другая труба диаметром 19 мм и минимальной длиной 1,25 метра соединена в верхней части трубы GI через редуктор. Летом уменьшается влажность почвы, что приводит к увеличению сопротивления земли.

Таким образом, выполняются работы по цементному бетонированному основанию, чтобы поддерживать доступность воды летом и иметь землю с необходимыми защитными параметрами. Через воронку, соединенную с трубой диаметром 19 мм, можно добавить 3 или 4 ведра воды. Провод заземления либо GI, либо полоса провода GI с достаточным поперечным сечением для безопасного удаления тока переносится в трубу GI диаметром 12 мм на глубине около 60 см от земли.

Пластинчатое заземление

В этом устройстве системы заземления заземляющая пластина из меди размером 60 см × 60 см × 3 м и оцинкованного железа размером 60 см × 60 см × 6 мм погружается в землю с вертикальной поверхностью на глубине не менее 3 м от уровня земли

Защитная плита вставляется во вспомогательные слои древесного угля и соли с минимальной толщиной 15 см. Провод заземления (GI или медный провод) плотно крепится болтами к заземляющей пластине.

Медная пластина и медная проволока обычно не используются в защитных схемах из-за их более высокой стоимости.

Подключение заземления через водопровод

В этом типе GI или медный провод соединяются с водопроводной сетью с помощью стальной связующей проволоки, которая закрепляется на медном свинце, как показано ниже.

Водопровод состоит из металла и расположен ниже поверхности земли, т. е. непосредственно соединен с землей. Поток тока через GI или медный провод непосредственно заземляется через водопровод.

Расчет сопротивления заземляющего контура

Сопротивление одиночной полосы стержня, зарытого в землю, составляет:

R = 100xρ / 2 × 3,14 × L (loge (2 x L x L / W x t)), где:

ρ — устойчивость почвы (Ω ом),

L — длина полосы или проводника (см),

w — ширина полосы или диаметра проводника (см),

t — глубина захоронения (см).

Пример: Рассчитайте сопротивление заземляющей полосы. Провод диаметром 36 мм длиной 262 метра на глубине 500 мм в грунте, сопротивление земли составляет 65 Ом.

R — сопротивление заземляющего стержня в Вт.

r — Сопротивление грунта (Омметр) = 65 Ом.

Измеритель l — длина стержня (см) = 262 м = 26200 см.

d — внутренний диаметр стержня (см) = 36 мм = 3,6 см.

h — глубина скрытой полосы / стержня (см) = 500 мм = 50 см.

Сопротивление заземляющей полосы / проводника (R) = ρ / 2 × 3,14 x L (loge (2 x L x L / Wt))

Сопротивление заземляющей полосы / проводника (R) = 65 / 2 × 3,14 x 26200 x ln (2 x 26200 x 26200 / 3,6 × 50)

Сопротивление заземляющей полосы / проводника (R) = 1,7 Ом.

Для вычисления количества заземляющего стержня можно применять правило большого пальца.

Примерное сопротивление электродов Rod / Pipe можно рассчитать, используя сопротивление стержневых/трубных электродов:

R = K x ρ / L, где:

ρ — сопротивление земли в Омметре,

L — длина электрода в измерителе,

d — диаметр электрода в измерителе,

K = 0,75, если 25 <L / d <100.

K = 1, если 100 <L / d <600.

K = 1,2 o / L, если 600 <L / d <300.

Число электродов, если найти формулу R (d) = (1,5 / N) x R, где:

R (d) — требуемое сопротивление.

R — сопротивление одиночного электрода

N — количество электродов, установленных параллельно на расстоянии от 3 до 4 метров.

Пример: рассчитать сопротивление заземляющей трубы и количество электродов для получения сопротивления 1 Ом, резистивность грунта от ρ = 40, длина = 2,5 метра, диаметр трубы = 38 мм.

L / d = 2,5 / 0,038 = 65,78, так что K = 0,75.

Сопротивление электродов трубы R = K x ρ / L = 0,75 × 65,78 = 12 Ω

Один электрод — сопротивление — 12 Ом.

Для получения сопротивления 1 Ом общее количество требуемых электродов = (1,5 × 12) / 1 = 18

Факторы, влияющие на сопротивление земли

Код NEC требует минимальной длины заземляющего электрода длиной 2,5 метра для контакта с почвой. Но есть некоторые факторы, которые влияют на сопротивление земли защитной системы:

  1. Длина/глубина заземляющего электрода. Увеличение длины вдвое снижает сопротивление поверхности до 40 %.
  2. Диаметр заземляющего электрода. Удвоенное увеличение диаметра заземлителя снижает сопротивление грунту только на 10 %.
  3. Количество заземляющих электродов. Для повышения эффективности устанавливаются дополнительные электроды на глубину основных заземляющих электродов.

Строительство защитных электросистем жилого дома

В настоящее время земляные конструкции являются предпочтительным методом заземления, особенно для электрических сетей. Электричество всегда следует по пути наименьшего сопротивления и отводит максимальный ток от цепи в заземляющие ямы, предназначенные для уменьшения сопротивления, в идеале до 1 Ом.

Для достижения этой цели:

  1. Площадь 1,5 м х 1,5 м выкапывается на глубину до 3 м. Яма наполовину заполняется смесью древесного угольного порошка, песка и соли.
  2. GI-пластина 500 мм х 500 мм х 10 мм помещается в середину.
  3. Устанавливают соединения между заземляющей пластиной для системы заземления частного дома.
  4. Остальная часть ямы заполняется смесью угля, песка, соли.
  5. Для подключения заземляющей пластины к поверхности можно использовать две полосы GI с поперечным сечением 30 мм х 10 мм, но предпочтительной является 2,5-дюймовая труба GI с фланцем в верхней части.
  6. Кроме того, верхняя часть трубы может быть покрыта особым устройством, чтобы предотвратить проникновение грязи и пыли и засорение заземляющей трубы.

Монтаж системы заземления и преимущества:

  1. Древесный угольный порошок является отличным проводником и предотвращает коррозию металлических деталей.
  2. Соль растворяется в воде, что значительно увеличивает проводимость.
  3. Песок позволяет пропускать воду через всю яму.

Чтобы проверить эффективность ямы, убедитесь, что разность напряжений между ямой и нейтралью сетевого питания составляет менее 2 вольт.

Сопротивление ямы должно поддерживаться на уровне менее 1 Ом, расстояние до 15 м от защитного проводника.

Электрический удар

Электрический удар (электрошок) возникает, когда две части тела человека контактируют с электрическими проводниками цепи, которая имеет разные потенциалы и создает разницу потенциалов по всему телу. Тело человека имеет сопротивление, и когда оно соединено между двумя проводниками при разном потенциале, цепь образуется через тело, и будет поступать ток. Когда человек контактирует только с одним проводником, цепь не образуется, и ничего не происходит. Когда человек контактирует с проводниками цепи, независимо от того, какое в нем есть напряжение, всегда имеется вероятность получения травмы от электротока.

Оценка риска удара молнии для жилых домов

Некоторые дома имеют больше шансов привлечь молнию, чем другие. Они увеличиваются в зависимости от высоты здания и близости к другим домам. Близость определяется как тройное расстояние от высоты дома.

Для того, чтобы определить, насколько уязвимым является жилой дом для ударов молнии, можно использовать такие данные:

  1. Низкий риск. Одноуровневые частные жилые дома в близком окружении других домов одинаковой высоты.
  2. Средний риск. Двухуровневый частный дом, окруженный домами с подобными высотами или окруженный домами меньших высот.
  3. Высокий риск. Изолированные дома, которые не окружены другими структурами, двухэтажными домами или домами с меньшей высотой.

Независимо от вероятности удара молнии, правильное использовании важных компонентов молниезащиты поможет защитить любой жилой дом от таких повреждений. Системы молниезащиты и заземления требуются в жилом доме, чтобы удар молнии отводился в землю. Система обычно включает в себя заземленный стержень с медным соединением, который установлен в грунте.

При установке схемы молниезащиты в доме выполните следующие требования:

  1. Наземные электроды должны иметь длину не менее половины 12 мм и на 2,5 м в длину.
  2. Рекомендуется использовать медные соединения.
  3. Если на участке системы каменистая почва или расположены инженерные подземные линии, запрещается использование вертикального электрода, необходим только горизонтальный проводник.
  4. Он должен быть углублен на расстоянии не менее 50 см от земли и простираться не менее чем на 2,5 м от дома.
  5. Системы заземления частного дома должны быть взаимосвязаны с использованием проводника того же размера.
  6. Соединительные элементы для всех подземных систем металлических трубопроводов, таких как водопроводные или газовые трубы, должны быть расположены в пределах 8 м от дома.
  7. Если все системы уже были соединены до установки молниезащиты, требуется только привязать ближайший электрод к системе водопроводов.

Все люди, живущие или работающие в жилых, общественных зданиях постоянно находятся в тесном контакте с электрическими системами и оборудованием и должны быть надежно защищены от опасных явлений, которые могут возникнуть из-за коротких замыканий или очень высоких напряжений от разряда молнии.

Для достижения этой защиты системы заземления электрических сетей должны быть спроектированы и установлены в соответствии со стандартными государственными требованиями. По мере развития электротехнических материалов требования надежности защитных устройств повышаются.

fb.ru

Какие бывают системы заземления?

Чтобы избежать поражения электрическим током при прикосновении к оголенному проводку или поврежденному электрооборудованию, Международной Электротехнической Компанией (МЭК) была разработана специальная защита, называемая заземлением. Также эта система стандартизирована в ГОСТ РФ и подробное описание имеется в книге ПУЭ (правила устройства и эксплуатации электрооборудования). Что же представляет собой заземляющий контур электрической сети? Всё очень просто, это дополнительный проводник аппаратов, присоединенный к нулю. В случае аварии, при пробое изоляции или появлении контакта там, где его не должно быть, энергия фазы уйдет по PE проводу в ноль, и даже в случае случайного прикосновения человек не пострадает. Разберем какие бывают типы систем заземления, применяемых в России.

TN и ее разновидности

Самый распространенный тип заземляющей системы — это TN, в котором ноль совмещен с землей по всей длине. Этот тип еще называют в снабжении глухозаземленная нейтраль, когда условный ноль N источника соединен с устройством заземления PE. Устройство заземления не сложно, но тем не менее технологично и представляет собой группу штырей, вбитых вертикально в землю на значительную глубину до водоносного слоя, от 2.5 и более метров. Эти штыри соединены полосой или же кабелем в единый контур заземления жилого дома. Рассмотрим, какая существует классификация систем TN на сегодняшний день и в чем различие между всеми разновидностями.

В старом жилом фонде используется тип защиты ТN-C, это когда ноль N выполняет также роль защитного провода PE, совмещен. Это самый простой и дешевый вариант заземления электроустановки до 1000 В.

Виды заземления и их назначения

Тип TN-С морально устарел и электрически опасен, так как не имеет отдельного защитного проводника, и в случае обрыва нулевого провода. во время ЧП, весь потенциал окажется на электрооборудовании, подвергая риску поражения током или же возникновению пожара.

Поэтому во вновь проектируемых зданиях используют другую подсистему TN-S, в этом устройстве присутствует отдельный провод фаза, ноль (нейтраль) и защитный проводник PE. Проводники N и PE, начиная от подстанции с глухозаземленной нейтралью являются отдельными компонентами системы электроснабжения.

Виды заземления и их назначения

Данный вид является самым надежным из принятых типов заземления электрической сети. К его недостаткам можно отнести дороговизну, так как нуждается в дополнительном проводнике, от подстанции к потребителю.

Лишенная этих недостатков, относительно простая в реализации система TN-C-S. которая сочетает в себе достоинства описанных ранее систем. Также легко реализуется во время реконструкции старых зданий. Смысл данной схемы в том, что до ГРЩ организуется система TN-C, тут разделяют нейтральный провод PEN на два проводника N и PE, далее идет система TN-S.

Виды заземления и их назначения

Недостаток этой системы такой же, как и TN-C, при обрыве PEN шины система оказывается под полным напряжением. С этим недостатком борются установкой дополнительных устройств, таких как реле напряжения, производящих аварийное отключение потребителя от сети.

Существуют еще два вида снабжения, которые используются в специальных условиях, это тип TT — когда доставка электрической энергии организуется фазными проводами от источника с глухозаземленной нейтралью, а заземление организовывается непосредственно у потребителя. Таким способом осуществляют подключение мобильных домов, временных объектов. Данный тип требует обязательного использования устройств защитного отключения УЗО.

Виды заземления и их назначения

Еще один вариант — система IT, тип снабжения, не использующий глухозаземленную нейтраль. Ноль источника подключается через специальные устройства, имеющие высокое внутреннее сопротивление, а непосредственно у потребителя установлено устройство нуля и защитного заземления (согласно ПУЭ 7, глава 1.7). Данный тип снабжения используется в спец лабораториях, так как помехи, вносимые таким способом, минимальные.

Виды заземления и их назначения

Также рекомендуем просмотреть видео, на котором предоставлено описание каждой разновидности заземляющих систем с расшифровкой аббревиатур:

Какие бывают варианты защиты электроустановок до 1 кВ?

И напоследок хотим обратить внимание — запрещено использовать в качестве защитного заземления трубы отопления, газа, трубы водопровода, элементы металлических ограждений. В этом случае возможно появление на этих элементах полного напряжения 220 вольт, подвергая жизнь окружающих опасности. Берегите себя.

Вот и все, что хотелось рассказать вам об основных типах систем заземления, применяемых в России. Надеемся, теперь вы знаете, какие бывают схемы заземляющих контуров и в чем отличия между существующими вариантами!

Будет интересно прочитать:

Какие бывают варианты защиты электроустановок до 1 кВ?

Системы заземления — классификация и типы, выбор оптимального варианта защиты

Заземление – один из наиболее важных технологических методов защиты от поражения электротоком при работе с электрическими приборами. Для правильной модернизации или ремонта проводки нужно точно представлять, какая система заземления используется на объекте. От этого зависит безопасность человека и нормальная работа оборудования. Также информация важна при создании проекта реконструкции. Соответственно, нужно изучить все имеющиеся системы заземления, отличия друг от друга, а также технологии их монтажа.

Содержание

Международная электротехническая комиссия (МЭК) и Госстандарт РФ установили типы систем заземления. Все они указаны в ПУЭ (правилах устройства электроустановок). Различают:

  1. Систему TN (с подсистемами TN-C, также TN-S и, наконец, TN-C-S);
  2. Систему TT;
  3. Систему IT.

Виды заземления и их назначения

Системы заземления TN, ТТ, IT

Различаются они по источнику электроэнергии и способу заземления электрооборудования. Тип системы заземления обозначается буквами:

1. По первой букве определяется, как заземлен источник питания:

  • если это Т – то имеется непосредственное соединение нулевого рабочего проводника (нейтрали) источника электроэнергии с землей;
  • если это I – то нейтраль источника энергии соединяется с землей исключительно через сопротивление.

2. По второй букве определяется заземление в проводящих открытых частях электроустановки здания:

  • буква Т обозначает местное (раздельное) заземление электрооборудования и источника электропитания;
  • буква N говорит о том, что источник электропитания заземлен, но заземление потребителей происходит лишь через PEN-проводник.

3. Следующие буквы за N определяют функциональный способ, по которому устроен нулевой рабочий и нулевой защитный проводник:

  • если стоит S – значит функции рабочего (N) как и защитного (РЕ) проводников обеспечены раздельными проводниками;
  • если стоит С – значит функции нулевого рабочего и защитного проводников обеспечены общим проводником (PEN).

Система TN отличается наличием глухозаземленной нейтрали: открытые проводящие части любой электроустановки присоединены к конкретной глухозаземленной нейтральной точке источника электропитания посредством специальных нулевых защитных проводников.

[include id=»1″ title=»Реклама в тексте»]

Термин «глухозаземленная нейтраль» означает, что нейтраль (ноль) на трансформаторной подстанции подключена прямо к заземляющему контуру (т.е. заземлен).

Основное условие электробезопасности TN заключается в следующем: значение тока между открытой проводящей частью и фазным проводником при коротком замыкании должно превышать величину электротока срабатывания устройства защиты за нормированное время.

Востребованная подсистема TN-C

Подсистемой TN-C является TN, в которой проводники (нулевой рабочий, а также защитный) на всем протяжении системы совмещены (в 1 проводник PEN), т.е. произведено защитное зануление. Это наиболее используемая разновидность TN со времен СССР. Однако эта система сейчас устарела. Из современных электроустановок, она встречается лишь в уличном освещении (в целях экономии, а также пониженного риска). Для нового жилья ее рекомендовать нельзя. Сейчас на смену ей пришли более современные системы.

Вариант заземления TN-S

Подсистемой TN-S является TN, в которой проводники (нулевой рабочий, а также защитный) на всем протяжении системы разделены. Это современная, самая безопасная, однако самая дорогая система. Она уже очень давно применяется в телекоммуникационных сетях (что примечательно, при ее использовании исключены помехи в слаботочной сети).

TN-C-S — специфика устройства

Виды заземления и их назначения

Системы заземления TN-C, TN-C-S

Подсистему TN-C-S – можно отнести к промежуточному варианту. В ней нулевой рабочий, а также защитный проводники совмещены лишь в какой-то одной ее части. Обычно — в главном щите здания (где защитное заземление дополнено защитным занулением). По всему зданию далее эти проводники разделены. Система оптимальна с позиции соотношения цена — качество. Данная схема является в настоящее время основной, которую можно реализовывать в отдельных частях электроустановок при реконструкции. Другие системы заземления электроустановок сделать этого не позволяют. Сечения проводников выбираются, исходя из значений токов (расчетных), протекающих через них. Площадь сечения (минимальная) PEN-проводника равна 4 мм2. Необходимо предусмотреть, чтобы в распределительном щите были отдельные зажимы на шине PEN (для каждого проводника — N и РЕ). При применении многожильного или одиночного провода в качестве PEN-проводника его цвет изоляции должен быть исключительно желто-зеленым.

Это система отличается тем, что ноль источника в ней заземлен, при этом открытые проводящие части любой электроустановки подсоединены к заземлению, которое является электрически независимым от заземленного нуля (нейтрали) источника питания. Иными словами, на объекте применяется свой контур заземления, который никак не связан с нулем. На сегодняшний день эту систему как основную применяют в мобильных сооружениях, например бытовках, домах-вагонах и т.д. (там, где не всегда удается монтировать заземлитель в соответствии с требуемыми нормами). Примечательно, что согласование ее применения проходит сложнее, чем TN. Обязательным становится применение УЗО, также необходимо качественное заземление (а именно 4 Ом на 380 В ), существует много особенностей при подборе необходимых защитных автоматов.

Это система отличается тем, что ноль источника в ней изолирован от земли либо заземлен через приборы, которые обладают большим сопротивлением, а проводящие открытые части электроустановок заземлены с использованием заземляющих устройств. IT применяется крайне редко. В основном — в электроустановках зданий специального назначения. Например, для аварийного освещения и электроснабжения в больницах. Вообщем, там где предъявляются повышенные требования безопасности и надежности.

Существуют несколько технологий установки контура заземления. Наиболее применяемые две: традиционная и модульно штыревая система заземления.

Заземление выполняется из черного металлопроката: уголков, труб полос и т. п. Начинается установка с создания проекта, отражающем место, где будет устроен заземляющий контур, расположение технических коммуникаций в грунте. Затем, ориентируясь на объект, в почву на глубину в 3 м, на расстоянии около 5 м др. от друга вкапываются металлические изделия (электроды) определенного сечения (не < 3-х). После этого эти электроды они свариваются в общий контур по периметру при помощи металлической полосы.

[include id=»2″ title=»Реклама в тексте»]

Эта технология была основной в течение многих десятков лет. Однако она имеет ряд недостатков (например, коррозия металла, трудоемкость установки и т.п.), поэтому сейчас ее стараются заменять другой, более современной и совершенной технологией заземления.

Виды заземления и их назначения

Модульно штыревая система заземления

Что входит в комплект?

  1. Состоит она из стержней, изготовленных из высококачественной стали и покрытых медью. Их располагают в грунте вертикально. Каждый из этих стержней достигает в длину порядка полутора метров, а в диаметре – 14 мм, масса 1-го элемента – не более 2-х кг. С двух сторон каждого стержня делается нарезка омедненной резьбы 30 мм в длину.
  2. Стальные элементы этой системы соединяются между собой при помощи латунных муфт.
  3. Комплект модульной системы заземления включает также латунный зажим, используемый для соединения горизонтальных (особые стальные полосы или медный провод, проходящий от щитка-распределителя прямо к заземлительному контуру этой системы) и вертикальных (омедненные стальные стержни) элементов заземления.
  4. Также в комплект входит два стальных наконечника, которые будут крепиться к стержню путем навинчивания на омедненную резьбу. Выбирать наконечники придется в зависимости от грунта (особо твердый или обычный). В нем будет проходить все устройство этой системы заземления здания.
  5. Для антикоррозийной защиты всех элементов заземления обычно прилагается защитная паста, которой обрабатываются элементы всей будущей заземлительной системы.
  6. Для более безопасного и надежного соединения горизонтальных и вертикальных составляющих используют защитную ленту (например, PREMTAPE).

Как происходит монтаж?

Монтаж модульной штыревой системы заземления проходит в несколько этапов:

  1. Устанавливается 1-ый вертикальный стальной штырь.
  2. Проводится замер промежуточного сопротивления.
  3. Монтируются остальные вертикальные штыри.
  4. Укладывается горизонтальный заземлитель.
  5. Затем элементы соединяются и обрабатываются защитной лентой.

Преимущества модульно штыревой системы заземления

  1. Позволяет сэкономить площадь (может обустраиваться на 1 м2 площади).
  2. Простая, не требует трудоемких земляных работ.
  3. Не требуется сварка.
  4. Применять такое заземление можно при любом виде грунта
  5. Достигается большая глубина – до 50 м.
  6. Используются проводники из нержавеющей стали.
  7. Нет необходимости в специальном оборудовании.
  8. Длительный срок эксплуатации.

Из всего вышеизложенного можно сделать вывод, что на сегодняшний день наиболее рациональным является применение системы TN-C-S и модульно-штыревой технологии ее монтажа. Все факты говорят о том, что технологии устройства заземления последнего поколения по многим параметрам превосходят традиционные. Их применением сокращает срок проведения работ, уменьшает финансовые затраты, увеличивают срок службы заземляющих элементов.

Рекомендуем похожие статьи

Виды заземления и их назначения Монтаж электропроводки своими руками: требования, виды и схема проводки

Назначение заземления

Сначала определимся с определением заземления. Заземление нужно понимать как специальное электрическое соединение некоторых элементов сети, металлических корпусов различных электроприборов или электроустановок с конструкцией заземления.

Виды заземления и их назначения

Заземление нейтрали и защитное заземление

Устройство заземления нужно рассматривать как некоторую конструкцию специальных заземлителей с заземляющими проводниками, которые представляют собой электрическую связь электроустановки с грунтом.

То есть, эта конструкция заземляющих устройств предназначена для поглощения землей опасного для жизни напряжения, появившегося на металлическом корпусе электроустановки при пробое изоляции сетевых проводов. Заземлители обеспечивают надежный контакт с грунтом, и через проводники связаны с металлическими частями электрических установок.

Для оценки надежности и качества ЗУ существуют определенные значения сопротивления заземления с грунтом. Чем меньше величина сопротивления заземления, тем качественнее электрическое соединение между заземлителем и грунтом. Для идеального варианта сопротивление равно нулю, но такого не может быть из-за наличия удельного электрического сопротивления грунта.

Виды заземления и их назначения

Варианты контура заземления для частного дома

Поэтому для различных типов электросетей определены нормированные сопротивления заземления. Сопротивление заземление нейтрали у трансформатора подстанции по нормативу 4 Ома. Величина сопротивления заземления молниезащиты в однофазных сетях 220 В, также в 3-х фазной электросети 380 В составляет 10 Ом. По правилам ПЭУ 1.7. 103 для систем электропитания TN-C-S частных домов и электросети 220/380 В значение сопротивления заземления не превышает 30 Ом.

Виды заземления и их задачи

Существует два типа заземления электроустановок — это рабочее и защитное. Эти виды заземления имеют свою функциональность. Так рабочее заземление обеспечивает нормальные условия работы электроустановок. Рабочее заземление предназначено для заземления отдельных частей установки, необходимое для эффективной работы. Т. е. здесь не говорится о защитных свойствах заземления.

Как пример, является заземление трансформаторов подстанций, генераторов тока с целью создания рабочего режима и повышения устойчивости и надежности энергосистем. А ответственной задачей защитного заземления будет защита от поражения током во время аварии. Таким образом, защитное заземление предотвращает появление опасного напряжения на тех металлических конструкциях, где его не ждут, но оно может появиться.

Виды заземления и их назначения

Рабочее и защитное заземление в разных системах энергоснабжения

Опасное напряжение может появиться на любых металлических конструкциях, трубах, ограждениях, корпусах. Появится опасное напряжение также может в результате пробоя изоляции проводов, утечки тока через изоляцию, электростатических разрядов, молнии. Работа защитного заземления заключается в отводе опасного напряжения с металлических конструкций на землю и создании тока утечки с заземленных участков, для срабатывания УЗО и отключения электросети.

Важным элементом заземления является сам заземлитель, который имеет прямое соприкосновение с землей. Особенно важным параметром заземлителя считается сопротивление заземления, которое уменьшается с увеличением площади заземлителя. Чтобы увеличить площадь заземлителя устанавливают их несколько, увеличивают их длину, меняют конфигурацию. Со стороны грунта — насыщают солями или вовсе засыпают другой грунт или устанавливают заземление в местах с близкими грунтовыми водами.

Заземлению не подлежат трубы централизованного отопления, водопровод, канализация, трубопровод горючих жидкостей и газопроводы.

В качестве заземлителей можно приспособить естественные заземлители — это конструкции установленные в земле которые соответствуют предъявляемым требованиям. К естественным заземлителям можно отнести арматуру фундаментов, бетонных плит, обсадные трубы.

Повторное заземление

Такое заземление снижает величину опасного напряжения при пробое фазного проводника электроустановки, по отношению к земле в обычном рабочем режиме и в случае обрыва нулевого проводника. Можно сказать что повторное заземление — это заземление которое выполняется не в одном месте, а одновременно в нескольких местах на протяжении всей длины нулевого проводника.

Виды заземления и их назначения

Повторное заземление должно выбираться так, чтобы при аварии и к. з. на корпус, отключался ближайший автомат. Контур заземления старых домов уже не соответствует современным требованиям, поэтому необходимо делать повторное заземление. Провод заземления, при повторном заземлении должен быть непрерывным относительно каждого источника напряжения и присоединяется с варкой, а к корпусу приборов возможно соединение болтом.

electricremont.ru


Categories: Заземление

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector