Причина нагревания проводника кроется в том, что энергия движущихся в нем электронов (иными словами, энергия тока) при последовательном столкновении частиц с ионами молекулярной решётки металлического элемента преобразуется в тёплый тип энергии, или Q, так образуется понятие «тепловая мощность».

Работу тока измеряют с помощью международной системы единиц СИ, применяя к ней джоули (Дж), мощность тока определяют как «ватт» (Вт). Отступая от системы на практике, могут применять в том числе и внесистемные единицы, измеряющие работу тока. Среди них ватт-час (Вт × ч), киловатт-час (сокращённо кВт × ч). Например, 1 Вт × ч обозначает работу тока с удельной мощностью 1 ватт и длительностью времени на один час.тепловая мощность

Если электроны движутся по неподвижному проводнику из металла, в этом случае вся полезная работа вырабатываемого тока распределяется на нагревание металлической конструкции, и, исходя из положений закона сохранения энергии, это можно описать формулой Q=A=IUt=I2Rt=(U2/R)*t.


кие соотношения с точностью выражают известный закон Джоуля-Ленца. Исторически он впервые был определён опытным путём учёным Д. Джоулем в середине 19-го века, и в то же время независимо от него ещё одним учёным — Э.Ленцем. Практическое применение тепловая мощность нашла в техническом исполнении с изобретения в 1873 году русским инженером А. Ладыгиным обыкновенной лампы накаливании.удельная тепловая мощность

Тепловая мощность тока задействуется в целом ряде электрических приборов и промышленных установок, а именно, в тепловых измерительных приборах, нагревательного типа электрических печках, электросварочной и инвенторной аппаратуре, очень распространены бытовые приборы на электрическом нагревательном эффекте – кипятильники, паяльники, чайники, утюги.

Находит себя тепловой эффект и в пищевой промышленности. С высокой долей использования применяется возможность электроконтактного нагрева, что гарантирует тепловая мощность. Он обуславливается тем, что ток и его тепловая мощность, оказывая влияние на пищевой продукт, который обладает определённой степенью сопротивления, вызывает в нем равномерное разогревание.


жно привести в пример то, как производятся колбасные изделия: через специальный дозатор мясной фарш поступает в металлические формы, стенки которых одновременно служат электродами. Здесь обеспечивается постоянная равномерность нагрева по всей площади и объёму продукта, поддерживается заданная температура, сохраняется оптимальная биологическая ценность пищевого продукта, вместе с этими факторами длительность технологических работ и расход энергии остаются наименьшими.тепловая мощность тока

Удельная тепловая мощность электрического тока (ω), иными словами — количество теплоты, что выделяется в единице объёма за определённую единицу времени, рассчитывается следующим образом. Элементарный цилиндрический объём проводника (dV), с поперечным проводниковым сечением dS, длиной dl, параллельной направлению тока, и сопротивлением составляют уравнения R=p(dl/dS), dV=dSdl.

Согласно определениям закона Джоуля-Ленца, за отведённое время (dt) во взятом нами объёме выделится уровень теплоты, равный dQ=I2Rdt=p(dl/dS)(jdS)2dt=pj2dVdt. В таком случае ω=(dQ)/(dVdt)=pj2 и, применяя здесь закон Ома для установления плотности тока j=γE и соотношение p=1/γ, мы сразу получаем выражение ω=jE= γE2. Оно в дифференциальной форме даёт понятие о законе Джоуля-Ленца.


fb.ru

Порядок расчета установлен СНиП 2.04.05-91, который введен в действие с 1 октября 1996 г.

Расчетная тепловая мощность С. О. определяется по формуле:

Q = Q1 b1b2 + Q2 – Q3 (1)

Где Q1 – расчетные тепловые потери здания, кВт;

b1 – коэффициент дополнительного теплового потока, устанавливаемых отопительных приборов за счет округления сверх расчетной величины принимается по табл. 1 (изменяется от 1,02 до 1,14)

b2 – коэффициент учета дополнительных потерь теплоты отопительными приборами, расположенными у наружных ограждений при отсутствии теплозащитных кранов, принимаемый по табл. 2 (от 1,01 до 1,07).

Q2 – потери теплоты, кВт, трубопроводами, проходящими в неотапливаемых помещениях;

Q3 – тепловой поток, кВт, регулярно поступающий от освещения, оборудования и людей, который следует учитывать в целом на систему отопления здания. Для жилых домов величину Q3 следует учитывать из расчета 0,01 кВт на 1м2 общей площади.

При расчетах тепловой мощности С. О. производственных зданий необходимо дополнительно учитывать расход теплоты на нагревание материалов, оборудования и транспортных средств.


Расчетные тепловые потери Q1, кВт, определяются по формуле:

Q1 = (Qа + Qв), (2)

Где Qа – тепловой поток, кВт, через ограждающие конструкции;

Qв – потери теплоты, кВт, на нагревание вентиляционного воздуха.

Величины Qа и Qв рассчитываются для каждого отапливаемого помещения.

Тепловой поток Qа , кВт, рассчитывается для каждого элемента ограждающей конструкции по формуле:

Qа = (Тепловая мощностьв – tн)(1 + Тепловая мощность-3,

Где А – расчетная площадь ограждающей конструкции, м2

R – сопротивление теплопередаче ограждающей конструкции, м2 оС/Вт, которое должно определяться по СНиП II-3-79** (кроме полов на грунте) с учетом установленных нормативов минимального теоретического сопротивления ограждений. Для полов на грунте и стен, расположенных ниже уровня земли, сопротивление теплопередаче следует определять по зонам шириной 2 м параллельным наружным стенам, по формуле:

Rп = Rс + Тепловая мощность,

Где Rс – сопротивление теплопередаче, м2 оС/Вт, принимаемое равным 2,1для 1 зоны, 4,3 – для второй, 8,6 – ля третьей зоны и 14,2 для оставшейся площади пола;


Тепловая мощность— толщина утепляющего слоя, м, учитываемая при коэффициенте теплопроводности утеплителя Тепловая мощность< 1,2 Вт/(м2 оС);

tв – расчетная температура внутреннего воздуха, оС, принимаемая согласно требованиям норм проектирования зданий различного назначения с учетом повышения V в зависимости от высоты помещения;

tн – расчетная температура наружного воздуха, оС, принимаемая по данным приложения 8, или температура воздуха смежного помещения, если его температура более чем на 3оС отличается от температуры помещения, для которого рассчитывают теплопотери;

n – коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающей конструкции по отношению к наружному воздуху и определяемый по СНиП II-3-79**.

Тепловая мощность— добавочные потери теплоты в долях от основных потерь, учитываемые:

а) для наружных вертикальных и наклонных ограждений, ориентированных на направления, откуда в январе дует ветер со скоростью, превышающей 4,5 м/с с повторяемостью не менее 15% согласно СНиП 2.01.01-82, в размере 0,05 при скорости ветра до 5 м/с и в размере 0,10 при скорости 5 м/с и более; при типовом проектировании добавочные потери следует учитывать в размере 0,05 для всех помещений;


б) для наружных вертикальных и наклонных ограждений многоэтажных зданий в размере 0,20 для первого и второго этажей; 0,15 – для третьего; 0,10 – для четвертого этажа зданий с числом этажей 16 и более; для 10 – 15-этажных зданий добавочные потери следует учитывать в размере 0,10 для первого и второго этажей и 0,05 – для третьего этажа.

Потери теплоты QВ, кВт, рассчитываются для каждого отапливаемого помещения, имеющего одно или большее количество окон или балконных дверей в наружных стенах, исходя из необходимости обеспечения подогрева отопительными приборами наружного воздуха в объеме однократного воздухообмена в час по формуле:

QВ = 0,337 АП h (tВ– tH) 10-3,

Где АП – площадь пола помещения, м2

h – высота помещения от пола до потолка, м, но не более 3,5.

Помещения, из которых организована вытяжная вентиляция с объемом вытяжки, превышающим однократный воздухообмен в час, должны, как правило, проектироваться с приточной вентиляцией подогретым воздухом. При обосновании допускается обеспечивать подогрев наружного воздуха отопительными приборами в отдельных помещениях при объеме вентиляционного воздуха не превышающем двух объемов в час.

В помещениях, для которых нормами проектирования зданий установлен объем вытяжки менее однократного воздухообмена в час, величину QВ следует рассчитывать как расход теплоты на нагревание воздуха в объеме нормируемого воздухообмена от температуры tH до температуры tВ, оС.


Потери теплоты QВ, кВт, на название наружного воздуха, проникающего во входные вестибюли (холлы) и лестничные клетки через открывающиеся в холодное время наружные двери при отсутствии воздушно-тепловых завес следует рассчитывать по формуле:

QВ = 0,7 В (Н Тепловая мощность0,8Р) (tВ– tH) 10-3, (6)

Где Н – высота здания, м;

Р – количество людей, находящихся в здании;

В – коэффициент, учитывающий количество входных тамбуров. При одном тамбуре (две двери) В=1,0, при двух тамбурах (три двери) В=0,6.

Расчет теплоты на нагревание наружного воздуха, проникающего через двери отапливаемых незадымляемых лестничных клеток с поэтажными выходами на лоджии следует вести по формуле (6) при Р=0, принимая для каждого этажа значение Н, равное расстоянию, м, от середины двери рассчитываемого этажа до перекрытия лестничной клетки.

При расчете теплопотерь входных вестибюлей, лестничных клеток и цехов воздушно-тепловыми завесами; помещений, оборудованных действующей постоянно в течение рабочего времени приточной вентиляцией с подпором воздуха. А также при расчете потерь теплоты через летние и запасные наружные двери и ворота величину QВ учитывать не следует.


Потери теплоты QВ, кВт, на нагревание воздуха, врывающегося через наружные ворота, не оборудованные воздушно-тепловыми завесами, следует рассчитывать с учетом скорости ветра, принимаемой по обязательному приложению 8, к времени открытия ворот.

Расчет потери теплоты на нагревание инфильтрующегося через неплотности ограждающих конструкций воздуха выполнять не требуется.

5. Потери теплоты Q2 = Тепловая мощностьq l 10-3, (7)

где l – длина участков теплоизолированных трубопроводов различных диаметров, прокладываемых в неотапливаемых помещениях;

q – нормированная линейная плотность теплового потока термоизолированного трубопровода, принимаемая по п. 3.23. При этом толщина теплоизоляционного слоя Тепловая мощностьиз, м, трубопроводов должна рассчитываться по формулам:

Тепловая мощностьиз = 0,5 d (В – l) (8)

lnB = Тепловая мощность{(Тепловая мощностьtср/q – 0.1)/[Тепловая мощность(d
Тепловая мощность0.1)]}, (9)

где d – наружный размер трубопровода, м;

Тепловая мощность— теплопроводность теплоизоляционного слоя, Вт/(м2 оС).

Тепловая мощностьtср – средняя за отопительный сезон разность температур теплоносителя и окружающего воздуха.

6. Величину расчетного годового теплопотребления системой отопления здания Qгод, ГДж, следует рассчитывать по формуле:

Qгод = 0,086 Q S a в с/ (tВ– tH), (10)

Где S – количество градусо-суток отопительного периода, принимаемое по приложению 8;

а – коэффициент, равный 0,8, который необходимо учитывать, если система отопления оборудована приборами автоматического уменьшения тепловой мощности в рабочее время;

в – коэффициент, равный 0,9, который необходимо учитывать, если более 75% отопительных приборов оборудованы автоматическими терморегуляторами;

с – коэффициент, равный 0,95, который необходимо учитывать, если на абонентском вводе системы отопления установлены приборы автоматического пофасадного регулирования.

7. Определенные расчетом величины тепловой мощности Q и максимального годового теплопотребления Qгод, отнесенные к 1 м2 общей (для жилых домов) или полезной (для общественных зданий) площади, не должны превышать нормативных контрольных значений, приведенных в обязательном приложении 25.

8. Расход теплоносителя G, кг/ч. в системе отопления следует определять по формуле:

G= 3,6 103 Q/ (С
Тепловая мощностьt ), (11)

Где С – удельная теплоемкость воды, принимаемая равной 4,2 кДж/(кг оС);

Тепловая мощностьt – разность температур, оС, теплоносителя на входе в систему и на выходе из нее;

Q – тепловая мощность системы, кВт, определяемая по формуле (1) с учетом бытовых тепловыделений Q3.

Расход теплоносителя в двухтрубных системах отопления, оборудованных индивидуальными автоматическими терморегуляторами, рассчитанный по формуле (11), должен приниматься с коэффициентом 1,1.

9. Расчетную тепловую мощность Qпр, кВт, каждого отопительного прибора следует определять по формуле:

Qпр = Qа + Qв + Qвн – 0,9 Qтр – Qэп, (12)

Где Qа, Qв следует рассчитывать в соответствии с п.п.2 – 4 настоящего приложения;

Qвн – потери теплоты, кВт, через внутренние стены, отделяющие помещения, для которого рассчитывается тепловая мощность отопительного прибора, от смежного помещения, в котором возможно эксплуатационное понижение температуры при регулировании. Величину Qвн следует учитывать только при расчете тепловой мощности отопительных приборов, на подводках к которым проектируются автоматические терморегуляторы. При этом для каждого помещения следует рассчитывать теплопотери Qвн только через одну внутреннюю стену при разности температур между внутренними помещениями 8оС;

Qтр – тепловой поток, кВт, от неизолированных трубопроводов отопления, прокладываемых в помещении;

Qэп – тепловой поток, кВт, регулярно поступающий в помещение от электрических приборов, освещения, технического оборудования, коммуникаций, материалов и других источников. При расчете тепловой мощности отопительных приборов жилых, общественных и административно-бытовых зданий величину Qэп учитывать не следует.

Величина бытовых тепловыделений учитывается для всего здания в целом при расчетах тепловой мощности системы отопления и общего расхода теплоносителя.

Расчетная тепловая мощность отопительных приборов в двухтрубных системах отопления, оборудованных индивидуальными автоматическими терморегуляторами, рассчитанная по формуле (12), должна приниматься с коэффициентом 1,1.

studopedia.ru

Определение теплового расчета

Расчет тепловой мощности системы отопления — это первоочередные данные. Они необходимы для решения задач по теплоснабжению жилища.

Благодаря им можно определить минимальную потребность в тепловой энергии для конкретного объекта, а также выявить приблизительные затраты тепла для каждого отдельного помещения, находящегося в нем, рассчитать суточное и годовое потребление топлива.

Необходимые характеристики

При определении тепловой мощности для отопительной системы, следует учитывать многие характеристики жилища, среди которых:

  • тип и величина объекта (квартира, загородный дом с двумя, тремя или четырьмя этажами, коттедж и т.д.);
  • архитектурная часть (берутся во внимание размеры полов, наружных стен, крыши, дверных и оконных проемов);
  • температурные режимы, присутствующие в каждой комнате жилища (по умолчанию можно использовать СНиПы 2.04.05-91);
  • конструкции полов, крыши и наружных стен (типы используемых материалов, толщина утепляющих прослоек и т.д.);
  • функциональное назначение имеющихся помещений (жилые и нежилые);
  • специальные данные (продолжительность отопительного сезона, количество проживаемых человек и т.д.);
  • количество точек, предназначенных для разбора теплой воды.

При расчетах специалисты настоятельно рекомендуют учитывать все эти параметры. Ведь только тогда удастся получить наиболее четкие результаты, относительно величины тепловой мощности для системы отопления вашего дома. Однако нередко при расчетах берут во внимание только часть из них, но при этом прибавляют от 10 до 25% к полученной мощности.

Предназначение теплового расчета

У многих может возникнуть вопрос относительно того, зачем же производить тепловой расчет мощности для системы отопления своего жилища? На это есть несколько весомых причин.

  1. Для определения точной мощности котла. Итак, вы решили установить у себя в жилище систему теплоснабжения, работающую автономно. В первую очередь для этого нужно обязательно знать мощность отопительной системы, чтобы верно подобрать котел, который справится эффективно с обогревом жилища и подачей горячей воды. Если выбирать его без учета данного параметра, то купить подходящий не удастся. При этом следует учесть, что мощность для отопительной системы дома определяется, как сумма общих тепловых затрат, идущих на обогрев жилища, и расходов, необходимых на технологические нужды и для других систем. Кроме того, здесь обязательно нужно производить тепловой расчет с запасом по мощности, тем самым удастся минимизировать износ отопительной системы и исключить ее сбой при появлении пиковых нагрузок.
  2. Для получения Технического Удостоверения (ТУ) и согласования проекта для газификации жилища. В большинстве случаев отопительную систему наши соотечественники делают такую, которая функционирует на голубом топливе, так как она является более выгодной. Чтобы начать ее устройство в своем доме, потребуется обязательно получить ТУ, но его не выдадут, если вы не будете знать суммарную мощность будущей отопительной системы и годовой расход голубого топлива. Без этих данных вам также не удастся осуществить согласование проекта на газификацию жилища. Поэтому расчет тепловой мощности в данном случае просто необходим. Иначе вы не сможете пройти это важный этап в государственных органах.
  3. Для верного подбора оборудования. Осуществить выбор отопительных приборов (радиаторов, труб и прочих) для помещений правильно просто невозможно, если предварительно не произведен тепловой расчет. Иначе купленное оборудование не справится с поставленными задачами, нельзя будет настроить его на экономичное расходование топлива.

Выполнение теплового расчета

Чтобы определить минимальный расчет требуемой мощности отопительной системы жилища, вы можете воспользоваться этой упрощенной формулой:

Qт (кВт/час) = V*∆T*K/860.

Расшифровывается она следующим образом:

  • Qт — имеющаяся тепловая нагрузка у помещений, где нужно провести отопление;
  • V — общая площадь обогреваемого дома (необходимо умножить ширину, длину и высоту), м3;
  • ∆T — присутствующая разница между наружной температурой воздуха и температурой внутри жилища, °С;
  • К — размер коэффициента тепловых потерь дома;
  • 860 — перевод полученного параметра в кВт/час, для удобства подбора оборудования, которое войдет в систему отопления.

У многих могут возникнуть особые расчеты с некоторыми из необходимых параметров, например, с коэффициентом тепловых потерь жилища. Он между тем зависит от имеющейся изоляции в помещениях и типа конструкции. Чтобы не запутаться в его вычислениях, можно использовать следующие установленные параметры для упрощенного расчета мощности системы отопления. Итак, они выглядят следующим образом:

  • деревянные дома с минимальным количеством теплоизоляции, обычными окнами и плоской крышей — К от 3,0 до 4,0;
  • дома с одинарной кирпичной кладкой, с небольшой теплоизоляцией, упрощенной конструкцией крыши и окон — К от 2,0 до 2,9;
  • жилище, выполненное с применением двойной кирпичной кладки, которое имеет небольшое количество окон, среднюю теплоизоляцию и стандартную кровлю — К от 1,0 до 1,9;
  • дом из кирпича, имеющий двойную теплоизоляцию, окна с двойными стеклопакетами, крышу из высококачественного материала с пароизоляцией и полы с толстым основанием — К от 0,6 до 0,9.

Чтобы определить разницу, которая есть между температурой за окном и в помещении (∆T), нужно учитывать погодные условия в своем регионе и условия комфорта, которые должна обеспечить система отопления. Для того чтобы не производить долгих вычислений, можно взять установленные СНиПы 2.04.05-91. Согласно этим данным расчетная внутренняя температура для дома будет находиться в следующих величинах: от +18 до +26°С. Что касается уличной температуры, то уже все зависит от места вашего проживания, используйте необходимые данные из приведенного списка (город: °С):

  • Москва: -28;
  • Санкт-Петербург: -26;
  • Киев: -22;
  • Новороссийск: -13;
  • Ялта: -6;
  • Калининград: -18;
  • Новгород: -27;
  • Севастополь: -11;
  • Одесса: -18;
  • Ростов: -22;
  • Краснодар: -19;
  • Запорожье: -22;
  • Львов: -19;
  • Екатеринбург: -35;
  • Харьков: -23;
  • Самара: -30;
  • Днепропетровск: -25;
  • Казань: -32;
  • Нижний Новгород: -30;
  • Минск: -25;
  • Каунас: -22;
  • Вильнюс: -23.

Для того чтобы вы смогли лучше понять представленную формулу и верно произвести по ней расчет, приведем пример. Итак, объем обогреваемых комнат (V) равен 250 м3, разница между температурами внутри помещений и снаружи (∆T) составляет 18°С, параметр коэффициента тепловых потерь (К) равен 1. Теперь выполним расчеты по формуле:

Qт (кВт/час)=V*∆T*K/860=250*18*1/860=5,2кВт.

Из этого следует, что мощность системы отопления в вашем доме должна составить как минимум 5,2 кВт. Ее можно немного увеличить (от 10 до 25 %), чтобы оборудование не работало постоянно на пределе своих возможностей.

Как сделать тепловой расчет более точным

Важно учесть, что подобный расчет, по представленной выше формуле, не будет учитывать тепловые потери, связанные с размещением помещений, имеющимся утеплением и типом ограждающих конструкций. Не стоит забывать, что угловые дома, где присутствуют большие окна и высокие потолки, требуют больше тепла, чем те, что не имеют внешних ограждений и обладают небольшой величиной комнат. Поэтому, чтобы более точно можно было произвести расчет мощности для системы отопления своего жилища, следует использовать формулу такого типа:

Qт (кВт/час)= (100 Вт/м2*S(м2)*K1*K2*K3*K4*K5*K6*K7)/1000.

Она расшифровывается следующим образом:

Вт/м2 — параметр удельной величины тепловых потерь.

S — общая площадь дома, м2;

K1 — параметр коэффициента тепловых потерь для окон:

  • обычное остекление — 1,27;
  • окно с 2 стеклопакетами — 1,0;
  • окно с 3 стеклопакетами — 0,85.

К2 — параметр коэффициента тепловых потерь для стен:

  • обычная теплоизоляция — 1,27;
  • утеплитель имеет толщину более 150 мм или стена представлена двойной кладкой — 1,0;
  • отличная теплоизоляция — 0,85.

К3 — параметр коэффициента соотношения всех площадей окон и имеющегося в доме пола:

  • 10% — 0,8;
  • 20% — 0,9;
  • 30% — 1,0;
  • 40% — 1,1;
  • 50% — 1,2.

K4 — параметр коэффициента температуры на улице:

  • -10oC — 0,7;
  • -15oC — 0,9;
  • -20oC — 1,1;
  • -25oC — 1,3;
  • -35oC — 1,5.

K5 — количеств стен, которые выходят наружу:

  • 1 — 1,1;
  • 2 — 1,2;
  • 3 — 1,3;
  • 4 — 1,4.

К6 — помещение, находящееся над отапливаемым:

  • чердак без утепления — 1,0;
  • чердак с утеплением — 0,9;
  • помещение, которое отапливается (следующий этаж дома) — 0,8.

K7 — параметр высоты помещений:

  • от 2,5 м -1,0;
  • от 3,0 м -1,05;
  • от 3,5 м — 1,1;
  • от 4,0 м — 1,15;
  • от 4,5 м — 1,2.

Теперь приведем пример для данной формулы, чтобы вам было максимально легко ее понять. Возьмем все те же значения, что и в первом примере. Итак, вот следующие данные:

  • S — общая площадь дома, 250 м2;
  • K1 — параметр коэффициента тепловых потерь для окон с обычным двойным остеклением составляет у нас 1,0;
  • К2 — параметр коэффициента тепловых потерь для стен с хорошей теплоизоляцией составляет 1,0;
  • К3 — параметр коэффициента соотношения площадей пола и окон представляет 20% , а значит, составляет 0,9;
  • K4 — параметр коэффициента для наружной температуры, возьмем в данном примере Калининград (-18oC), поэтому он будет равен 0,9;
  • K5 — количество стен, которые выходят наружу (в нашем случае 4), здесь будет следующее значение: 1,4;
  • К6 — помещение, находящееся над отапливаемым (это утепленный чердак), поэтому здесь будет такое значение: 0,9;
  • K7 — параметр высоты помещений с потолками в 4,0 будет равен 1,15.

Теперь производим согласно этим цифрам расчет по формуле:
Qт (кВт/час)= (100 Вт/м2*S(м2)*K1*K2*K3*K4*K5*K6*K7)/1000.

И у нас получается следующее: 100*250*1*1*0,9*0,9*1,4*0,9*1,15/1000=23,2.

Поскольку вторая формула учитывает гораздо больше параметров, то здесь мощность отопительной системы получилась абсолютно другой, более точной. Поэтому рекомендуется производить расчеты и по ней. Это позволит осуществить сравнение полученных данных и выбрать среднюю величину, которая будет наиболее приемлемой.

Ясно, что произвести тепловой расчет мощности для своей тепловой системы очень важно. При этом осуществить его можно и самостоятельно, беря во внимание озвученные параметры и приведенные значения. Обязательно в ходе этого необходимо использовать проверенные формулы. Желательно выполнять расчет сразу по двум. Только так будут получены наиболее реальные значения при определении минимальной мощности для отопительной системы.

Выполняя расчеты, обязательно используйте наиболее подходящие параметры для своего дома, учитывая регион проживания. Только тогда удастся избежать искажений при получении необходимых данных и сделать все правильно.

1poteply.ru

Определение

  1. Какой параметр называется тепловой мощностью?

Это количество тепла, выделяемое или потребляемое каким-либо объектом за единицу времени.

При проектировании систем отопления расчет этого параметра необходим в двух случаях:

  • Когда необходимо оценить потребность помещения в тепле для компенсации потери тепловой энергии через пол, потолок, стены и вентиляцию;
  • Когда нужно выяснить, сколько тепла способен отдать отопительный прибор или контур с известными характеристиками.

Факторы

Для помещения

  1. Что влияет на потребность квартиры, комнаты или дома в тепле?

При расчетах учитываются:

  • Объем. От него зависит количество воздуха, нуждающегося в нагреве;

Примерно одинаковая высота потолков (около 2,5 метров) в большинстве домов поздней советской постройки породила упрощенную систему расчета — по площади помещения.

  • Качество утепления. Оно зависит от теплоизоляции стен, площади и количества дверей и окон, а также от структуры остекления окон. Скажем, одинарное остекление и тройной стеклопакет будут сильно различаться по количеству теплопотерь;
  • Климатическая зона. При неизменных качестве утепления и объеме помещения разность температур между улицей и комнатой будет линейно связана с количеством теряющегося через стены и перекрытия тепла. При неизменных +20 в доме потребность дома в тепле в Ялте при температуре 0С и в Якутске при -40 будет различаться ровно втрое.

Для прибора

  1. Чем определяется тепловая мощность радиаторов отопления?

Здесь действует три фактора:

  • Дельта температур — перепад между теплоносителем и окружающей средой. Чем он больше, тем выше мощность;
  • Площадь поверхности. И здесь тоже наблюдается линейная зависимость между параметрами: чем больше площадь при неизменной температуре, тем больше тепла она отдает окружающей среде за счет прямого контакта с воздухом и инфракрасного излучения;

Именно поэтому алюминиевые, чугунные и биметаллические тепловые радиаторы отопления , а также все виды конвекторов снабжаются оребрением. Оно увеличивает мощность прибора при неизменном количестве протекающего через него теплоносителя.

  • Теплопроводность материала прибора. Оно играет особенно важную роль при большой площади оребрения: чем выше теплопроводность, тем более высокую температуру будут иметь края ребер, тем сильнее они нагреют контактирующий с ними воздух.

Расчет по площади

  1. Как максимально просто выполнить расчет мощности радиаторов отопления по площади квартиры или дома?

Вот самая простая схема вычислений: на 1 квадратный метр берется 100 ватт мощности. Так, для комнаты размером 4х5 м площадь будет равной 20 м2, а потребность в тепле — 20*100=2000 ватт, или два киловатта.

Помните поговорку «истина — в простом»? В этом случае она лжет.

Простая схема расчета пренебрегает слишком большим количеством факторов:

  • Высотой потолков. Очевидно, что комнате с потолками высотой 3,5 метра потребуется больше тепла, чем помещению высотой 2,4 м;
  • Теплоизоляцией стен. Эта методика расчета родилась в советскую эпоху, когда все многоквартирные дома имели примерно одинаковое качество теплоизоляции. С введением СНиП 23.02.2003, регламентирующего тепловую защиту зданий, требования к строительству радикально изменились. Поэтому для новых и старых зданий потребность в тепловой энергии может различаться весьма заметно;
  • Размером и площадью окон. Они пропускают куда больше тепла по сравнению со стенами;
  • Расположением комнаты в доме. Угловой комнате и помещению, расположенному в центре здания и окруженному теплыми соседскими квартирами, для поддержания одинаковой температуры потребуется весьма разное количество теплоты;
  • Климатической зоной. Как мы уже выяснили, для Сочи и Оймякона потребность в тепле будет различаться в разы.
  1. Можно ли вычислить мощность батареи отопления от площади более точно?

Само собой.

Вот сравнительно несложная схема расчета для домов, соответствующих требованиям пресловутого СНиП за номером 23.02.2003:

  • Базовое количество тепла рассчитывается не по площади, а по объему. На кубометр в расчеты закладывают 40 ватт;
  • Для примыкающих к торцам дома комнат вводится коэффициент 1,2, для угловых — 1,3, а для частных одноквартирных домов (у них все стены общие с улицей) — 1,5;
  • На одно окно к полученному результату добавляют 100 ватт, на дверь — 200;
  • Для разных климатических зон используются следующие коэффициенты:
Средняя температура самого холодного месяца Коэффициент
0 0,7
-5 0,9
-10 1
-15 1,2
-20 1,4
-25 1,5
-30 1,7
-40 2,0

Давайте в качестве примера подсчитаем потребность в тепле той же комнаты размером 4х5 метров, уточнив ряд условий:

  • Высота потолка 3 метра;
  • В комнате два окна;
  • Она угловая,
  • Комната расположена в городе Комсомольске-на-Амуре.

Приступим.

  • Объем помещения будет равным 4*5*3=60 м3;
  • Простой расчет по объему даст 40*60=2400 Вт;
  • Две общих с улицей стены заставят нас применить коэффициент 1,3. 2400*1,3 = 3120 Вт;
  • Два окна добавят еще 200 ватт. Итого 3320;
  • Подобрать соответствующий региональный коэффициент поможет приведенная выше таблица. Поскольку средняя температура самого холодного в году месяца — января — в городе равна 25,7, умножаем расчетную тепловую мощность на 1,5. 3320*1,5=4980 ватт.

Разница с упрощенной схемой расчета составила без малого 150%. Как видите, второстепенными деталями пренебрегать не стоит.

  1. Как рассчитать мощность отопительных приборов для дома, утепление которого не соответствует СНиП 23.02.2003?

Вот формула расчета для произвольных параметров здания:

Q=V*Dt*k/860.

В ней:

Q — мощность (она будет получена в киловаттах);

V — объем комнаты. Он вычисляется в кубометрах;

Dt — перепад температур между комнатой и улицей;

k — коэффициент утепления здания. Он равен:

Описание дома Коэффициент
Пенопластовая шуба, тройные или энергосберегающие стеклопакеты 0,6 — 0,9
Стены в два кирпича, окна с однокамерными стеклопакетами 1-1,9
Стены в один кирпич, одиночное остекление 2-2,9
Отсутствие теплоизоляции (стены из профлиста или листовой стали, одинарное остекление) 3-4

Как определить дельту температур с улицей? Инструкция довольно очевидна.

Внутреннюю температуру помещения принято брать равной санитарным нормам (18-22С в зависимости от климатической зоны и расположения комнаты относительно наружных стен дома).

Уличная берется равной температуре самой холодной пятидневки в году.

Давайте еще раз выполним расчет для нашей комнаты в Комсомольске, уточнив пару дополнительных параметров:

  • Стены дома — кладка в два кирпича;
  • Стеклопакеты — двухкамерные, без энергосберегающих стекол;
  • Средний минимум температуры, характерный для города — -30,8С. Санитарной нормой для комнаты с учетом ее углового расположения в доме будут +22С.

Согласно нашей формуле, Q=60*(+22 — -30,8)*1,8/860=6,63 КВт.

На практике лучше проектировать отопление с 20-процентным запасом по мощности на случай ошибки в расчетах или непредвиденных обстоятельств (заиливания отопительных приборов, отклонений от температурного графика и так далее). Уменьшить избыточную теплоотдачу поможет дросселирование подводок радиаторов.

Расчет для прибора

  1. Как выполнить расчет тепловой мощности радиаторов отопления при известном количестве секций?

Все просто: количество секций умножается на тепловой поток от одной секции. Этот параметр обычно можно найти на сайте производителя.

Если вас привлекла необычно низкая цена радиаторов неизвестного производителя — тоже не беда. В этом случае можно ориентироваться на следующие усредненные значения:

Тип радиатора Тепловой поток на секцию стандартного (500 мм по центрам ниппелей) размера
Чугунный 140-160
Биметаллический 180-190
Алюминиевый 190 — 200

Если вы выбрали конвектор или панельный радиатор, единственным источником информации для вас могут стать данные производителя.

Выполняя расчет тепловой мощности радиатора своими руками, учтите одну тонкость: производители обычно приводят данные для перепада температур между водой в батарее и воздухом в отапливаемом помещении в 70С. Она достигается, например, при комнатной температуре +20 и температуре радиатора +90.

Уменьшение дельты ведет к пропорциональному уменьшению тепловой мощности; так, при температурах теплоносителя и воздуха 60 и 25С соответственно мощность прибора уменьшится ровно вдвое.

Давайте обратимся к нашему примеру и выясним, сколько чугунных секций может обеспечить тепловую мощность в 6,6 КВт в идеальных условиях — при нагретом до 90С теплоносителе и комнатной температуре в +20. 6600/160=41 (с округлением) секция. Очевидно, что батареи такого размера придется разнести как минимум по двум стоякам.

Особый случай

  1. Системы отопления частных домов и гаражей нередко оборудуют самодельными приборами из соединенных перемычками труб — регистрами. Как подсчитать тепловую мощность стального регистра известных размеров?

Для одной секции (одной горизонтальной трубы) она вычисляется по формуле Q=Pi*D*L*K*Dt.

В ней:

  • Q -мощность. Результат будет получен в ваттах;
  • Pi — число «пи», его округленно берут равным 3,14;
  • D — наружный диаметр трубы в метрах;
  • L — длина секции (опять-таки в метрах);
  • K — коэффициент, соответствующий теплопроводности металла (у стали он равен 11,63);
  • Dt — разность температур между воздухом и водой в регистре.

При расчете мощности многосекционного регистра первая снизу секция рассчитывается по этой формуле, а для последующих, поскольку они будут находиться в восходящем теплом потоке (что влияет на Dt), результат умножается на 0,9.

Приведу пример расчета. Одна секция диаметром 108 мм и длиной 3 метра при комнатной температуре +25 и температуре теплоносителя +70 будет отдавать 3,14*0,108*3*11,63*(70-25)=532 ватта. Четырехсекционный регистр из таких же секций отдаст 523+(532*0,9*3)=1968 ватт.

Заключение

Как видите, тепловая мощность рассчитывается достаточно просто, но результат расчетов сильно зависит от второстепенных факторов. Как обычно, в видео в этой статье вы найдете дополнительную полезную информацию. Жду ваших дополнений. Успехов, камрады!

otoplenie-gid.ru


Categories: Радиаторы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.