Тепловой расчет отопительных приборов заключается в определении площади внешней нагревательной поверхности каждого прибора, обеспечивающий необходимый тепловой поток от теплоносителя в помещение. Расчет проводится при температуре теплоносителя, устанавливаемой для условий выбора тепловой мощности приборов.

Тепловая мощность отопительного прибора определяется теплопотребностью помещения за вычетом теплоотдачи трубопроводов, проложенных в помещении. Площадь теплоотдающей поверхности зависит от поверхностной плотности теплового потока принятого типа отопительного прибора, его расположения в помещении и схемы присоединения к трубопроводам.

Для выполнения расчета должны быть известны:

— теплопотери каждого отапливаемого помещения;

— вид и схема системы отопления;

— тип отопительного прибора.

Если в качестве отопительных приборов применяются чугунные или стальные колончатые радиаторы, сначала производят гидравлический расчет, а затем определяют требуемую площадь поверхности отопительных приборов. Если же приняты другие отопительные приборы, то предварительно определяют площадь поверхность отопительных приборов, затем выполняют гидравлический расчет, на основе которого корректируют расчетные данные площади, а при необходимости уточняют гидравлический расчет.


Поверхностная плотность теплового потока, передаваемый через 1 м² площади отопительного прибора определяется:

Тепловой расчет отопительных приборов Вт/м² (6.1)

где Кпр – коэффициент теплопередачи отопительного прибора, Вт/м² °С;

Δtср – температурный напор отопительного прибора, °С.

Тепловой расчет отопительных приборов (6.2)

где tср – средняя температура теплоносителя в отопительном приборе, °С; t1, t2 – соответственно температура теплоносителя входящая и выходящая в отопительный прибор, °С; ti – температура воздуха в помещений, °С.

В двухтрубных системах водяного отопления за температуру воды, входящий в каждый отопительный прибор принимается температура подающего трубопровода — t1. За температуру воды, выходящей из каждого прибора – температура обратного трубопровода t2, поэтому:

Тепловой расчет отопительных приборов °С (6.3)

В однотрубных проточных системах водяного отопления при последовательно соединенных приборах обычно известна температура воды, входящей в прибор – tвх, а температура выходящей воды – tвых зависит от расхода воды в приборе Gпр:


Тепловой расчет отопительных приборов (6.4)

где Qпр – тепловая нагрузка отопительного прибора, Вт;

β1 – поправочный коэффициент, учитывающий теплопередачу через дополнительную площадь (сверх расчетной) приборов, для радиаторов и коллекторов принимается 1,03 – 1,08;

β2 – поправочный коэффициент, учитывающий дополнительные потери вследствие размещения отопительных приборов у наружных ограждений, принимается 1,02 – 1,03;

Gпр – расход теплоносителя через отопительный прибор, кг/с.

Расчетная плотность теплового потока отопительного прибора для условий работы, отличных от стандартных, определяется по формуле:

Тепловой расчет отопительных приборов (6.5)

где qном – номинальная плотность теплового потока, Вт/м²;

n, р – экспериментальные данные показателей степеней.

Значения qном, n, р принимаются по приложению 3.

Расчетная площадь отопительного прибора независимо от вида теплоносителя определяется:

Тепловой расчет отопительных приборов (6.6)

где Qпр – тепловая нагрузка отопительного прибора, Вт;

Qо – теплопотребность помещения, Вт;

Qтр – теплоотдача трубопроводов (включая стояки, подводки) проложенных в пределах помещения, Вт.

Теплоотдача трудопроводов:

Тепловой расчет отопительных приборов Вт (6.7)

Источник: www.padavia.ru

Тепловой расчет для приборов отопления


Метод теплового расчета являет собой определение площади поверхности каждого отдельного отопительного прибора, который отдает в помещение тепло. Расчет тепловой энергии на отопление в данном случае учитывает максимальный уровень температуры теплоносителя, который предназначен для тех отопительных элементов, для которых и проводится теплотехнический расчет системы отопления. То есть, в случае если теплоноситель – вода, то берется средняя ее температура в отопительной системе. При этом учитывается расход теплоносителя. Точно также, в случае если теплоносителем является пар, то расчет тепла на отопление использует значение высшей температуры пара при определенном уровне давления в отопительном приборе.

Методика расчета

Чтобы осуществить расчет теплоэнергии на отопление, необходимо взять показатели теплопотребности отдельного помещения. При этом из данных следует вычесть теплоотдачу теплопровода, который расположен в данном помещении.

Площадь поверхности, отдающей тепло, будет зависеть от нескольких факторов – прежде всего, от типа используемого прибора, от принципа соединения его с трубами и от того, как именно он располагается в помещении. При этом следует отметить, что все эти параметры влияют также на плотность потока тепла, исходящего от прибора.


Расчет отопительных приборов системы отопления – теплоотдачу отопительного прибора Q можно определить по следующей формуле:

Qпр = qпр*Ap.

Однако воспользоваться ею можно только в том случае, если известен показатель поверхностной плотности теплового прибора qпр (Вт/м2).

Отсюда же можно вычислить и расчетную площадь Ар. При этом важно понимать, что расчетная площадь любого отопительного прибора не зависит от типа теплоносителя.

Ар= Qnp/qnp,

в которой  Qnp – уровень требуемой для определенного помещения теплоотдачи прибора.

Тепловой расчет отопления учитывает, что для определения теплоотдачи прибора для определенного помещения используется формула:

Qпp = Qп — µтр*Qтр

при этом показатель Qп – это теплопотребность комнаты, Qтр – суммарная теплоотдача всех элементов отопительной системы, расположенной в комнате. Расчет тепловой нагрузки на отопление подразумевает, что сюда относится не только радиатор, но и трубы, которые к нему подведены, и транзитный теплопровод (если есть). В данной формуле µтр – коэффициент поправки, который предусматривает частичную теплоотдачу системы, рассчитанную на поддержание постоянной температуры в помещении. При этом размер поправки может колебаться в зависимости от того, как именно прокладывались трубы отопительной системы в помещении. В частности – при открытом методе – 0,9; в борозде стены – 0,5; вмурованные в бетонную стену – 1,8.


Расчет необходимой мощности отопления, то есть – суммарная теплоотдача (Qтр — Вт) всех элементов отопительной системы определяется при помощи следующей формулы:

Qтр = µkтр*µ*dн*l*(tг — tв) 

В ней kтр – показатель коэффициента теплоотдачи определенного отрезка трубопровода, расположенного в помещении, dн — наружный диаметр трубы, l – длинна отрезка. Показатели tг и tв показывают температуру теплоносителя и воздуха в помещении.

Формула Qтр = qв*lв + qг*lг используется для определения уровня теплоотдачи теплопровода, присутствующего в помещении. Для определения показателей следует обратиться к специальной справочной литературе. В ней можно найти определение тепловой мощности системы отопления – определение теплоотдачи вертикально (qв) и горизонтально (qг) проложенного в помещении теплопровода. Найденные данным показывают теплоотдачу 1м трубы.


Перед тем, как рассчитать гкал на отопление, на протяжении многих лет вычисления, производимые по формуле Ap = Qnp/qnp и измерения теплоотдающих поверхностей отопительной системы, проводились с использованием условной единицы – эквивалентных квадратных метрах. При этом экм был условно равен поверхности прибора отопления с теплоотдачей 435 ккал/ч (506 Вт). Расчет гкал на отопление предполагает, что при этом разность температур теплоносителя и воздуха (tг — tв) в помещении составляла 64,5°С, а относительный расход воды в системе равнялся показателю Gотн = l,0.

Расчет тепловых нагрузок на отопление подразумевает, что при этом гладкотрубные и панельные отопительные приборы, которые имели большую теплоотдачу, чем эталонные радиаторы времен СССР, имели площадь экм, которая значительно отличалась от показателя их физической площади. Соответственно, площадь экм менее эффективных отопительных приборов была значительно ниже, чем их площадь физическая.

Впрочем, такой двойственный замер площади приборов отопления в 1984 году было упрощено, и экм отменили. Таким образом, с того момента площадь отопительного прибора измерялась только в м2.

После того, как будет просчитана необходимая для помещения площадь отопительного прибора и расчет тепловой мощности системы отопления, можно приступать к подбору необходимого радиатора по каталогу отопительных элементов.


При этом получается, что чаще всего площадь приобретаемого элемента получается несколько больше той, которая была получена путем вычислений. Это довольно легко объяснить – ведь подобная поправка учитывается заранее посредством введения в формулы повышающего коэффициента µ1.

Сегодня весьма распространены секционные радиаторы. Их длина напрямую зависит от количества используемых секций. Для того чтобы произвести расчет количества тепла на отопление – то есть, высчитать оптимальное количество секций для определенного помещения, используется формула:

N = (Ap/a1)( µ 4/ µ 3)

В ней а1 – это площадь одной секции радиатора, выбранного для установки в помещении. Измеряется в м2. µ 4 –коэффициент поправки который вносится на способ установки отопительного радиатора. µ 3 – коэффициент поправки, который указывает реальное количество секций в радиаторе (µ3 — 1,0 при условии, что Ар = 2,0 м2). Для стандартных радиаторов типа М-140 данный параметр определяется по формуле:

µ 3 =0,97+0,06/Ар

При тепловых испытаниях используются стандартные радиаторы, состоящие в среднем, из 7-8 секций. То есть, определенный нами расчет расхода тепла на отопление – то есть, коэффициент теплопередачи, является реальным только для радиаторов именно такого размера.

Следует отметить, что при применении радиаторов с меньшим количеством секций наблюдается незначительное увеличение уровня теплоотдачи.


Это связано с тем, что в крайних секциях тепловой поток несколько более активен. Кроме того, открытые торцы радиатора способствуют большей теплоотдаче в воздух помещения. В случае если количество секций больше – наблюдается ослабление тока в крайних секциях. Соответственно, для достижения необходимого уровня теплоотдачи наиболее рациональным является незначительное увеличение длины радиатора за счет добавления секций, что не повлияет на мощность системы отопления.

Для тех радиаторов, площадь одной секции в которых составляет 0,25 м2, существует формула для определения коэффициента µ3:

µ3 = 0,92 + 0,16 /Ар

Но следует учитывать, что крайне редко при использовании данной формулы получается целое число секций. Чаще всего искомое количество оказывается дробным. Расчет нагревательных приборов системы отопления предполагает, что для получения более точного результата допустимо незначительное (не более чем на 5%) снижение коэффициента Ар. Такое действие приводит к ограничению уровня отклонения температурного показателя в помещении. Когда произведен расчет тепла на отопление помещения, после получения результата устанавливается радиатор с максимально близким к полученному значению количеством секций.

Расчет мощности отопления по площади предполагает, что определенные условия на установку радиаторов накладывает и архитектура дома.


В частности, если имеется внешняя ниша под окном, то длина радиатора должна быть менее длины ниши – не менее чем на 0,4 м. Такое условие действительно лишь при прямой подводке трубы к радиатору. В случае если применена подводка с уткой, разница длины ниши и радиатора должна составлять минимум 0,6 м. При этом лишние секции следует выделить как отдельный радиатор.

Для отдельных моделей радиаторов формула расчета тепла на отопление – то есть, определения длины, не применяется, поскольку данный параметр заранее определен производителем. Это в полной мере относится к радиаторам типа РСВ или РСГ. Однако нередки случаи, когда для увеличения площади прибора отопления данного типа используется просто параллельная установка двух панелей рядом.

Если панельный радиатор определен как единственный допустимый для данного помещения, то для определения количества необходимых радиаторов используется:

N = Ap / a1.

При этом площадь радиатора – известный параметр. В случае если будет установлено два параллельных блока радиаторов, показатель Ар увеличивают, определяя сниженный коэффициент теплопередачи.

В случае использования конвекторов с кожухом расчет мощности отопления учитывает, что их длина также определяется исключительно существующим модельным рядом. В частности, напольный конвектор «Ритм» представлен в двух моделях с длиной кожуха 1 м и 1,5 м. Настенные конвекторы также могут незначительно отличатся друг от друга.


В случае применения конвектора без кожуха существует формула, помогающая определить количество элементов прибора, после чего можно реализовать расчет мощности системы отопления:

N = A/ (n*a1)

Здесь n – количество рядов и ярусов элементов, которые и составляют площадь конвектора. При этом a1 – площадь одной трубы или элемента. При этом при определении расчетной площади конвектора необходимо учитывать не только количество его элементов, но и метод их соединения.

В случае применения в отопительной системе гладкотрубного прибора продолжительность его греющей трубы вычисляется следующим образом:

l = Ар4 / (n*a1)

µ4  — это коэффициент поправки, который вносится при наличии декоративного укрытия трубы; n – количество рядов или ярусов греющих труб; а1 – параметр, характеризующий площадь одного метра горизонтальной трубы при определенном заранее диаметре.

Для получения более точного (а не дробного числа), допускается незначительное (не более чем на 0,1 м2или же 5%) снижение показателя А.

Пример №1

Необходимо определить правильное количество секций для радиатора М140-А, который будет установлен в помещении, расположенном на верхнем этаже. При этом стена наружная, под подоконником ниша отсутствует. А расстояние от него до радиатора составляет всего 4 см. Высота помещения 2,7 м. Qn=1410 Вт, а tв=18 °С. Условия подключения радиатора: подсоединения к однотрубному стояку проточно-регулируемого типа (Dy20, кран КРТ с подводкой 0,4 м); разводка отопительной системы верхняя, tг = 105°С, а расход теплоносителя по стояку составляет Gст = 300 кг/ч. Разница температуры теплоносителя подающего стояка и рассматриваемого составляет 2°С.

Определяем средний показатель температуры в радиаторе:

tср = (105 — 2) — 0,5х1410х1,06х1,02х3,6 / (4,187х300) = 100,8 °С.

Опираясь на полученные данные, вычисляем плотность теплового потока:

tср = 100,8 — 18 = 82,8 °С

При этом следует отметить, что произошло незначительное изменение уровня расхода воды (360 до 300 кг/ч). Данный параметр практически никак не влияет на qnp.

Qпр =650(82,8/70)1+0,3=809Вт/м2.

Далее определяем уровень теплоотдачи горизонтально (1г = 0,8 м) и вертикально (1в = 2,7 — 0,5 = 2,2 м) расположенных труб. Для этого следует воспользоваться формулой Qтр =qвхlв + qгхlг.

Получаем:

Qтр = 93х2,2 + 115х0,8 = 296 Вт.

Рассчитываем площадь требуемого радиатора по формуле Ap = Qnp/qnp  и  Qпp = Qп — µ трхQтр:

Ар =(1410-0,9х296)/809=1,41м2.

Рассчитываем необходимое количество секций радиатора М140-А, учитывая, что площадь одной секции составляет 0,254 м2:

м2 (µ4=1,05, µ 3 = 0,97 + 0,06 / 1,41= 1,01, воспользуемся формулой µ 3 = 0,97 + 0,06 / Ар  и определяем:

N=(1,41/0,254)х(1,05/1,01)=5,8.
То есть, расчет потребления тепла на отопление показал, что в помещении для достижения максимально комфортной температуры следует установить радиатор, состоящий из 6 секций.

Пример №2

Необходимо определить марку открытого настенного конвектора с кожухом КН-20к «Универсал-20», который устанавливается на однотрубный стояк проточного типа. Кран возле устанавливаемого прибора отсутствует.

Определяет среднюю температуру воды в конвекторе:

tcp = (105 — 2) — 0,5х1410х1,04х1,02х3,6 / (4,187х300) = 100,9 °С.

В конвекторах «Универсал-20» плотность теплового потока равна 357 Вт/м2.имеющиеся данные: µtcp=100,9-18=82,9°С, Gnp=300кг/ч. По формуле qпр =qном(µ tср /70)1+n (Gпр /360)p пересчитываем данные:

qnp = 357(82,9 / 70)1+0,3(300 / 360)0,07 = 439 Вт/м2.

Определяем уровень теплоотдачи горизонтальных (1г-=0,8 м) и вертикальных (lв=2,7 м) труб (с учетом Dy20) используя формулу Qтр = qвхlв +qгхlг. Получаем:

Qтр = 93х2,7 + 115х0,8 = 343 Вт.

Воспользовавшись формулой Ap = Qnp/qnp и Qпp = Qп — µ трхQтр, определяем расчетную площадь конвектора:

Ар =(1410 — 0,9х343) / 439 = 2,51 м2.

То есть, к установке принят конвектор «Универсал-20» длина кожуха которого составляет 0,845 м (модель КН 230-0,918, площадь которой 2,57м2).

Пример №3

Для системы парового отопления необходимо определить количество и длину чугунных ребристых труб при условии, что установка открытого типа и производится в два яруса. При этом избыточное давление пара составляет 0,02 Мпа.

Дополнительные характеристики: tнac= 104,25 °С, tв=15 °С, Qп = 6500 Вт, Qтр = 350 Вт.

Воспользовавшись формулой µ tн = tнас — tв, определим разность температур:

µ tн = 104,25- 15 = 89,25 °С.

Определяем плотность теплового потока, воспользовавшись известным коэффициентом передачи данного типа труб в случае, когда они устанавливаются параллельно одна над другой — к=5,8 Вт/(м2-°С). Получаем:

qnp = knpх µ tн = 5,8-89,25 = 518 Вт/м2.

Формула Ap = Qnp/qnp помогает определить необходимую площадь прибора:

Ар = (6500 — 0,9х350) / 518 = 11,9м2.

Чтоб определить количество необходимых труб, N = A/ (nхa1). При этом следует воспользоваться такими данными: длина одной тубы – 1,5 м, площадь нагревательной поверхности – 3м2.

Вычисляем: N= 11,9/(2х3,0) = 2 шт.

То есть, в каждом ярусе необходимо установить по две трубы длиной 1,5 м. каждая. При этом вычислим общую площадь данного отопительного прибора: А = 3,0х*2х2 = 12,0 м2.

Источник: otoplenie-doma.org

Дисклеймер

Эта статья ориентирована не на инженеров-теплотехников, а на владельцев квартиры или частного дома, которые собираются своими руками смонтировать систему отопления. Раз так — инструкция по расчету должна быть простой и понятной.

Мы не станем использовать сложные формулы и такие понятия, как «тепловой поток» и «термическое сопротивление стен», постаравшись предельно упростить подсчеты.

Общие положения

Любой простой способ расчета имеет довольно большую погрешность. Однако с практической стороны для нас важно обеспечить гарантированно достаточную тепловую мощность. Если она окажется больше необходимой даже в пик зимней стужи — что с того?

В квартире, где отопление оплачивается по площади, жар костей не ломит; да и регулировочные дроссели и термостатические регуляторы температуры не являются чем-то очень редким и недоступным.

В случае частного дома и собственного котла цена киловатта тепла нам хорошо известна, и, казалось бы, избыточное отопление ударит по карману. Однако на практике это не так. Все современные газовые и электрокотлы для отопления частного дома снабжаются термостатами, которые регулируют теплоотдачу в зависимости от температуры в помещении.

Расчет радиаторов отопления и необходимой тепловой мощности

Термостат не даст котлу потратить лишнее тепло.

Даже если наш расчет мощности радиаторов отопления даст значительную ошибку в большую сторону — мы рискуем лишь стоимостью нескольких дополнительных секций.

Между прочим: помимо среднестатистических зимних температур, раз в несколько лет случаются экстремальные заморозки.

Есть подозрение, что в связи с глобальными климатическими изменениями они будут случаться все чаще, так что, выполняя расчет отопительных радиаторов, не бойтесь ошибиться в большую сторону.

Как рассчитать тепловую мощность отопительного прибора

Способ рассчитать мощность во многом зависит от того, о каком отопительном приборе идет речь.

  • Для всех без исключения электрических отопительных приборов эффективная тепловая мощность в точности равна их паспортной электрической мощности.

    Вспомните школьный курс физики: если не совершается полезная работа (то есть перемещение какого-либо объекта с ненулевой массой против вектора гравитации), вся потраченная энергия идет на нагрев окружающей среды.

Расчет радиаторов отопления и необходимой тепловой мощности

Угадаете тепловую мощность прибора по его упаковке?

  • У большинства отопительных приборов от приличных производителей их тепловая мощность указывается в сопроводительной документации или на сайте изготовителя.

    Часто там можно обнаружить даже калькулятор расчета радиаторов отопления для определенного объема помещения и параметров отопительной системы.

Здесь есть одна тонкость: почти всегда производителем выполняется расчет теплоотдачи радиатора — батарей отопления, конвектора или фанкойла — для вполне конкретной разницы температур между теплоносителем и помещением, равной 70С. Для российских реалий такие параметры зачастую являются недостижимым идеалом.

Наконец, возможен простой, хоть и приблизительный, расчет мощности радиатора отопления по количеству секций.

Биметаллические радиаторы

Расчет биметаллических радиаторов отопления отталкивается от габаритных размеров секции.

Возьмем данные с сайта завода Большевик:

  • Для секции с межосевым расстоянием подводок 500 миллиметров теплоотдача равна 165 ватт.
  • Для 400-миллиметровой секции — 143 ватта.
  • 300 мм — 120 ватт.
  • 250 мм — 102 ватта.

Расчет радиаторов отопления и необходимой тепловой мощности

10 секций с полуметром между осями подводок дадут нам 1650 ватт тепла.

Алюминиевые радиаторы

Расчет алюминиевых радиаторов отопления выполняется исходя из следующих значений (данные для итальянских радиаторов Calidor и Solar):

  • Секция с межосевым расстоянием 500 миллиметров отдает 178-182 ватта тепла.
  • При межосевом расстоянии 350 миллиметров теплоотдача секции уменьшается до 145-150 ватт.

Стальные пластинчатые радиаторы

А как выполнить расчет стальных радиаторов отопления пластинчатого типа? У них ведь нет секций, от количества которых может отталкиваться формула расчета.

Здесь ключевые параметры — опять-таки межосевое расстояние и длина радиатора. Кроме того, производители рекомендуют учитывать способ подключения радиатора: при разных способах врезки в отопительную систему нагрев и, следовательно, тепловая мощность тоже может различаться.

Чтобы не утомлять читателя обилием формул в тексте — просто отошлем его к таблице мощности модельного ряда радиаторов Korad.

Схема учитывает габариты радиаторов и тип подключения.

Чугунные радиаторы

И только здесь все предельно просто: все производящиеся в России чугунные радиаторы имеют одинаковое межосевое расстояние подводок, равное 500 миллиметрам, и теплоотдачу при стандартной дельте температур в 70С, равную 180 ваттам на секцию.

Полдела сделано. Теперь мы знаем, как рассчитать количество секций или отопительных приборов при известной необходимой тепловой мощности. Но откуда взять саму тепловую мощность, которая нам нужна?

Расчет тепловой мощности

Мы рассмотрим несколько способов расчета, учитывающих разное количество переменных.

По площади

Расчет по площади основан на санитарных нормах и правилах, в которых русским по белому сказано: один киловатт тепловой мощности должен приходиться на 10 м2 площади помещения (100 ватт на м2).

Уточнение: при расчете применяется коэффициент, зависящий от региона страны. Для южных районов он равен 0,7 — 0,9, для Дальнего Востока — 1,6, для Якутии и Чукотки — 2,0.

Расчет радиаторов отопления и необходимой тепловой мощности

Чем ниже температура на улице, тем больше потери тепла.

Понятно, что метод дает весьма значительную погрешность:

  • Панорамное остекление в одну нитку явно даст большие теплопотери по сравнению со сплошной стеной.
  • Расположение квартиры внутри дома не учитывается, хотя понятно, что если рядом теплые стены соседних квартир — при одинаковом количестве радиаторов будет куда теплее, чем в угловой комнате, имеющей общую стену с улицей.
  • Наконец, главное: расчет верен для стандартной высоты потолков в доме советской постройки, равной 2,5 — 2,7 метра. Однако еще в начале 20-го века строились дома с высотой потолков в 4 — 4,5 метра, да и сталинки с трехметровыми потолками тоже потребуют уточненного расчета.

Давайте все-таки применим метод для расчета количества чугунных секций радиаторов отопления в комнате размером 3х4 метра, находящейся в Краснодарском крае.

Площадь равна 3х4=12 м2.

Необходимая тепловая мощность отопления — 12м2 х100Вт х0,7 районного коэффициента = 840 ватт.

При мощности одной секции в 180 ватт нам потребуется 840/180=4,66 секции. Число мы, понятно, округлим в большую сторону — до пяти.

Совет: в условиях Краснодарского края дельта температур между комнатой и батареей в 70С нереальна. Лучше устанавливать радиаторы как минимум с 30-процентным запасом.

Расчет радиаторов отопления и необходимой тепловой мощности

Запас по тепловой мощности никогда не помешает. При необходимости можно просто прикрыть вентиля перед радиатором.

Простой расчет по объему

Расчет радиаторов отопления и необходимой тепловой мощности

Не наш выбор.

Расчет по общему объему воздуха в помещении явно будет более точным уже потому, что учитывает разброс высоты потолков. Он тоже весьма прост: на 1 м3 объема необходимо 40 ватт мощности отопительной системы.

Давайте посчитаем необходимую мощность для нашей комнатки под Краснодаром с небольшим уточнением: она находится в сталинке 1960 года постройки с высотой потолка 3,1 метра.

Объем помещения равен 3х4х3,1=37,2 кубометра.

Соответственно радиаторы должны иметь мощность 37,2х40=1488 ватта. Учтем районный коэффициент 0,7: 1488х0,7=1041 ватт, или шесть секций чугунного лютого ужаса под окном. Почему ужаса? Внешний вид и постоянные течи между секциями через несколько лет эксплуатации восторга не вызывают.

Если же вспомнить, что цена чугунной секции выше, чем у алюминиевого или биметаллического импортного радиатора отопления — идея покупки такого отопительного прибора и впрямь начинает вызывать легкую панику.

Уточненный расчет по объему

Более точный расчет систем отопления выполняется с учетом большего числа переменных:

  • Количества дверей и окон. Усредненные потери тепла через окно стандартного размера — 100 ватт, через дверь — 200.
  • Расположение комнаты в торце или углу дома заставит нас использовать коэффициент 1,1 — 1,3 в зависимости от материала и толщины стен здания.
  • У частных домов используется коэффициент 1,5, поскольку куда выше потери тепла через пол и крышу. Сверху и снизу ведь не теплые квартиры, а улица…

Базовое значение — те же 40 ватт на кубометр и те же региональные коэффициенты, что и при расчете по площади комнаты.

Давайте выполним расчет тепловой мощности радиаторов отопления для комнаты с теми же габаритами, что и в предыдущем примере, но мысленно перенесем ее в угол частного дома в Оймяконе (средняя температура января -54С, минимум за время наблюдений — 82). Ситуация усугубляется дверью на улицу и окошком, из которого видны жизнерадостные оленеводы.

Базовую мощность с учетом только объема помещения мы уже выполнили: 1488 ватт.

Окно и дверь прибавят 300 ватт. 1488+300=1788.

Частный дом. Холодный пол и утечка тепла через крышу. 1788х1,5=2682.

Угол дома заставит нас применить коэффициент 1,3. 2682х1,3=3486,6 ватта.

Расчет радиаторов отопления и необходимой тепловой мощности

К слову, в угловых комнатах отопительные приборы стоит монтировать на обе внешние стены.

Наконец, теплый и ласковый климат Оймяконского улуса Якутии приводит нас к мысли о том, что полученный результат можно умножить на региональный коэффициент 2,0. 6973,2 ватта требуется для обогрева маленькой комнатушки!

Расчет количества радиаторов отопления нам уже знаком. Общее количество чугунных или алюминиевых секций составит 6973,2/180=39 секций с округлением. При длине секции 93 миллиметра баян под окном будет иметь длину 3,6 метра, то есть едва поместится вдоль более длинной из стенок…

Тепловой расчет отопительных приборов«>

«- Десять секций? Хорошее начало!» — такой фразой житель Якутии прокомментирует это фото.

Заключение

Дополнительную информацию о расчете отопительных систем вы найдете в видео в конце статьи. Автор же напоследок хочет сделать официальное заявление: в Оймякон по своей воле — ни ногой. Теплых зим!

Источник: stroim24.info


Categories: Радиаторы

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector