ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ



НАЦИОНАЛЬНЫЙ

СТАНДАРТ

РОССИЙСКОЙ

ФЕДЕРАЦИИ

Энергетическая эффективность

НАСОСЫ АВТОНОМНЫЕ БЕССАЛЬНИКОВЫЕ

ЦИРКУЛЯЦИОННЫЕ

Информирование потребителей об энергетической эффективности циркуляционных насосов

Издание официальное

CtWAVrw^ofM

ЯН0

Предисловие

1    РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ)

2    ВНЕСЕН Техническим комитетом по стандартизации ТК 039 «Энергосбережение, энергетическая эффективность, энергоменеджмент»

3    УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 18 июня 2015 г. No 740-ст


4    ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены е ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — е ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответстеующее уведомление будет опубликовано в ближайшем выпуске информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также е информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии е сети Интернет ()

©Стандартинформ. 2015

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федеральною агентства по техническому регулированию и метрологии

II

Содержание

Приложение А (обязательное) Вид этикетки энергетической эффективности автономного

Введение

Вопросы обеспечения международной энергетической и экологической безопасности, е том числе и проблемы энергетической эффективности, загрязнение окружающей среды, в настоящее время являются приоритетными для мирового сообщества и являются предметом активного международного диалога. Задачи энергосбережения, повышения энергетической и экологической эффективности носят международный характер.


Циркуляционные насосы потребляют большую часть энергии, используемой в системах отопления и горячего водоснабжения зданий. Большинство циркуляционных насосов работает в режиме непрерывной эксплуатации без учета потребностей систем отопления и горячего водоснабжения, поэтому циркуляционные насосы находятся в списке приоритетных устройств, для которых требуется регулирование энергетической эффективности.

Настоящий стандарт устанавливает метод вычисления индекса энергоэффективности, вид и дизайн этикетки энергетической эффективности автономных бессальниковых циркуляционных насосов. Настоящий стандарт гармонизирован с требованиями программы добровольной маркировки автономных бессальниковых циркуляционных насосов Европейской ассоциации производителей насосов (Europump).

В результате маркировки автономных бессальниковых циркуляционных насосов данные, приводимые на этикетке энергетической эффективности изготовителей, как отечественных, так и зарубежных, будут иметь соответствующую сравнимую основу к взаимной выгоде, как пользователей, так и изготовителей.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Энергетическая эффективность

НАСОСЫ АВТОНОМНЫЕ БЕССАЛЬНИКОВЫЕ ЦИРКУЛЯЦИОННЫЕ

Информирование потребителей об энергетической эффективности циркуляционных насосов

Energy efficiency. GJandtess stand alone circulators.


Informing of consumers about energy efficiency of circulators

Дата введения — 2016—01—01 с правом досрочного применения

1    Область применения

Настоящий стандарт распространяется на автономные бессальниковые циркуляционные насосы.

Настоящий стандарт не распространяется на бессальниковые циркуляционные насосы, встроенные в другие устройства, циркуляционные насосы, предназначенные для циркуляции литьевой воды (на упаковке и в технической документации циркуляционных насосов для литьевой воды должна быть указана следующая информация: «Данный циркуляционный насос может использоваться только для питьевой воды»).

2    Нормативные ссылки

8 настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 6134—2007 (ИСО 0906:1099) Насосы динамические. Методы испытаний

ГОСТ 17398—72 Насосы. Термины и определения

ГОСТ Р 55155—2012 Автономные бессальниковые циркуляционные насосы и бессальниковые циркуляционные насосы, встроенные в другие устройства. Показатели энергетической эффективности и методы определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет игм по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год.
ли заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная осыпка, внесено изменение, затрагивающее положение, на которое дана ссылка, то эго положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту осыпку.

3    Термины и определения

8 настоящем стандарте применены термины по ГОСТ Р 55155, ГОСТ 17398.

Издание официальное

4 Классы энергетической эффективности

4.1 Для обозначения энергетической эффективности автономных бессальниковых циркуляциом-ных насосов в зависимости от их индекса энергетической эффективности установлены классы (по возрастанию) от А до G согласно таблице 1.

Таблица 1 — Индексы энергетической эффективности автономных бессальниковых циркуляционных нэсооов и соответствующие им классы энергетической эффективности


Класс энергетической эффективности

Индекс энергетической эффективности |ЕЕ1)

А (наиболее эффективный)

EEI < 0,40

В

0.40 $ EEI < 0.60

С

0.60 $ EEI < 0.80

О

0.80 SEEK 1,00

Е

1.00$ EEI < 1.20

F

1.20$ EEI < 1.40

G (наименее эффективный)

EEI г 1.40

4.2 Вид этикетки энергетической эффективности и требования к ее оформлению для автономных бессальниковых циркуляционных насосов приведен в приложении А.

5 Методология вычисления индекса энергоэффективности

5.1 Индекс энергоэффективности циркуляционного насоса EEI вычисляют по формуле




где PL ^—средняя взвешенная мощность;

— опорное значение мощности.

5.2    Если для циркуляционного насоса могут применяться сразу несколько различных установок напора (Н) и расхода (Q). то для вычисления индекса энергоэффективности следует использовать значения напора и расхода, при которых значение Н • О максимально.


5.3    Необходимо установить точку, в которой значение Н • О максимально, и определить напор и расход для данной точки — О100% и Н,00%

5.4    Опорное значение мощности Р,еЛ Вт. вычисляют по формуле

5.5    Опорное значение мощности Pnft Вт. для малых насосое с гидравлической мощностью менее 20 Вт вычисляют по формуле

5.6    Гидравлическую мощность Phyd в точке, в которой значение Н ■ Q максимально, вычисляют по формуле

5.7    Опорный график производительности циркуляционного насоса (см. рисунок 1) представляет собой прямую, соединяющую собой соответствующие точки

(Qioo%* нюо%)и (°ov 2* )‘

5.8 Отклонения от опорного графика производительности неизбежны для реального циркуляционного насоса. Для более точного определения среднего энергопотребления циркуляционного насоса используют компенсационный метод, приведенный в 5.8.1— 5.8.3.

5.8.1 Используя значения компенсированной мощности PL и приведенный ниже профиль нагрузки (см. рисунок 2). вычисляют среднюю взвешенную мощность PLavg по формуле

PL.0*9 — 0.06РМОО% 4 О’15^.75% *    4 Q AAPL2S%-    (5)


Расход О.Ч

время. %

100

в

75

15

50

35

25

44



Рисунок 2 — Профиль нагрузки циркуляционного насоса

5.8.2 Компенсированную мощность PL. Вт, определяют по формулам






PL*P тев,*вСЛИ^ео»>ЧсЛ    (7)

где Н^( — напор в соответствии с опорным графиком производительности насоса при различных значениях расхода.

5.8.3 Значения мощности Р1тевв и напора Hmoas измеряют для следующих заданных параметров

расхода

^юоч ‘ ^*25: Окну* ■ 0.5: Q100% ■ 0,75: 0JOO%

6 Методы измерений

Методы испытаний автономных бессальниковых циркуляционных насосов — по ГОСТ 6134.

Приложение А (обязательное)

Вид этикетки энергетической эффективности автономного бессальникового циркуляционного

насоса

А.1 Вид этикетки энергетической эффективности автономного бессальникового циркуляционного насоса приведен на рисунке А.1.


Насос циркуляционный гостНасос циркуляционный гостНасос циркуляционный гост

Рисунок А.1 — Вид этикетки энергетической эффективности автономного бессальникового циркуляционного насоса

А.2 Требования к оформлению этикетки энергетической эффективности автономного бессальникового циркуляционного насоса

А.2.1 Этикетка энергетической эффективности автономного бессальникового циркуляционного насоса (оформление приведено на рисунке А.2). должна быть оформлена в соответствии со следующими требованиями. А.2.2 Фон этикетки энергетической эффективности — белый.

А2.3 При оформлении этикетки можно использовать следующие цвета: голубой, пурпурный, желтый, черный. Пример условного обозначения цвета элемента этикетки энергетической эффективности: 00-70-Х-00:0 % голубого, 70 % пурпурного, 100 % желтого, 0 % черного.

А.2.4 Этикетка должна содержать следующие элементы:


1)    отступы от контурных линий: 5 пт — цвет: голубой 100 %;

2)    наименование — цвет: голубой 100 % — размер: 92 мм ширины я 17 мм высоты:

3)    отступ от границы логотипа: 1 пт — цвет 100 % голубой — длина 92.5 мм.

4)    указатели (стрелки) этикетки — цвета:

высший класс Х-00-Х-00:100 % голубой; 0 % пурпурной; 100 % желтой; 0 % черной: второй класс 70-00-Х-00: 70 % голубой; 0 % пурпурной; 100 % желтой; 0 % черной; третий класс 30-00-Х-00: 30 % голубой; 0 % пурпурной; 100 % желтей; 0 % черной;

четвергый класс 00-00-Х-00:0 % голубой; 0 % пурпурной; 100 % желтой; 0 % черной; пятый класс 00-30-Х-00: 0 % голубой; 30 % пурпурной; 100 % желтой; 0 % черной; шестой класс 00-70-Х-00: 0 % голубой; 70 % пурпурной; 100 % желтой; 0 % черной; низший класс 00-Х-Х-00: 0 % голубой; 100 % пурпурной; 100 % желтой; 0 % черной.

А.2.5 указатель (стрелка) класса энергетической эффективности — размер: ширина (расстояние) 13.5 мм. высота 10 мм. цвет 100% черный.

Насос циркуляционный гост

Рисунок А.2 — Оформление этикетки энергетической эффективности автономного бессальникового циркуляционного насоса

УДК 621.67—216.74:006.354    ОКС 23.080    ОКП 36 3000

Ключевые слова: насос, циркуляционный, бессальниковый, энергетическая эффективность, класс энергетической эффективности, этикетка энергетической эффективности


Редактор АП. Корпусова Технический редактор В.И. Прусакова Корректор в. И. Баренцева Компьютерная верстка Е.Е. Кругова

Сдано о набор 11.11 .2015- Подписано а печать 18.11.2015. Формат 80 "84 Vg. Гарнитура Ариап. Уел. печ. п. 1.40. Уч.-мдд. п. 1,00. Тираж 35 эо. За* 3710.

Иддано и отпечатано ео ФГУП «СТАНДАРТИНФОРМ», 123995 Мосваа. Гранатный пер.. 4.

Насос циркуляционный гост

allgosts.ru

Виды и основные характеристики

Прежде чем разбираться в том, какие имеют циркуляционные насосы для систем отопления технические характеристики, следует познакомиться с различными типами такого оборудования. По конструктивному исполнению выделяют циркуляционные насосы:

  • с «мокрым» ротором;
  • с «сухим» ротором.

Особенность конструкции устройств первого типа заключается в том, что подвижные элементы их роторного узла постоянно находятся в контакте с перекачиваемой средой, что обеспечивает не только их смазку, но и эффективное охлаждение. Кроме того, работа такого оборудования, ротор которого постоянно находится в жидкой среде, отлично поглощающей все вибрации, характеризуется минимальным уровнем шума. Достоинствами циркуляционных насосов с «мокрым» ротором также являются компактные размеры, простота в установке и техническом обслуживании. Если говорить о недостатках подобных гидромашин, то к наиболее значимым из них относится невысокий КПД.

В циркуляционных насосах с «сухим» ротором, как становится понятно уже из их названия, элементы роторного узла не контактируют с жидким теплоносителем, что наделяет такие устройства как достоинствами, так и недостатками. Наиболее значимыми преимуществами гидромашин данного типа являются высокая производительность и КПД, доходящий до 80%. Циркуляционными насосами с «сухим» ротором оснащают мощные тепловые станции и отопительные системы промышленного назначения, в бытовых системах отопления, как правило, их не используют. Среди недостатков гидромашин с «сухим» ротором обычно называют достаточно высокую шумность, а также сложность установки и обслуживания.

Технические возможности и условия эксплуатации насосов циркуляционных для систем отопления определяются целым рядом характеристик.

Производительность

Этот параметр указывает на количество жидкости, которую устройство в состоянии перекачать за единицу времени своей работы. Единица измерения данного параметра – м3/час.

Напор

Напор также называют гидравлическим сопротивлением. Величина напора, формируемого циркуляционным насосом, измеряется в метрах или дециметрах водяного столба.

Напряжение питания

От этого параметра зависит тип электрической сети (одно- или трехфазной), к которой можно подключать насос. Естественно, что для установки в системах отопления жилых домов следует выбирать гидромашины, работающие от электрической сети питания с напряжением 220 В.

Потребляемая мощность

Данная характеристика зависит как от конкретной модели насосного оборудования, так и от режима, в котором оно работает. Многие модели циркуляционных насосов, предназначенных для бытовых систем отопления, могут обеспечивать несколько скоростей перекачивания воды. На корпусе таких насосов, как правило, имеется специальная табличка, на которой указаны потребляемая мощность и сила тока, соответствующие каждому из режимов работы. Преимущественное большинство циркуляционных насосов для бытовых систем отопления характеризуются потребляемой мощностью, находящейся в интервале 50–70 Вт.

Максимальная температура теплоносителя

Выбирая циркуляционный насос для системы отопления по данному параметру, следует отдавать предпочтение моделям, рассчитанным на работу с рабочей средой, температура которой может доходить до 110°.

Размерные параметры

Сюда относятся такие характеристики, как диаметр резьбовой части монтажных элементов насосного оборудования и монтажная длина его корпуса. Большая часть циркуляционных насосов, используемых в бытовых системах отопления, просто врезается в трубопровод и соединяется с его элементами при помощи накидных гаек – «американок». Достаточно часто как сами гайки, так и патрубки для подсоединения устройства к трубопроводной системе уже входят в его заводскую комплектацию. Наиболее распространенными монтажными диаметрами циркуляционных насосов, используемых для оснащения бытовых систем отопления, являются 1 и 1,25 дюйма (25 и 32 мм соответственно). Монтажная длина бытовых циркуляционных насосов может составлять 130 или 180 мм.

Класс защиты электрической части

Большинство современных моделей циркуляционных насосов для бытовых систем отопления по международной классификации соответствуют классу защиты IP44. Насосное оборудование данного класса производители обеспечивают защитой от попадания в его внутреннюю часть твердых инородных частиц, размер которых превышает 1 мм. На это указывает первая цифра 4 в маркировке. Следующая цифра 4 в обозначении класса защиты обозначает, что электрическая часть оборудования застрахована от капель жидкости и брызг, летящих под любым углом.

Максимальное давление жидкости на выходе

На корпусе многих моделей циркуляционных насосов можно встретить информацию о данной характеристике. Как правило, у бытового оборудования этот параметр не превышает 10 бар. С практической точки зрения он ни о чем говорит, гораздо важнее такие характеристики, как напор и производительность.

Торговая марка и компания-производитель

При выборе циркуляционных насосов для систем отопления (впрочем, как и любых других технических устройств) лучше отдавать предпочтение продукции известных производителей, которые более серьезно относятся к вопросам качества и предоставляют надежные гарантии.

Технические характеристики циркуляционных насосов для систем отопления, как правило, внесены в обозначение их моделей. По таким обозначениям, в частности, можно сразу определить следующие параметры: создаваемый устройством напор жидкости, диаметры его всасывающего и нагнетательного патрубков, монтажную длину.

Правила и особенности выбора

Приступать к выбору определенной модели циркуляционного насоса следует только после того, как будет спроектирована отопительная система и станет известна суммарная длина ее замкнутого контура. Кроме длины контура системы отопления, на выбор циркуляционного насоса оказывает влияние и количество радиаторов, которыми она будет оснащена. Только после получения всех этих данных можно с высокой точностью определить, какую производительность должен иметь циркуляционный насос и какой величины напор теплоносителя в системе он должен обеспечивать. Производительность циркуляционного насоса для системы отопления очень важно рассчитывать, исходя из самой низкой температуры на улице, когда насосное устройство будет работать с максимальной нагрузкой.

Выбирая циркуляционный насос для системы отопления по характеристикам такого устройства, можно ориентироваться на следующие рекомендации от опытных специалистов.

  1. Если при выборе циркуляционного насоса вам подошли и понравились сразу несколько моделей, предпочтение следует отдать той из них, технические характеристики которой точнее всего соответствуют расчетным значениям, полученным при проектировании системы отопления.
  2. Нежелательно выбирать циркуляционный насос со слишком большим запасом по производительности и создаваемому напору теплоносителя. Такое устройство, расходуя только часть своей мощности, будет потреблять значительное количество электроэнергии, и создавать излишний шум при работе.
  3. Лучше приобретать те модели циркуляционного насоса, режимы работы которых можно регулировать. Использование таких устройств со специальным переключателем на корпусе позволяет оптимизировать работу всей системы отопления в целом.

Циркуляционные насосы, если они правильно подобраны и установлены, позволяют сделать работу отопительных систем более эффективной, а также снизить расходы на обогрев помещений.

met-all.org

Насос циркуляционный гост

НАСОСЫ ЦИРКУЛЯЦИОННЫЕ ПЕРВОГО
КОНТУРА ЭНЕРГОБЛОКОВ АТОМНЫХ
ЭЛЕКТРОСТАНЦИЙ
С РЕАКТОРАМИ ВВЭР

ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

ГОСТ 24656-81

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

НАСОСЫ ЦИРКУЛЯЦИОННЫЕ ПЕРВОГО КОНТУРА
ЭНЕРГОБЛОКОВ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ
С РЕАКТОРАМИ ВВЭР

Типы, основные параметры и общие технические требования

Circulation frumps for first contour energy blocks of atomic power stations with reactors VVER. Type, basic parameters and general requirements

ГОСТ
24656-81

Постановлением Государственного комитета СССР по стандартам от 30 марта 1981 г. № 1667 срок действия установлен

с 01.01 1982 г.

до 01.01 1987 г.

Настоящий стандарт распространяется на вертикальные главные циркуляционные насосы (ГЦН) с механическим уплотнением вала, предназначенные для создания циркуляции теплоносителя в первом контуре энергоблоков атомных электростанций с водо-водяными энергетическими реакторами (ВВЭР) электрической мощностью от 400 до 2000 МВт.

Стандарт устанавливает типы, основные параметры насосов и общие технические требования.

Пояснения к терминам, применяемым в стандарте, приведены в справочном приложении.

1. ТИПЫ И ОСНОВНЫЕ ПАРАМЕТРЫ

1.1. В зависимости от номинальных значений основных параметров установлены следующие типы главных циркуляционных насосов, указанные в таблице.

1.2. Отклонение значений напора от величин, указанных в таблице, не должно превышать ± 4 %. В допуск по напору должны быть включены и погрешности определения характеристики.

1.3. Минимальное допустимое давление на входе в работающий насос в зависимости от температуры должно устанавливаться в технических условиях на конкретный насосный агрегат.

1.4. Диапазон давлений теплоносителя на входе в насос для работающего насоса должен быть от минимально допустимого давления по Рї. 1.3 до расчетного давления, указанного в таблице.

1.5. Диапазон рабочих температур теплоносителя на входе в насос должен быть от 293 К (20 °С) до номинальной, указанной в таблице.

Пример условного обозначения главного циркуляционного насоса с подачей 1,975 м3/с и набором 51,4 мм:

ГЦН 1,975-51,4 ГОСТ 24656-81

2. ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Насосы должны изготовляться в соответствии с требованиями настоящего стандарта, стандарта или технических условий, по рабочим чертежам, утвержденным в установленном порядке, на конкретный насосный агрегат.

2.2. Проектирование, изготовление и эксплуатация насосов должны удовлетворять требованиям «Правил устройства и безопасной эксплуатации оборудования атомных электростанций, опытных и исследовательских ядерных реакторов и установок», утвержденных Госгортехнадзором СССР и Государственным комитетом по использованию атомной энергии СССР.

2.3. Конструкция насоса должна обеспечивать возможность перемещения насоса в горизонтальном направлении вследствие температурных расширении трубопроводов первого контура. Усилие при перемещении насоса определяется при проектировании блока и должно быть установлено в технических условиях для каждого насосного агрегата.

2.4. Конструкция насоса должна обеспечивать возможность работы уплотнения как от специальной системы запирающей воды, так и за счет теплоносителя. В случае обеспечения уплотнения за счет теплоносителя должны быть предусмотрены специальные конструктивные меры, препятствующие выходу в помещения радиоактивных газов, растворенных в теплоносителе. Допустимые количества выхода газов в помещения должны быть установлены техническими условиями на конкретный насосный агрегат.

2.5. Насос в составе насосного агрегата при обесточивании всех одновременно работающих насосов должен обеспечивать подачу теплоносителя на выбеге по закону, близкому к Насос циркуляционный гост,

где Q — подача насоса в текущий момент времени при выбеге насоса, м3/с;

Qном — номинальная подача, м3/с;

е — 2,718 … — основание натурального логарифма;

t — время с начала выбега, с;

30 — постоянная времени выбега, с.

Характер и величина отклонения подачи теплоносителя от закона устанавливаются в технических условиях на конкретный насосный агрегат.

2.6. Насос должен допускать работу в режиме обратного тока теплоносителя; время работы должно быть указано в технических условиях на конкретный насосный агрегат.

2.7. Составные части насоса, требующие охлаждения, соприкасающиеся с теплоносителем, должны охлаждаться водой промежуточного контура с параметрами:

давление на входе — не более 0,587 МПа (6 кгс/см2);

температура на входе — от 283 К (10 °С) до 318 К (45 °С).

2.8. Составные части насоса, требующие охлаждения, не соприкасающиеся с теплоносителем, должны охлаждаться технической водой (пресной или морской) с параметрами:

давление на входе — не более 0,587 МПа (6 кгс/см2);

температура на входе — от 275 К (2 °С) до 308 К (35 °С);

массовая концентрация примесей — не более 40 мг/л.

Допускается охлаждение водой промежуточного контура.

2.9. Конструкция насоса должна исключать возможность попадания чистой (неборированной) воды в теплоноситель первого контура.

2.10. Насосы должны иметь постоянно падающую характеристику напора насоса при подачах свыше 80 % от номинальной.

2.11. Рабочая часть характеристики насоса должна находиться в зоне подач 90 — 130 % от номинальной подачи.

2.12. Насосы должны иметь четырехквадратную характеристику.

2.13. Насос в составе насосной установки должен обеспечиваться подачей очищенной системой водоочистки запирающей воды с температурой не выше 343 К (70 °С).

2.14. Массовая концентрация примесей в запирающей воде должна быть не более 0,03 г/л с размером частиц не более 100 мкм.

2.15. Организованные протечки из уплотнения насоса на всех режимах работы не должны превышать 2 м3/ч.

2.16. Свободный слив запирающей воды на всех режимах работы насоса должен быть не более 0,05 м3/ч.

2.17. Протечки запирающей воды в первый контур на всех режимах работы насоса должны быть не более 1,0 м3.

2.18. Конструкция и исполнение насоса должны обеспечивать эксплуатацию его в условиях окружающей среды под защитной оболочкой реакторной установки. Параметры окружающей среды под защитной оболочкой должны соответствовать установленным в технических условиях на конкретный насосный агрегат.

2.19. Насосы должны быть рассчитаны на сейсмические воздействия, исходя из следующих условий эксплуатации:

при землетрясениях с интенсивностью меньшей или равной интенсивности проектного землетрясения (ПЗ) насос должен сохранять работоспособность; при расчетах на прочность режим относится к режимам нарушения нормальных условий эксплуатации:

при землетрясениях с интенсивностью, большей ПЗ до максимального расчетного землетрясения (МРЗ) силой 9 баллов включительно (по сейсмической шкале MSK 64), насос должен обеспечивать установленный в Рї. 2.5 выбег при сохранении прочности и герметичности по отношению к окружающей среде. При расчетах на прочность режим относится к аварийным режимам. После МРЗ должна проводиться техническая ревизия насоса.

2.20. Насос должен быть спроектирован с учетом возможности совпадения МРЗ с максимальной проектной аварией (разрыв трубопровода первого контура); при этом должна быть обеспечена целостность конструкции по отношению к окружающей среде.

2.21. Насосы должны сохранять работоспособность при одновременном перерыве подачи запирающей и охлаждающей воды на всех режимах.

Время перерыва — не более 3 мин.

2.22. Для смазки подшипников насоса должны применяться вода и другие негорючие жидкости.

2.23. Насос должен сохранять работоспособность при перерыве в подаче смазки до 15 с.

2.24. При выбеге насоса допускается прекращение подачи смазки.

2.25. Конструкция насоса должна допускать дезактивацию как внутри, так и снаружи растворами с температурой 353 К (80 °С) — 363 К (90 °С) при остановленном насосе с подачей запирающей воды. Состав раствора должен соответствовать установленному в технических условиях на конкретный насосный агрегат.

2.26. Насос должен обеспечивать следующие показатели надежности:

средний ресурс между средними ремонтами должен быть не менее 16000 ч;

средний срок службы до списания должен быть не менее 30 лет;

наработка на отказ должна быть не менее 18000 ч;

средний срок сохраняемости должен быть не менее 2 лет;

средняя суммарная оперативная трудоемкость планового (непланового) текущего ремонта должна быть не более 250 чел/ч;

средняя суммарная оперативная трудоемкость планового (непланового) среднего ремонта должна быть не более 350 чел/ч.

2.27. Удельная материалоемкость насосов должна быть 5,35 — 5,8 кг·ч/м3.

Для разрабатываемых насосов с 1985 г. — 3,75 — 3,8 кг·ч/м3.

ПРИЛОЖЕНИЕ

Справочное

www.vashdom.ru

Основные параметры насосов для отопления

Параметров, на которые следует обращать внимание при выборе прибора, не так много. По сути, их всего два – напор и производительность (расход).

Напором называется гидравлическое сопротивление системы, которое насос способен преодолеть. Измеряется данная величина в метрах водяного столба. Как правило, гидравлическое сопротивление всей системы задается высшей точкой трубопровода, по которому циркулирует вода.

Производительность насоса, измеряемая в м³/ч, показывает, какой объем жидкости он сможет прогнать по трубопроводу за единицу времени. Поэтому перед выбором необходимой модели нужно знать точный объем теплоносителя в системе.

Важно! Напор и производительность – обратно пропорциональные друг другу величины. То есть максимальный напор достигается при нулевой подаче. И, наоборот, максимальный расход возможен при нулевой высоте трубопровода.

Именно напорно-расходная характеристика прибора позволяет определить модель с оптимальными параметрами для конкретной системы. При этом стандартная формула – чем мощнее, тем лучше – для этого случая не совсем подходит. Поскольку это означает покупку более дорогого агрегата и увеличение расхода электроэнергии.

Как маркируются циркуляционные насосы

Обычно в маркировку циркуляционных насосов для систем отопления производители вносят основные характеристики и данные, позволяющие судить о применении приборов. Рассмотрим на примере насоса компании Grundfos, как маркируются данные устройства.

Маркировка циркуляционных насосов для систем отопления

Маркировка циркуляционного насоса Grundfos

Тип управления

Первые буквы соответствуют типу устройства. В нашем случае «UP» указывает на циркуляционный тип прибора. Далее идет обозначение способа управления. Существует несколько вариантов:

  • постоянная частота вращения двигателя;
  • ступенчатое переключение частоты вращения (S);
  • плавная регулировка скорости с помощью частотного преобразователя (E).

Интересно знать. При наличии встроенного частотного преобразователя можно задать любую частоту вращения электродвигателя и тем самым подобрать оптимальную производительность насоса для конкретной системы.

Диаметр патрубков и напор

После букв в маркировке идут числа, первое из которых обозначает внутренний диаметр патрубков в миллиметрах, а второе показывает максимальный напор в дециметрах.

Перед монтажом прибора в трубопровод следует обязательно учитывать диаметр входного и выходного патрубков. Конечно, с помощью специальных переходников можно установить аппарат и на трубу другого размера, однако в этом случае он не сможет выдавать характеристики, которые закладывались производителем, что значительно уменьшит коэффициент полезного действия прибора.

Монтажная длина

Следующим (третьим) числом указывается монтажная длина в миллиметрах. Как и диаметр патрубков, данный показатель имеет значение для монтажа устройства в трубопроводную систему. Особенно он важен в случае врезки насоса, где каждый миллиметр играет определяющую роль.

Маркировка циркуляционных насосов для систем отопления

Знание монтажной длины значительно упрощает процесс врезки устройства

Разные производители могут указывать дополнительные данные в маркировке циркуляционных насосов отопления. которые они считают важными при выборе необходимой модели. Например, тип исполнения корпуса, способ трубного соединения, класс потребления электричества и др.

Важность бренда

Современные производители приборов для циркуляции теплоносителя в системе отопления предлагают практически идентичные характеристики своей продукции. В основном отличия касаются надежности и периода безотказной эксплуатации. Именно поэтому многие специалисты советуют немного переплатить и отдать предпочтение известному бренду.

К сведению. На сегодняшний день самыми надежными компаниями считаются вышеупомянутый Grundfos, Willo, Speroni, Wester и Elso-Therm.

Помимо этого, существует большое количество китайских вариантов (подделок), качество которых, мягко говоря, оставляет желать лучшего. Конечно, в этом случае можно хорошо сэкономить, но соответствие маркировки реальным характеристикам циркуляционного насоса вряд ли сможет гарантировать даже продавец товара.

Маркировка циркуляционных насосов для систем отопления

Низкая цена должна не привлекать, а отпугивать покупателя, иначе очень скоро придется вспомнить свои ремонтные навыки

Чтобы избежать проблем с некачественной работой насоса, которая вызвана дешевым оборудованием, ошибками в расчетах или неправильной установкой, организацию системы отопления дома лучше сразу доверить специалистам.

Видео: как выбрать насос для системы отопления

Понравилась статья? Поделитесь с друзьями:

Циркуляционный насос для теплого пола: расчет, выбор, монтаж

В наше время все большую популярность получают системы теплых полов. Их применяют как для обогрева помещений в целом, так и для отопления отдельных его сегментов. Монтаж систем теплого пола производят в квартирах и индивидуальных домостроениях. Ведь всегда приятно, да еще и полезно, пошлепать босыми ногами по теплой поверхности.

По своей конструкции системы теплых полов бывают электрическими и водяными. Именно для второго варианта необходим циркуляционный насос, который является сердцем всей системы.

1 Система водяного теплого пола: как устроена?

Система включает в свой состав следующие обязательные компоненты:

  • источник тепла (котел, стояк централизованного отопления);
  • теплоноситель (вода, тосол, масло и др.);
  • трубы обогрева;
  • утеплитель;
  • управляюще-распределительное устройство;
  • насос циркуляционный.

По разветвленной сети трубопроводов, расположенных на полу под покрытием, циркулирует теплоноситель. Источником тепла обычно выступает газовый котел.

Использование водяных полов в квартирах с источником тепла, подающимся централизованно по стояку, допускается в домах с поквартирной горизонтальной разводкой отопления.

Маркировка циркуляционных насосов для систем отопления

Схема обустройства теплого пола

С целью одинакового прогрева полов трубы размещают на не большом расстоянии между собой (100-200 мм). У стен расстояние между трубами оставляют меньше чем в центре помещения. Раскладка труб проводится по двум схемам:

  • змейкой – ассоциируется с трассой слалома или зигзагом;
  • улиткой – напоминает спираль.

Теплоноситель, прогретый до температуры 35-45 градусов, проходя по трубопроводу, теряет температуру. Оптимальная длина трубопровода (петли) до 120 м. Этого хватает для покрытия помещения площадью до 20 м2. Для больших помещений монтируют несколько трубопроводов. К источнику тепла их подсоединяют параллельно через коллектор, который располагают в специальном шкафу. В нем же устанавливают запорную и управляюще-регулирующую аппаратуру (манометры, термостаты, сливные краны, датчики расхода, воздушные клапаны), а также насосы.
к меню ↑

2 Стандартный циркуляционный насос для водяного теплого пола и его устройство

Устройство обеспечивает равномерное перераспределение теплоносителя в замкнутом контуре, поддерживает постоянное давление в системе. Применение устройства существенно увеличивает эффективность работы системы теплого пола, исключая застой теплоносителя в длинных трубопроводных контурах.

Стандартное устройство, по сути, представляет собой обычный циркуляционный насос, состоящий из следующих базовых элементов:

  1. Корпус – основной элемент устройства, который выполняется из высокопрочных материалов. Обычно корпуса изготовляют из различных металлов: нержавеющей стали, бронзы, литого чугуна. В отдельных современных устройствах применяют пластиковые корпуса.
  2. Патрубки или фланцы располагаются на корпусе и обеспечивают соединение с вводными и выводными трубами.
  3. Лопастная крыльчатка обеспечивает движение теплоносителя за счет своего вращения. Изготовляются из металлов, пластика и современного материала технополимера, который почти не изнашивается.
  4. Электромотор обычно размещается на боковой части корпуса и приводит в действие крыльчатку.

Маркировка циркуляционных насосов для систем отопления

Устройство циркуляционного насоса для теплого пола

Циркуляционные насосы следует закреплять так, чтобы ротор располагался в горизонтальном состоянии. Если вал расположить вертикально потери мощности составят до 40%.

2.1 Основные характеристики циркуляционных насосов

Определяющими критериями при выборе агрегата для водяного теплого пола являются показатели его производительности и напора.

Производительность агрегата рассчитывается в кубометрах (литрах) в час. В нормальном режиме агрегат за 1 час должен прокачивать теплоноситель, превышающий в 3 раза объем всей системы теплого водяного пола. Производительность агрегата должна быть тем выше, чем больше площадь укладки трубопровода теплого пола. Запас производительности должен составлять 15-20%. Это увеличит срок эксплуатации агрегата и предотвратит проблемы, связанные со слабым обогревом в холодный период.

Напор, выдаваемый агрегатом, второй важный показатель. Он должен быть достаточным для преодоления всех узких мест и изгибов трубопровода, чтобы доставлять теплоноситель до самых отдаленных точек помещения. Расчетная производительность при этом должна оставаться неизменной. Для бытового использования обычно достаточно применять агрегат с напором до 6 м водяного столба.
к меню ↑

2.2 Как подобрать агрегат по расчетному напору?

Так как напором преодолевается гидравлическое сопротивление всех элементов системы, нужно учитывать эти показатели персонально:

  • материал и диаметр трубы влияют на сопротивление, содержатся в инструкции к агрегату;
  • коэффициент увеличения сопротивления на вентиле – 1,7;
  • коэффициент сопротивление на арматуре и фитингах – 1,2;
  • коэффициент сопротивления на смесительном узле – 1,3.

Формула расчета напора такова: Н=(ПхL+ЕК)/1000 где:

  • Н-напор агрегата;
  • П- сопротивление 1 м погонного трубы;
  • Па/м,L- длина самого длинного контура, м;
  • К- коэффициент запаса мощности.

Длину контура умножают на показатель гидравлического сопротивления в 1 м трубы. Полученное в кило паскалях (кПа) значение переводят в атмосферы 100 кПа = 0,1атм. Результат умножают на коэффициенты сопротивления всех элементов системы. Итогом будет рабочая точка агрегата.

Маркировка циркуляционных насосов для систем отопления

Таблица расчета циркуляционного насоса для теплого пола

Затем по каталогу или паспорту моделей находят эту характеристику, выполненную графически. У правильно выбранной модели агрегата рабочая точка должна размещаться в средней трети графика. При установке 3-х скоростного агрегата подбор насоса производится по 2-ой скорости, что даст возможность эксплуатировать насос в оптимальном режиме.
к меню ↑

2.3 Как выбрать насос, рассчитав объем теплоносителя?

Обычно подбор необходимого агрегата производят специалисты по монтажу, но можно это сделать и индивидуально, произведя некоторые расчеты. Выполняем их по формуле Q=0,86хPн/(T п -Tоб), где

  • Q – объем теплоносителя, в кубометрах в час;
  • 0,86 – коэффициент преобразования;
  • Pн – мощность контура теплого пола, требуемая для компенсации тепловых потерь;
  • (Тп-Тоб) – разница между температурами теплоносителя, поступающего в систему трубопоровода и выходящего по обратным трубам.

Исходные данные тепловых потерь и температур берутся из строительных справочников. Таким образом, узнается объем расхода теплоносителя в определенном контуре. Имея информацию о расходе теплоносителя и сопротивлении системы и применив параметры из инструкции производителя, мы сможем выбрать подходящий агрегат.
к меню ↑

2.4 Какой тип насоса выбрать?

Рассчитав технические показатели агрегата, необходимые для того, чтобы циркуляция в системе была правильной, нужно определиться с типом насоса. Для бытового применения используют два типа агрегатов:

  • с мокрым ротором;
  • с сухим ротором.

Агрегаты с мокрым ротором обладают не очень большой мощностью, но ее вполне достаточно, чтобы обеспечить работоспособность системы теплого водяного пола не превышающую по площади 400 м2. Ротор называется мокрым из-за крыльчатки. располагающейся прямо в теплоносителе. Посредством него обеспечивается смазка и охлаждение мотора. Такие устройства имеют преимущества за счет:

  • бесшумной работы;
  • малой энергопотребляемости;
  • надежности (имеют запас моторесурса);
  • простота экпслуатации (не требуют дополнительного обслуживания).

Агрегаты с сухим ротором обладают большой мощностью. Ротор располагается в индивидуальном герметичном корпусе. При эксплуатации, требуется периодическое техническое обслуживание (смазка, чистка). В работе агрегат с сухим ротором ведет себя довольно шумно.

Маркировка циркуляционных насосов для систем отопления

Насосно-смесительный узел для теплого пола

В индивидуальном частном строительстве для обустройства системы водяного теплого пола практически всегда останавливаются на варианте насоса с мокрым ротором.
к меню ↑

2.5 Материал корпуса и маркировка

Выбирая циркуляционный насос для теплого пола нужно обращать внимание на материал корпуса и маркировку. Обычно материал корпуса значения не имеет, так как при правильном выборе труб и замкнутой системе кислорода выделяется мало. Однако чтобы, перестраховаться от окислительных процессов, лучше отдать предпочтение корпусу из нержавейки или полимерных материалов.

Маркировка, нанесенная на корпусе насоса, состоит из 2-3-х цифр, например 25/60-130 или 32/80. Первый показатель – диаметры входных/выходных отверстий в миллиметрах, на примере 25мм и 32 мм. Второй показатель – высота подъема, обеспечиваемая данным агрегатом. В нашем случае 6 м, 8 м. При переводе метров в атмосферы получится 0,6 и 0,8 атм. Третий показатель – размер устройства, его монтажная длина. В примере этот показатель равен 130 мм.
к меню ↑

2.6 Нюансы монтажа циркуляционного насоса

Самая популярная схема установки агрегата при монтаже теплого водяного пола это его расположение на подающем трубопроводе, после смесительного узла. Иногда насос ставят на обратку или в байпасе подмеса. Для двухуровневых строений рекомендовано применять два автономно работающих агрегата. Так проще управлять напором каждой ветки.

Выбранный агрегат, независимо от того где он установлен, должен располагаться так, чтобы его ротор находился в горизонтальном положении. При вертикальном расположении ротора потеря мощности составляет до 30%.
к меню ↑

2.7 Монтаж теплого пола: циркуляционный насос и монтаж коллектора (видео)

Насос для теплого водяного пола

В конструкции тёплого пола используются циркуляционные насосы, не имеющие принципиальных отличий от аналогичных изделий, которые устанавливаются в системах отопления, где в качестве отопительных приборов устанавливаются радиаторы.

В отдельных случаях монтируется водяной тёплый пол без насоса. Но этот вариант рассмотрен в другой статье.

Разновидности насосов для водяного пола и их параметры

Маркировка циркуляционных насосов для систем отопления

Определение маркировки насоса

Выбирая циркуляционный насос для тёплого водяного пола, следует знать, что большое подспорье оказывает нанесённая на него маркировка. Она проставляется сразу под названием модели и выглядит как два числа, записанные через тире. Например: 32 – 60.

Первое обозначает размер присоединения, 32 мм (или 1” ¼). Обычно насос для тёплого водяного пола поставляется в комплекте с накидными гайками для его монтажа/ демонтажа. Это – их размер.

Второе информирует о высоте, на которую насосом может подаваться вода. В указанном случае она равна 6,0м вод. ст. (0,6 атм.). Существуют модели, которые рассчитаны на большие и меньшие значения указанного показателя.

Подбирается насос для водяного пола с учётом результатов предварительно выполненного гидравлического расчёта СО с тёплыми полами. На корпус изделия наносится информация о величине нагрузки при заданных параметрах.

Насос для тёплого водяного пола выполнен с тремя режимами включения, отличающиеся производительностью (т.е. количеством жидкости, который насос в состоянии прокачать за час).

Третья – это max производительность. В каждом из указанных положений насос расходует ток, значение которого и вынесено на табличку.

Виды конструкций насосов

По своей конструкции циркуляционный насос для тёплого водяного пола любой модели практически ничем друг от друга не отличаются, за исключением внешнего вида и управления. Наиболее надёжными зарекомендовали себя германские насосы производства Grundpos и компании Wilo. Вторые доступнее по своей стоимости. Вышеназванные насосы относятся к серии бытовых, которые устанавливаются в жилых помещениях и частных домах.

Кроме этого существует насос для водяного пола промышленного назначения. Главное их отличие в том, что они сдвоенные и фиксируются не гайками, а специальными фланцами, диаметр которых превышает 50 мм.

Существуют также такие модели, как насос для тёплого водяного пола с термостатом.

Насосы, позиционируемые как изделия для тёплых полов, имеют трёхходовой клапан. Выбирая такой вариант, следует учитывать, что конструкции клапанов не равнозначны по своей производительности. Часть из них имеет указанный показатель, не превышающий 2,5 куб.м/час, что не позволяет им нормально работать, если полы уложены на площади более 50 кв.м. к тому же они не имеют регулировки. Поэтому устанавливать их можно, только если вы имеете насос для тёплого водяного пола малого объёма.

Есть клапана с регулировочными устройствами, которые управляются в ручном режиме и специальным сервоприводом в автоматическом. Их расход 4,0 куб.м/час и работают они на площадях до 150 кв.м.

Принцип работы и элементы конструкции насоса

Маркировка циркуляционных насосов для систем отопления
Насос для тёплого водяного пола имеет достаточно простую конструкцию. Корпус изделия и мотор (вариант, ротор), закреплённый на корпусе. На валу двигателя установлена крыльчатка. Попав в корпус с одной стороны, теплоноситель захватывается вращающейся крыльчаткой и перемещается на выходной конец с другой стороны насоса.

Некоторые модели имеют встроенные воздухоотводчики, но их очень мало. В подавляющем большинстве конструкций воздух удаляется путём выкручивания специальной гайки, имеющейся в корпусе.

Схема подключения насоса тёплого пола аналогична той, которая используется в системах с установленными радиаторами.

Советы по выбору устройства для системы теплого пола в доме

Как подобрать насос для тёплого пола? Сегодня на рынке в основном представлены насосы для СО, имеющие стандартный расход порядка 40 л/мин (около 2,5 куб.м/час) и напором до шести метров. Скорость расхода прямо-пропорциональна величине напора.

При покупке следует понимать, что указанный на насосе расход в 40 л/мин не всегда будет соответствовать фактическому расходу. Т.к. последний зависит от того, какова пропускная способность узла пола или самой системы. Большое количество длинных контуров уменьшает расход.

Разобраться с этим просто по двум графикам: теоретическому (для всех подобных насосов) — №1, и реальному для рассмотренного в примере насоса на 2,5 куб.м. с напором в шесть метров — № 2.

Чем выше пропускные возможности вашей системы, тем слабее напор на всех подключённых контурах. Т.е. чем больше контуров замкнуто на один смесительный узел, тем больше расход.

Пример расчета мощности насоса для теплого пола

Маркировка циркуляционных насосов для систем отопления

Если у вас параллельная схема подключения

Расчёт насоса для тёплого пола в указанном случае следует начинать с просчёта рекомендуемого расхода по каждой ветке и суммировать результаты.

Просчитать совокупную величину потерь во всех контурах (ветках). Это поможет определить постоянных расход в смесительном узле. Как правило, это значение колеблется в диапазоне от 40% до 100% от суммарных расходов контуров. То есть, при суммарном расходе контуров 15 л/мин, расход по приходящему теплу получим равным 6 – 15 л/мин.

На его значение влияют:

  1. Разница между величиной входящей температуры и той, которая задаётся термоголовкой;
  2. Теплопотери пола.

Пример. Котёл подаёт теплоноситель, прогретый до 60 град. На смесительном узле выставлено 40 град. Получаем расход в 40 %. На подаче 75 град, на узле – 40 град. Расход – 25 %.

В расчётах следует учитывать байпас (при наличии), т.к. и в нём имеется постоянный расход. Поэтому на него добавляем порядка 6 л / мин. В длинных трубах больше теплопотери, что заставляет термоголовку увеличить пропуск тепла, возрастает расход и падает напор.

Если у вас последовательная схема подключения

Расчёт насоса для тёплого пола в указанном случае выполняется так. Просчитывается по всем веткам рекомендуемый расход, результаты суммируются.
Получившееся значение сверяется с имеющимся графиком № 3, по которому определяется потеря напора.

Этот график самостоятельно можно построить именно для вашего насоса. Кривая для всех моделей стандартная. Исходя из полученного напора, по таблице выбирается требуемая длина труб.

Вывод:
Напор насоса по третьему графику должен быть выше потерь напора во всей длине уложенных труб полов при известном расходе на каждый контур.
Потеря напора в каждом контуре определяется по приведённой ниже таблице.

Маркировка циркуляционных насосов для систем отопления

Фактический напор установленного насоса определяется по третьему графику для определения совокупного расхода смонтированного смесительного узла.

Важно учесть ещё одну информацию. В том случае, если вместо воды вы залили в систему антифриз или иную аналогичную жидкость, то следует учитывать различие в вязкости, которое может достигать 30 – 50 процентов. Что приведёт к ещё большему замедлению движения теплоносителя по трубам. Поэтому потребуются иные расчёты.

Мощность насоса в данном случае следует увеличить минимум на 20% (вариант, на те же 20% сделать короче трубы). Теплоёмкость антифриза примерно на 20% меньше той. Которую имеет вода. Соответственно и тепла он будет перемещать на столько же меньше.

Рейтинг статьи: (всего 1 голосов, рейтинг: 5,00 из 5)

Чтобы установленный радиатор отопления был закреплён правильно и надёжно, необходимо выбрать нужный крепёж.

  • Маркировка циркуляционных насосов для систем отопления Разновидности теплоотражающих экранов и их преимущества

    Рассматривая темы экранов для радиаторов отопления, чаще всего имеют в виду экраны, выполняющие декоративные и защитные функции.

  • Маркировка циркуляционных насосов для систем отопления Система безопасности отопления частного дома

    Главной задачей, которую призвана решать система безопасности отопления дома, является защита системы отопления от появления воздушных пробок в магистралях и избыточного давления.

  • Маркировка циркуляционных насосов для систем отопления Металлические экраны на радиаторы отопления

    Обычно, приобретая экраны для радиаторов, человек делает это для решения одной или нескольких конкретных задач.

    Источники: http://teploguru.ru/elementy/nasos/markirovka-cirkulyacionnyx-nasosov.html, http://nasosovnet.ru/circ/tsirkulyatsionnyj-nasos-dlya-teplogo-pola.html, http://vse-otoplenie.ru/nasos-dlya-teplogo-vodyanogo-pola

    teplosten24.ru


  • Categories: Насос

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.