Для расчета количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.

Методы расчета есть разные. Самые простые дают приблизительные результаты. Тем не менее, их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т.п.). Есть более сложный расчет по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.

Есть еще один метод. Он определяет фактические потери.  Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем еще хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т.д. Так что заодно можно выправить положение.

Расчет радиаторов отопления по площади

Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:


  • для средней климатической полосы на отопление 1м2 жилого помещения требуется 60-100Вт;
  • для областей выше 60о требуется 150-200Вт.

Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м2, потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.

Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»


Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

Как посчитать секции радиатора по объему помещения

При таком расчете учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объем помещения, а затем по нормам узнаем, сколько нужно тепла на его обогрев:

  • в панельном доме на обогрев кубометра воздуха требуется 41Вт;
  • в кирпичном доме на м3 — 34Вт.

Рассчитаем все для того же помещения площадью 16м2 и сравним результаты. Пусть высота потолков 2,7м. Объем: 16*2,7=43,2м3.

Дальше посчитаем для вариантов в панельном и кирпичном доме:

  • В панельном доме. Требуемое на отопление тепло 43,2м3*41В=1771,2Вт. Если брать все те же секции мощностью 170Вт, получаем: 1771Вт/170Вт=10,418шт (11шт).
  • В кирпичном доме. Тепла нужно 43,2м3*34Вт=1468,8Вт. Считаем радиаторы: 1468,8Вт/170Вт=8,64шт (9шт).

Как видно, разница получается довольно большая: 11шт и 9шт. Причем при расчете по площади получили среднее значение (если округлять в ту же сторону) — 10шт.

Корректировка результатов

Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Окна

На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

  • соотношение площади окна к площади пола:
    • 10% — 0,8
    • 20% — 0,9
    • 30% — 1,0
    • 40% — 1,1
    • 50% — 1,2

  • остекление:
    • трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
    • обычный двухкамерный стеклопакет — 1,0
    • обычные двойные рамы — 1,27.

Стены и кровля

Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

Степень теплоизоляции:

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0
  • недостаточная (отсутствует) — 1,27
  • хорошая — 0,8

Наличие наружных стен:

  • внутреннее помещение — без потерь, коэффициент 1,0
  • одна — 1,1
  • две — 1,2
  • три — 1,3

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.


Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Климатические факторы

Можно внести корректировки в зависимости от средних температур зимой:

  • -10оС и выше — 0,7
  • -15оС — 0,9
  • -20оС — 1,1
  • -25оС — 1,3
  • -30оС — 1,5

Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.

Расчет разных типов радиаторов

Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчетом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1 л/мин примерно равен мощности в 1 кВт (1000 Вт).

Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя.


Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчет секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчета количества секций биметаллических радиаторов от расчета алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.

Чтобы считать было проще, есть усредненные данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50см приняты такие значения мощностей:

  • алюминиевые — 190Вт
  • биметаллические — 185Вт
  • чугунные — 145Вт.

Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведем самый простой расчет секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50см) принимается, что одна секция может обогреть 1,8м2 площади. Тогда на помещение 16м2 нужно: 16м2/1,8м2=8,88шт. Округляем — нужны 9 секций.

Аналогично считаем для чугунные или стальные баратери. Нужны только нормы:


  • биметаллический радиатор — 1,8м2
  • алюминиевый — 1,9-2,0м2
  • чугунный — 1,4-1,5м2.

Это данные для секций с межосевым расстоянием 50см. Сегодня же в продаже есть модели с самой разной высоты: от 60см до 20см и даже еще ниже. Модели 20см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придется вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.

Для наглядности сделаем расчет алюминиевых радиаторов по площади. Помещение то же: 16м2. Считаем количество секций стандартного размера: 16м2/2м2=8шт. Но использовать хотим маломерные секции высотой 40см. Находим отношение радиаторов выбранного размера к стандартным: 50см/40см=1,25. И теперь корректируем количество: 8шт*1,25=10шт.

Корректировка в зависимости от режима отопительной системы


Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90оС, в обратке — 70оС (обозначается 90/70) в помещении при этом должно быть 20оС. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчет откорректировать.

Для учета режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Чтобы было понятнее произведем расчет чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50см). Помещение то же: 16м2. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5м2. Потому нам потребуется 16м2/1,5м2=10,6шт. Округляем — 11шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдем температурный напор для каждой из систем:

  • высокотемпературная 90/70/20- (90+70)/2-20=60оС;
  • низкотемпературный 55/45/20 — (55+45)/2-20=30оС.

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16м2 требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчете можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20оС а, например, 25оС просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчет все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55оС. Теперь находим соотношение 60оС/55оС=1,1. Чтобы обеспечить температуру в 25оС нужно 11шт*1,1=12,1шт.

Зависимость мощности радиаторов от подключения и места расположения

Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.


Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Определение количества радиаторов для однотрубных систем

Есть еще один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления, когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

Поясним на примере. На схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остается по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15кВт-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8шт, будет на 20% больше — 9 или 10шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.

Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают  радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

Итоги

Приблизительный расчет количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

Возможно, вам интересно будет прочитать про расчет мощности котла или определение диаметра труб для системы отопления.

 

 

teplowood.ru

СНиП и основные предписания

Сегодня можно назвать огромное количество СНиПов, которые описывают правила проектирования и эксплуатации отопительных систем в различных помещениях. Но наиболее понятным и простым является документ «Отопление, вентиляция и кондиционирование» под номером 2.04.05.

В нем подробно описаны следующие разделы:

  1. Общие положения, касающиеся проектирования систем отопления
  2. Правила проектирования систем отопления зданий
  3. Особенности прокладки труб отопительной системы

Монтировать радиаторы отопления необходимо также согласно СНиП под номером 3.05.01. Он предписывает следующие правила монтажа, без которых произведенные расчеты количества секций окажутся малоэффективны:

  1. Максимальная ширина радиатора не должна превысить 70% от аналогичной характеристики оконного проема, под которым он устанавливается
  2. Радиатор должен крепиться по центру оконного проема (допускается незначительная погрешность – не более 2 см)
  3. Рекомендуемое пространство между радиаторами и стеной – 2-5 см
  4. Над полом высота не должны быть более 12 см
  5. Расстояние до подоконника от верхней точки батареи – не менее 5 см
  6. В иных случаях для улучшения теплоотдачи поверхность стен покрывают отражающим материалом

Следовать таким правилам необходимо для того, чтобы воздушные массы могли свободно циркулировать и сменять друг друга.

Читайте так же, наш сравнительный обзор различных видов радиаторов отопления

Расчет по объему

Чтобы точно произвести расчёт количества секций отопительного радиатора, необходимых для эффективного и комфортного отопления жилого помещения, следует принимать во внимания его объем. Принцип весьма прост:

  1. Определяем потребность тепла
  2. Узнаем количество секций, способных его отдавать

Если в комнате расположены экранированные радиаторы отопления, потребность в тепле необходимо увеличить до 20%. Часть тепловой нагретых воздушных масс не будет пропускаться экраном, циркулируя внутри и быстро остывая.

Формулы расчета количества секций по объему помещения, с примером

Определившись с потребностью на один куб, можно приступит к вычислениям (пример на конкретных цифрах):

  1. На первом шаге рассчитываем объем помещения по простой формуле: [высота]*[длина]*[ширина] (3х4х5=60 куб м.)
  2. Следующий этап – определение потребности теплоты для конкретно рассматриваемого помещения по формуле: [объем]*[потребность на м. куб.] (60х41=2460 Вт)
  3. В паспорте, прилагаемом к радиатору отопления, необходимо узнать мощность одной секции – средний показатель современных моделей 170 Вт
  4. Определить желаемое количество ребер можно по формуле: [общая потребность в тепле]/[мощность одной секции] (2460/170=14.5)
  5. Округление рекомендуется делать в большую сторону – получаем 15 секций

Расчет по площади

Предыдущий метод расчета – прекрасное решение для помещений, у которых высота более 2.7 м. В комнатах с более низкими потолками (до 2.6 м) можно воспользоваться другим способом, приняв за основу площадь.

В этом случае, рассчитывая общее количество тепловой энергии, потребность на один кв. м. берут равной 100 Вт. Каких-либо корректировок в него покуда вносить не требуется.

Формулы расчета количества секций по площади помещения, с примером

  1. На первом этапе определяется общая площадь помещения: [длина]* [ширина] (5х4=20 кв. м.)
  2. Следующий шаг – определение тепла, необходимого для обогрева всего помещения: [площадь]* [потребность на м. кв.] (100х20=2000 Вт)
  3. В паспорте, прилагаемом к радиатору отопления, необходимо узнать мощность одной секции – средний показатель современных моделей 170 Вт
  4. Для определения необходимого количества секций следует воспользоваться формулой: [общая потребность в тепле]/[мощность одной секции] (2000/170=11.7)
  5. Вносим поправочные коэффициенты (рассмотрены далее)
  6. Округление рекомендуется делать в большую сторону – получаем 12 секций

Поправки, вносимые в расчет и советы

Рассмотренные выше методы расчёта количества секций радиатора прекрасно подходят для помещений, высота которых достигает 3-х метров. Если этот показатель больше, необходимо увеличивать тепловую мощность прямо пропорционально росту высоты.

Если весь дом оснащен современными пластиковыми окнами, у которых коэффициент тепловых потерь максимально снижен – появляется возможность сэкономить и уменьшить полученный результат до 20%.

Считается, что стандартная температура теплоносителя, циркулирующего по отопительной системе – 70 градусов. Если она ниже этого значения, необходимо на каждые 10 градусов увеличивать полученный результат на 15%. Если выше – наоборот уменьшать.

Помещения, площадь которых более 25 кв. м. отопить одним радиатором, даже состоящим из двух десятков секций, будет крайне проблематично. Чтобы решить подобную проблему, необходимо вычисленное число секций поделить на две равные части и установить две батареи. Тепло в этом случае будет распространяться по комнате более равномерно.

Если в помещении два оконных проема, радиаторы отопления нужно размещать под каждым из них. Они должны быть по мощности в 1.7 раза больше номинальной, определенной при расчетах.

Купив штампованные радиаторы, у которых поделить секции нельзя, необходимо учитывать общую мощность изделия. Если ее недостаточно, следует подумать о покупке второй такой же батареи или чуть менее теплоемкой.

Поправочные коэффициенты

Очень многие факторы могут оказывать влияние на итоговый результат. Рассмотрим, в каких ситуациях необходимо вносить поправочные коэффициенты:

  • Окна с обычным остеклением – увеличивающий коэффициент 1.27
  • Недостаточная теплоизоляция стен – увеличивающий коэффициент 1.27
  • Более двух оконным проемов на помещение – увеличивающий коэффициент 1.75
  • Коллекторы с нижней разводкой – увеличивающий коэффициент 1.2
  • Запас в случае возникновения непредвиденных ситуаций – увеличивающий коэффициент 1.2
  • Применение улучшенных теплоизоляционных материалов – уменьшающий коэффициент 0.85
  • Установка качественных теплоизоляционных стеклопакетов – уменьшающий коэффициент 0.85

Количество вносимых поправок в расчет может быть огромным и зависит от каждой конкретной ситуации. Однако следует помнить, что уменьшать теплоотдачу радиатора отопления значительно легче, чем увеличить. Потому все округления делаются в большую сторону.

Подводим итоги

Если необходимо произвести максимально точный расчёт количества секций радиатора в сложном помещении – не стоит бояться обратиться к специалистам. Самые точные методы, которые описываются в специальной литературе, учитывают не только объем или площадь комнаты, но и температуру снаружи и изнутри, теплопроводность различных материалов, из которых построена коробка дома, и множество других факторов.

Безусловно, можно не бояться и набрасывать несколько ребер к полученному результату. Но и чрезмерное увеличение всех показателей может привести к неоправданным расходам, которые не сразу, порой и не всегда удается окупить.

v-teplo.ru

Почему необходим точный расчет

Теплоотдача приборов теплоснабжения зависит от материала изготовления и площади отдельных секций. От правильных вычислений зависит не только тепло в доме, но также сбалансированность и экономичность системы в целом: недостаточное число установленных секций радиаторов не обеспечит должное тепло в комнате, а излишнее количество секций ударит по карману.

Для вычислений необходимо определиться с типом батарей и системы теплоснабжения. К примеру, расчет алюминиевых радиаторов теплоснабжения для частного дома отличается от других элементов системы. Радиаторы бывают чугунными, стальными, алюминиевыми, алюминиевыми анодированными и биметаллическими:

  • Наиболее известны чугунные батареи, так называемые «гармошки». Они долговечны, стойки к коррозии, обладают мощностью секций 160 Вт при высоте 50 см и температуре воды 70 градусов. Существенный недостаток этих приборов – неприглядный внешний вид, но современные производители выпускают гладкие и достаточно эстетичные чугунные батареи, сохраняя все преимущества материала и делая их конкурентоспособными.
  • Алюминиевые радиаторы по тепловой мощности превосходят чугунные изделия, они прочны, обладают легким собственным весом, что дает преимущество при монтаже. Единственный недостаток подверженность к кислородной коррозии. Для его устранения взято на вооружение производство анодированных радиаторов из алюминия.
  • Стальные приборы не обладают достаточной тепловой мощностью, не подлежат разборке и увеличению секций при необходимости, подвержены коррозии, поэтому не пользуются популярностью.
  • Биметаллические радиаторы отопления – это сочетание стальных и алюминиевых деталей. Теплоносителями и крепежными деталями в них являются стальные трубы и резьбовые соединения, покрытые алюминиевым кожухом. Недостаток – довольно высокая стоимость.

По типу системы теплоснабжения различают однотрубное и двухтрубное подключение элементов отопления. В многоэтажных жилых домах в основном применена однотрубная схема системы теплоснабжения. Недостатком здесь является довольно значительная разница температуры входящей и исходящей воды на разных концах системы, что свидетельствует о неравномерности распределения тепловой энергии по приборам батареям.

Для равномерного распределения тепловой энергии в частных домах можно применять двухтрубную систему теплоснабжения, когда горячая вода подается по одной трубе, а охлажденная выводится по другой.

Кроме этого, точное вычисление количества батарей отопления в частном доме зависит от схемы подключения приборов, высоты потолка, площади оконных проемов, количества наружных стен, типа помещения, закрытости приборов декоративными панелями и от других факторов.

Помните! Необходимо правильно рассчитать требуемое число радиаторов отопления в частном доме, чтобы гарантировать достаточное количество тепла в помещении и обеспечить экономию финансовых средств.

Виды расчетов отопления для частного дома

Вид расчета радиаторов отопления для частного дома зависит от поставленной цели, то есть насколько точно вы хотите рассчитать батареи отопления для частного дома. Различают упрощенный и точный методы, а также по площади и по объему рассчитываемого пространства.

По упрощенному или предварительному методу подсчеты сводятся к умножению площади помещения на 100 Вт: стандартную величину достаточной тепловой энергии на метр в квадрате, при этом формула подсчета примет следующий вид:

Q = S*100, где

Q – потребная мощность тепла;

S – расчетная площадь комнаты;

Вычисление нужного числа секций разборных радиаторов ведется по формуле:

N = Q/Qx, где

N – требуемое количество секций;

Qx – удельная мощность секции по паспорту изделия.

Так как эти формулы для высоты комнаты – 2,7 м, для других величин требуется вводить коэффициенты поправки. Вычисления сводятся к определению количества тепла на 1 м3 объема помещения. Упрощенная формула выглядит так:

Q = S*h*Qy, где

H – высота комнаты от пола до потолка;

Qy – средний показатель тепловой мощности в зависимости от вида ограждения, для кирпичных стен равен 34 Вт/м3, для панельных стен – 41 Вт/м3.

Эти формулы не могут гарантировать комфортные условия. Поэтому требуются точные вычисления, учитывающие все сопутствующие особенности здания.

Точный расчет приборов отопления

Наиболее точная формула необходимой тепловой мощности выглядит следующим образом:

Q = S*100*(K1*К2*…*Kn-1*Kn), где

K1, K2 … Kn – коэффициенты, зависящие от различных условий.

Какие условия влияют на микроклимат в помещении? Для точного расчета учитывается до 10 показателей.

K1 – показатель, зависящий от числа наружных стен, чем больше поверхности соприкасается с внешней средой, тем больше потери тепловой энергии:

  • при одной наружной стене показатель равен единице;
  • если две наружные стены — 1,2;
  • если три внешние стены — 1,3;
  • если все четыре стены наружные (т.е. здание однокомнатное) — 1,4.

К2 – учитывает ориентацию здания: считается, что комнаты хорошо прогреваются, если расположены в южном и западном направлении, здесь К2 = 1,0, и наоборот недостаточно – когда окна выходят на север или восток – К2 = 1,1. С этим можно поспорить: в восточном направлении помещение все же прогревается по утрам, поэтому целесообразнее применить коэффициент 1,05.

К3 – показатель утепления наружных стен, зависит от материала и степени термоизоляции:

  • для наружных стен в два кирпича, а также при использовании утеплителя для не утепленных стен показатель равен единице;
  • для неутепленных стен – К3 = 1,27;
  • при утеплении жилища на основании теплотехнических расчетов по СНиП – К3 = 0,85.

К4 – коэффициент, учитывающий самые низкие температуры холодного периода года для конкретного региона:

  • до 35 °С К4 = 1,5;
  • от 25 °С до 35 °С К4 = 1,3;
  • до 20 °С К4 = 1,1;
  • до 15 °С К4 = 0,9;
  • до 10 °С К4 = 0,7.

К5 – зависит от высоты помещения от пола до потолка. В качестве стандартной высоты принята h = 2,7 м с показателем равной единице. Если высота комнаты отличается от стандартной, вводится поправочный коэффициент:

  • 2,8-3,0 м – К5 = 1,05;
  • 3,1-3,5 м – К5 = 1,1;
  • 3,6-4,0 м – К5 = 1,15;
  • более 4 м – К5 = 1,2.

К6 – показатель, учитывающий характер помещения, находящегося сверху. Полы жилых зданий всегда утепляются, комнаты сверху могут быть отапливаемыми или холодными, а это неизбежно повлияет на микроклимат рассчитываемого пространства:

  • для холодного чердака, а также если помещение сверху не отапливается, показатель будет равен единице;
  • при утепленном чердаке или кровле – К6 = 0,9;
  • если сверху расположено отапливаемая комната – К6 = 0,8.

К7 – показатель, учитывающий тип оконных блоков. Конструкция окна существенным образом влияет на потери тепла. При этом величина коэффициента К7 определяется следующим образом:

  • так как окна из дерева с двойным остеклением недостаточно защищают комнату, показатель самый высокий К7 = 1,27;
  • стеклопакеты обладают отличными свойствами защиты от теплопотерь, при однокамерном стеклопакете из двух стекол К7 равен единице;
  • улучшенный однокамерный стеклопакет с аргоновым заполнением или двойной стеклопакет, состоящий из трех стекол К7 = 0,85.

К8 – коэффициент, зависящий от площади остекления оконных проемов. Теплопотери зависят от количества и площади установленных окон. Соотношение площади окон к площади комнаты должно быть урегулировано таким образом, чтобы коэффициент имел низшие значения. В зависимости от отношения площади окон к площади помещения определяется искомый показатель:

  • менее 0,1 – К8 = 0,8;
  • от 0,11 до 0,2 – К8 = 0,9;
  • от 0,21 до 0,3 – К8 = 1,0;
  • от 0,31 до 0,4 – К8 = 1,1;
  • от 0,41 до 0,5 – К8 = 1,2.

К9 – учитывает схему подключения приборов. В зависимости от способа подключения горячей и вывода холодной воды зависит отдача тепла. Этот фактор необходимо учитывать при установке и определении требуемой площади приборов теплоснабжения. С учетом схемы подключения:

  • при диагональном расположении труб подача горячей воды осуществляется сверху, обратка – снизу с другой стороны батареи, а показатель равен единице;
  • при подключении подачи и обратки с одной стороны и сверху, и снизу одной секции К9 = 1,03;
  • примыкание труб с двух сторон подразумевает и подачу, и обратку снизу, при этом коэффициент К9 = 1,13;
  • вариант диагонального подключения, когда подача производится снизу, обратка сверху К9 = 1,25;
  • вариант одностороннего подключения с подачей снизу, обраткой сверху и одностороннее нижнее подключение К9 = 1,28.

К10 – коэффициент, зависящий от степени закрытости приборов декорирующими панелями. Открытость приборов для свободного обмена теплом с пространством помещения имеет немаловажное значение, так как создание искусственных барьеров снижает теплоотдачу батарей.

Имеющиеся или искусственно созданные преграды могут изрядно понизить отдачу батареи из-за ухудшения обмена теплом с комнатой. В зависимости от этих условий коэффициент равен:

  • при открытом расположении радиатора на стене со всех сторон 0,9;
  • если прибор прикрыт сверху единице;
  • когда радиаторы прикрыты сверху ниши стены1,07;
  • если прибор прикрыт подоконником и декоративным элементом 1,12;
  • когда радиаторы полностью прикрыты декоративным кожухом 1,2.

Кроме этого, существуют специальные нормы расположения приборов отопления, которые необходимо соблюдать. То есть батарею располагать не менее, чем на:

  • 10 см от низа подоконника;
  • 12 см от пола;
  • 2 см от поверхности наружной стены.

Подставляя все необходимые показатели, можно получить достаточно точное значение требуемой тепловой мощности помещения. Путем разделения полученных результатов на паспортные данные отдачи тепла одной секции выбранного прибора и, округлив до целого числа, получаем количество требуемых секций. Теперь можно, не опасаясь последствий, подобрать и установить необходимое оборудование с нужной тепловой отдачей.

Способы упрощения расчетов

Несмотря на кажущуюся простоту формулы, на самом деле практический расчет не так прост, особенно если количество рассчитываемых комнат велико. Упростить расчеты поможет применение специальных калькуляторов, размещаемых на сайтах некоторых производителей. Достаточно ввести все необходимые данные в соответствующие поля, после чего можно получить точный результат. Можно воспользоваться и табличным методом, так как алгоритм вычисления достаточно прост и однообразен.

gopb.ru

Расчет всему голова – отталкиваемся от площади

Неправильный расчет количества радиаторов может привести не только к недостатку тепла в помещении, но и к чересчур большим счетам за отопление и слишком высокой температуре в комнатах. Расчет следует производить как во время самой первой установки радиаторов, так и при замене старой системы, где, казалось бы, с количеством секций давно все понятно, поскольку теплоотдача радиаторов может существенно отличаться.

Фото таблицы теплоотдачи радиаторов отопления, budmaydan.com

Разные помещения – разные расчеты. Например, для квартиры в многоэтажном доме можно обойтись самыми простыми формулами или же расспросить соседей об их опыте отопления. В большом частном доме простые формулы не помогут – нужно будет учесть множество факторов, которые в городских квартирах попросту отсутствуют, например, степень утепления дома.

На фото - схема расчета отопления для квартир в многоэтажном доме, otoplenie-doma.org

Самое главное – не доверяйте цифрам, озвученным наобум всевозможными «консультантами», которые на глаз (даже не видя помещения!) называют вам количество секций для отопления. Как правило, оно значительно завышено, из-за чего вы будете постоянно переплачивать за лишнее тепло, которое буквально будет уходить в открытую форточку. Рекомендуем использовать несколько способов расчета количества радиаторов.

Простые формулы – для квартиры

Жители многоэтажных домов могут использовать достаточно простые способы расчетов, которые совершенно не подходят для частного дома. Самый простой расчет радиаторов отопления не блещет высокой точностью, однако он подойдет для квартир со стандартными потолками не выше 2.6 м. Учтите, что для каждой комнаты проводится отдельный расчет количества секций.

Фото расчета радиаторов отопления в квартире, aquagroup.ru

За основу берется утверждение, что на отопление квадратного метра комнаты нужно 100 Вт тепловой мощности радиатора. Соответственно, для того, чтобы вычислить количество тепла, необходимое для комнаты, умножаем ее площадь на 100 Вт. Так, для комнаты площадью 25 м2 необходимо приобрести секции с совокупной мощностью 2500 Вт или 2,5 кВт. Производители всегда указывают теплоотдачу секций на упаковке, например, 150 Вт. Наверняка вы уже поняли, что делать дальше: 2500/150 = 16,6 секций

Результат округляем в большую сторону, впрочем, для кухни можно округлить и в меньшую – помимо батарей, там еще будет нагревать воздух плитка, чайник.

На фото - радиатор отопления для кухни, aqua-rmnt.com

Также следует учесть возможные потери тепла в зависимости от расположения комнаты. Например, если это помещение, расположенное на углу здания, то тепловую мощность батарей можно смело увеличивать на 20 % (17 *1,2 = 20,4 секций), такое же количество секций понадобится и для комнаты с балконом. Учтите, что если вы намерены запрятать радиаторы в нишу или скрыть их за красивым экраном, то вы автоматически теряете до 20 % тепловой мощности, которую придется компенсировать количеством секций.

Расчеты от объема – что говорит СНиП?

Более точное количество секций можно высчитать, учитывая высоту потолков – этот способ особенно актуален для квартир с нестандартной высотой комнат, а также для частного дома в качестве предварительного расчета. В этом случае мы определим тепловую мощность, исходя из объема помещения. Согласно нормам СНиП, для обогрева одного кубического метра жилой площади в стандартном многоэтажном доме необходим 41 Вт тепловой энергии. Это нормативное значение необходимо умножить на общий объем, который можно получить, перемножим высоту комнаты на ее площадь.

Фото расчета количества секций радиаторов отопления, all-for-teplo.ru

Например, объем комнаты площадью 25 м2 ­с потолками 2,8 м составляет 70 м3. Эту цифру умножаем на стандартные 41 Вт и получаем 2870 Вт. Дальше действуем, как и в предыдущем примере – делим общее количество Вт на теплоотдачу одной секции. Так, если теплоотдача равна 150 Вт, то количество секций – приблизительно 19 (2870/150 = 19,1). К слову, ориентируйтесь на минимальные показатели теплоотдачи радиаторов, ведь температура носителя в трубах редко когда в наших реалиях соответствует требованиям СНиП. То есть, если в техпаспорте радиатора указаны рамки от 150 до 250 Вт, то по умолчанию берем меньшую цифру. Если вы сами отвечаете за отопление частного дома, то берите среднее значение.

Точные цифры для частных домов – учитываем все нюансы

Частные дома и большие современные квартиры никак не попадают под стандартные расчеты – слишком много нюансов нужно учесть. В этих случаях можно применить самый точный способ расчета, в котором эти нюансы как раз и учитываются. Собственно, формула сама по себе весьма простая – с такой справится и школьник, главное – правильно подобрать все коэффициенты, которые учитывают особенности дома или квартиры, влияющие на возможность сохранять или терять тепловую энергию. Итак, вот наша точная формула:

  • КТ = N*S*K1*K2*K3*K4*K5*K6*K7
  • КТ – это количество тепловой мощности в Вт, которое нам необходимо для отопления конкретной комнаты;
  • N – 100 Вт/кв.м, стандартное количество тепла на метр квадратный, к которому мы и будем применять понижающие или повышающие коэффициенты;
  • S – площадь помещения, для которого мы будем рассчитывать количество секций.

Следующие коэффициенты имеют как свойство повышать количество тепловой энергии, так и понижать, в зависимости от условий комнаты.

На фото - мощность радиаторов отопления для различной площади помещений, uchebnik-santehnika.ru

  • K1 – учитываем характер остекления окон. Если это окна с обычным двойным остеклением, коэффициент равен 1,27. Окна с двойным стеклопакетом – 1,0, с тройным – 0,85.
  • K2 – учитываем качество теплоизоляции стен. Для холодных неутепленных стен этот коэффициент равен по умолчанию 1,27, для нормальной теплоизоляции (кладка в два кирпича) – 1,0, для хорошо утепленных стен – 0,85.
  • K3 – учитываем среднюю температуру воздуха в пик зимних холодов. Так, для -10 °С коэффициент равен 0,7. На каждые -5 °С добавляем к коэффициенту 0,2. Так, для -25 °С коэффициент будет равен 1,3.
  • K4 – принимаем во внимание соотношение пола и площади окон. Начиная с 10 % (коэффициент равен 0,8) на каждые следующие 10 % добавляем 0,1 к коэффициенту. Так, для соотношения 40 % коэффициент будет равен 1,1 (0,8 (10%) +0,1 (20%)+0,1(30%)+0,1(40%)).
  • K5 – понижающий коэффициент, корректирующий количество тепловой энергии с учетом типа помещения, расположенного выше. За единицу берем холодный чердак, если чердак отапливаемый – 0,9, если над комнатой отапливаемое жилое помещение – 0,8.
  • K6 – корректируем результат в сторону увеличения с учетом количества стен, контактирующих с окружающей атмосферой.  Если 1 стена – коэффициент равен 1,1, если две – 1,2 и так далее до 1,4.
  • K7 – и последний коэффициент, корректирующий расчеты относительно высоты потолков. За единицу берется высота 2,5, и на каждые полметра высоты прибавляется 0.05 к коэффициенту Таким образом, для 3 метров коэффициент – 1,05, для 4 – 1,15.

Фото коэффициентов расчета радиаторов отопления относительно высоты потолков klivent.net

Благодаря этому расчету, вы получите количество тепловой энергии, которая необходима для поддержания комфортной среды обитания в частном доме или нестандартной квартире. Остается только разделить готовый результат на значение теплоотдачи выбранных вами радиаторов, чтобы определить количество секций.

remoskop.ru


Categories: Радиаторы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.