Выбор тепловентилятора на горячей воде и принцип его действия

В современном мире рынок предлагает большой ассортимент различных отопительных и климатических приспособлений, с помощью которых можно проводить контроль и регулировку температуры в помещениях. К сожалению, большая часть этих систем рассчитана на небольшую площадь, так как имеет значительный расход топлива или энергии.

Поэтому для производственных помещений, которые часто тоже нуждаются в поддержании определенных климатических условий, создан водяной тепловентилятор.

Водяная система отопления пользуется малой действенностью по отношению ко времени, которое тратится на прогрев помещения. Радиаторам, работающим на горячей воде, потребуется много времени для того, чтобы нагреть воздух до определенной температуры. К тому же это система не формирует локальных зон усиленного прогрева, в которых часто нуждаются некоторые предприятия как, например, как СТО или автомойки, где необходима быстрая сушка некоторых деталей. В связи с такими обстоятельствами рекомендуется использовать водяной тепловентилятор, который включает в себя сразу две системы отопления — водяную и воздушную.


Радиаторы с вентилятором для отопления

Тепловентилятор на горячей воде

Как это работает?

Тепловентилятор с водяным источником тепла создает потоки воздуха с помощью большого вентилятора, обеспечивая высокую отдачу тепловой энергии. Роль нагревательного источника в тепловентиляторе играет горячая вода, которая поступает с центральных систем отопления. А для распределения тепла от радиатора используется установленный электровентилятор, который и нагнетает теплый воздух в помещение.

Нагляднее работу этой системы можно представить себе так: обычная, знакомая большинству, батарея водяного отопления, помещенная в специальный короб и оснащенная эффективным вентилятором. Через имеющиеся в передней панели отверстия в помещение и поступает горячий воздух. Таким образом, все полученное тепло расходуется максимально и целенаправленно.

Кроме экономической выгоды, такие тепловентиляторы промышленные водяные, удобны еще и тем, что для их установки и обслуживания не требуется дополнительных знаний или привлечения мастеров особой квалификации. Принцип действия понятен и доступен даже неспециалистам.

В чем преимущества и какова специфика?

В отличие от большинства наиболее распространенных методов обогрева помещений, отопление с тепловентилятором обладает целым списком положительных качеств:

Радиаторы с вентилятором для отопления

Настенный водяной тепловентилятор


  • Экономичность расхода полученного тепла . Тепло, исходящее от батареи, не поднимается вверх к потолку и не расходуется на обогрев стен, как в обычной системе отопления, а сразу же прогревает нижние слои воздуха в помещении. Поэтому, отдача от такого радиатора чувствуется уже с первых минут.
  • Возможность локального обогрева . Тепло, поступающее только с одной стороны защитного короба, можно использовать целенаправленно. Это позволяет повышать температуру воздуха в определенном месте помещения, например, для ускорения сушки, оттаивания или скорейшего нагрева отдельных предметов.
  • Безопасность эксплуатации . Оптимальное использование вырабатываемого тепла позволяет довольствоваться умеренной температурой нагревом батарей. Поэтому эксплуатация отопления полностью отвечает всем требованиям и нормативам противопожарной безопасности. А наличие защитного короба исключает возможность получения ожога или случайного возгорания попавших на радиатор предметов.
  • Возможность распределения тепла . Установленные на передней панели жалюзи формируют равномерные воздушные потоки в нужном направлении.
  • Возможность регулировки мощности и интенсивности . В подобных системах обогрева, кроме диапазона мощности самого отопительного прибора, можно менять и интенсивность подачи теплого воздушного потока. Поэтому, даже используя оборудование небольшой мощности, можно успешно отапливать достаточную площадь помещения.

Обзор наиболее популярных моделей

Сейчас тепловентиляторы выпускают мощностью от 2 до 90 кВт, при этом подача тепла за один час может достигать десятки тысяч кубометров. Такое разнообразие моделей дает возможность подобрать наиболее эффективный и экономически выгодный вариант отопления для дома, квартиры, офиса, гаража или любого производственного помещения.

По типу конструкции корпуса различают напольные и настенные тепловентиляторы. Исходя из названия, становится понятным способ их установки и крепления.

  • Настенные монтируются с помощью специальной, прочной консоли, удерживающей аппарат в вертикальном положении.
  • Напольные модели могут не иметь стационарного места установки, а при необходимости свободно перемещаться по помещению.

Другая отличительная черта некоторых моделей тепловентиляторов – наличие двух контуров. Такие аппараты могут выполнять как традиционный нагрев помещений, так и выполнять функцию кондиционера, охлаждая воздух. Для этого один контур подключается к горячей воде, а второй – к системе холодного водоснабжения. Двухконтурные аппараты стоят несколько дороже обычных, но такая переплата вполне оправдывается экономией затрат на приобретение дополнительного оборудования.


Водяные тепловентиляторы Тепломаш

Компания Тепломаш выпускает серию тепловых конвертеров КЭВ, рассчитанных на генерацию 3-120 кВт тепловой мощности. В серию входят 16 моделей тепловых вентиляторов.

Младшая модель Тепломаш КЭВ 25 Т3W2

Радиаторы с вентилятором для отопления

Тепломаш КЭВ 25 Т3W2

  • Генерирует от 3 до 10 кВт тепловой мощности, расходуя 0,03-0,11 литров жидкого теплоносителя в секунду.
  • Вентилятор обеспечивает 8-метровую длину струи теплого воздуха (30-40 градусов Цельсия), подаваемого в объеме до 1200 м3/час.
  • Допускаемая высота монтажа – 3-4 метра.
  • Стоимость – до 40 тысяч рублей.

Старшая модель Тепломаш КЭВ Т5,6W3

Радиаторы с вентилятором для отопления

Тепломаш КЭВ Т5,6W3

  • Генерирует 45-120 кВт тепловой мощности, расходуя от 0,4 до 1,06 литров теплоносителя в секунду.
  • Длина теплой струи – 27 метров, подача воздуха – 3,8-7,2 тысячи м3/час.
  • Допускаемая высота монтажа 5-8 метров.
  • Стоимость – до 100 тысяч рублей .

Тепловентиляторы компании EUROHEAT

Продукт компании EUROHEAT — водяной тепловентилятор Volcano

Радиаторы с вентилятором для отопления

Водяной тепловентилятор Volcano

  • Генерирует от10 до 60 кВт тепловой мощности, нагревая 25-метровую струю воздуха до температуры 40 градусов Цельсия.
  • Объемы теплообменника этого отопительного прибора – 3,1 литра, мощность двигателя вентилятора – 530 Ватт.
  • Расход воздуха – 5500 «кубов» в час.
  • Еще одной отличительной особенностью EUROHEAT Volcano является полимерный корпус, снижающий вес и стоимость изделия.
  • Стоимость – до 440 евро .

Тепловые вентиляторы компании Ballu

Тепловентиляторы водяные Ballu из серии BHP комплектуются полимерными корпусами и поворотными кронштейнами, увеличивающими площадь обогрева. Такие нагревательные приборы можно использовать и в качестве самостоятельного тепловентилятора, и в роли канального устройства, встраиваемого в приточную ветвь вентиляционной системы.

Типичная для этого бренда модель — Ballu BHP-W-60

Радиаторы с вентилятором для отопления

  • Генерирует до 60 кВт тепловой мощности, «выстреливая» струю теплого воздуха на 25 метров.
  • Производительность вентилятора – 5000 м3/час.
  • Мощность двигателя – 420 ватт.
  • Температура исходящего (разогретого) потока – 23-55 градусов Цельсия.
  • Объем теплообменника – 2,3 литра.
  • Монтажная высота – до 8 метров.
  • Стоимость – 35-40 тысяч рублей.

Где используют тепловентиляторы?

Исходя из принципа работы таких отопительных приборов, можно определить наиболее эффективные сферы их применения.

  1. Обогрев больших помещений. Это могут быть торговые, и выставочные центры, спортивные комплексы, магазины и складские помещения, демонстрационные залы, автосалоны и другое.
  2. Сезонное и периодическое отопление производственных помещений. Некоторые цеха не оборудованы системой отопления из-за особенностей графика работ, но в который иногда, все же, возникает необходимость прогрева воздуха. Например, в автосалоне для просушки запчастей после мойки или сушки деталей после покраски. Направленный поток теплого воздуха необходим для скорейшего высыхания вымытых ковров или автокресел. Иногда требуется дополнительное отопление складских помещений со специальными климатическими условиями, например, в случаях резкого понижения зимних температур или при чрезмерном повышении влажности.
  3. Обогрев помещений, не подключенных к общей системе отопления. Чаще всего это — цокольные и подвальные этажи, гаражи, теплицы и другое.

Такой вариант отопления как установка водного тепловентилятора, намного эффективнее, экономичнее и безопаснее в эксплуатации по сравнению с другими современными обогревателями.

А единственным условием – подача горячей воды и возможность подключения электропитания к вентилятору.

Также советуем почитать:

Радиаторы с вентилятором для отопления Выбор конденсационного котла отопления и принцип его работы Как устроить воздушное отопление загородного дома — выбор оборудования Лучшие бытовые очистители и увлажнители воздуха — рейтинг моделей Преимущества использования теплового насоса и принцип его действия

 

Источник: klimat-vdome.ru

Применение[править | править код]

При адиабатическом (без теплообмена с окружающей средой) сжатии воздуха в системе наддува его температура повышается.

вход нагнетателя)/(Твых нагнетателя) = (Рвходвых)(n–1)/n.

В реальной ситуации при Т на входе нагнетателя 20 °C:

  • Рвых.входа = 1,5, следовательно, разность температур составляет 45 °C и после сжатия Твых = 65 °C;
  • Рвыхвхода = 2, следовательно, разность температур составляет около 84 °C и после сжатия Твых = 104 °C.

Согласно расчётам, при начальной температуре 50 °C повышение температуры воздуха на 10 °C при постоянном давлении приводит к уменьшению его плотности на 3 %. Поэтому, если не охлаждать воздух после нагнетателя, эффект наддува может быть значительно ослаблен. Пример: при отношении Рвыхвхода = 1,5 плотность воздуха после сжатия (значит, и мощность) падает на 14 %; при отношении Рвыхвхода = 2 плотность воздуха падает на 25 %.

Поэтому в двигателе внутреннего сгорания воздух, который подаётся в цилиндры, разумно дополнительно охлаждать, повышая его плотность, что в свою очередь повышает эффективность наддува, улучшает процесс сгорания топлива в цилиндре, а также снижает детонационный порог.

Одним из видов тюнинга системы наддува ДВС является установка интеркулера с увеличенной площадью теплообмена.

Способы расположения[править | править код]

Радиатор интеркулера обычно крепится перпендикулярно продольной оси автомобиля (фронтальный интеркулер) перед радиатором либо под крылом, пример — Mitsubishi Lancer Evolution, VW Touareg. Другой способ крепления — горизонтально над двигателем (например, Subaru Impreza WRX). В таком случае в капоте автомобиля обычно имеется воздухозаборник для подвода потока воздуха к интеркулеру.

Интеркулер типа «вода-воздух»[править | править код]


На тепловозах для обеспечения компактности воздушного тракта применяется интеркулер системы вода-воздух (причём там он называется охладитель наддувочного воздуха — ОНВ), в контуре которого циркулирует вода, охлаждаемая в отдельных радиаторах (так называемый второй контур, его вода зачастую охлаждает и масло в водо-масляном теплообменнике). На судах применяется водо-воздушный интеркулер, в котором циркулирует забортная или внутренняя пресная вода в зависимости от схемы завода-изготовителя.

Интеркулер системы вода-воздух применяется и в автоспорте, пример тому — Toyota Celica GT-Four (Alltrac). Также в автоспорте применяется орошение интеркулера водой при помощи специальных форсунок, и даже ёмкости со льдом для лучшего теплообмена при работе двигателя на экстремальном давлении наддува (например, в дрэг-рейсинге). Существуют схемы последовательного подключения интеркулеров систем вода-воздух и воздух-воздух. Система интеркулера вода-воздух имеет ряд преимуществ, такие как минимальная длина наддувочной магистрали, большой коэффициент теплообмена, энергоёмкость (жидкость в магистрали, которая ещё не успела забрать температуру у нагнетаемого воздуха, имеет температуру ниже), возможность поддержания стабильной температуры нагнетаемого воздуха (за счет компонентов которыми можно управлять электронно). Недостатками данной системы являются её стоимость и сложность в сравнении с интеркулером системы воздух-воздух. Такие известные тюнинг-ателье как Lotus использовали данную систему ввиду ряда её преимуществ.


Система имеет несколько способов реализации схемы подключения теплообменников, одна из которых является относительно герметичной и имеет собственный контур, вторая сообщается с системой охлаждения ДВС (что, скорее, является системой поддержания стабильной температуры наддувочного воздуха, чем системой его охлаждения, ориентированной на минимизацию температуры). На сегодняшний день такой системой охлаждения наддувочного воздуха с завода снабжены некоторые модели концерна VAG (Volkswagen Aktiengesellschaft).

Интеркулер типа «воздух-воздух»[править | править код]

Благодаря своей простоте и надёжности интеркулер типа «воздух-воздух» являются наиболее распространённым. Этот вид интеркулера состоит из патрубков интеркулера и пластинчатого радиатора интеркулера. [1]

По-русски это устройство называется «воздухо-воздушный радиатор» (ВВР). ВВР также широко применяются в системах кондиционирования воздуха летательных аппаратов для охлаждения подаваемого в гермокабину воздуха, отобранного от компрессоров авиадвигателей, имеющего температуру более 200 °С.[1]

Источник: ru.wikipedia.org

Как только водитель поворачивает ключ зажигания, сразу запускается процесс подогрева двигателя до оптимальной рабочей температуры. Чтобы мотор бесперебойно работал и не перегревался, в машинах предусмотрена система охлаждения. В ней важным элементом является радиатор. Из статьи Вы узнаете, какие функции выполняет система охлаждения, какие есть виды системы охлаждения, а также устройство и принцип работы радиатора.

Система охлаждения

Во время работы мотора, все детали нагреваются и помимо основной функции, система охлаждает:

  • масло в системе смазки;
  • воздух в системе турбонаддува;
  • отработанные газы в системе рециркуляции отработанных газов;
  • жидкость в АКП.

А также система охлаждения нагревает воздух в системе вентиляции, кондиционирования и отопления.

Систему охлаждения можно разделить на несколько видов:

  • воздушная – тепло от нагретых деталей отводит поток воздуха;
  • жидкостная — тепло от нагретых деталей отводит поток жидкости;
  • комбинированная — тепло от нагретых деталей отводит поток воздуха и жидкости.

В основном машины оборудуют жидкостной системой из-за равномерного охлаждения и низкого уровня шума.

Воздушный радиатор

В состав системы входят:

  • радиатор;
  • расширительный бачок;
  • теплообменник отопителя;
  • термостат;
  • масляный радиатор;
  • патрубки;
  • вентилятор;
  • центробежный насос;
  • рубашка «охлаждения» мотора;
  • элементы управления.

Конструкция системы охлаждения остается неизменной, даже если вместо бензинового мотора будет стоять дизельный.

Устройство радиатора

Радиатор системы охлаждения поддерживает рабочую температуру двигателя и защищает его от перегрева. Без радиатора силовой агрегат функционировать не сможет.

Внешне радиатор состоит из верхнего и нижнего баков, сердцевины и деталей крепления. Сплав латунь – отличный теплопроводник, поэтому элементы радиатора изготавливают из этого материала.

Воздушный радиатор

Сердцевина состоит из плоских вертикальных трубок, которые припаяны к тонким поперечным пластинам. Охлаждающая жидкость поступает в сердцевину, а затем растекается на множество потоков. Из-за большой площади соприкосновения жидкости со стенками трубок, процесс охлаждения становится интенсивнее.

С помощью патрубков баки радиатора соединяются с рубашкой охлаждения. Нижний бак имеет краник для слива жидкости, а чтобы спускать воду из водяной рубашки, снизу также есть краник.

Охлаждающую жидкость заливают в систему через горловину бака. Жидкостная система отличается присутствием регулирования теплового режима: шторкой и термостатом. Шторка – это такое полотно, где один конец крепится на сматывающем механизме монтированный в барабан, а другой неподвижно соединен снизу радиатора.

Принцип работы

Система охлаждения предназначена для контроля температуры двигателя, масла, жидкости, снаружи салона и т.д. Каков же принцип работы радиатора?

Жидкостный насос заставляет охлаждающую жидкость циркулировать по кругу и омывать нагревшиеся стенки головки блока и цилиндров. От нагревшихся запчастей отходит тепло и мотор не перегревается. Затем огненная жидкость протекает в радиатор и он помогает отвести тепло в окружающую среду. Процесс заканчивается, но охлажденная жидкость проходит все сначала.

Воздушный радиатор

Получается, что радиатор выступает в роли теплообменника и охлаждает жидкость. Для того, чтобы улучшить работу радиатора перед мотором крепят автомобильный вентилятор. С помощью датчика он запускается автоматически как только рабочая температура заходит за допустимые границы. С ним теплообмен увеличивается в несколько раз.

Без радиатора система охлаждения не сможет существовать, а соответственно и машина далеко не уедет. Если в системе произойдет сбой, то лучше Вы это заметите первым. Поэтому время от времени поглядывайте на приборку и следите за температурой. А запчасти для системы охлаждения Вы можете купить на нашем сайте в разделе «Категория запчастей».

Источник: www.pantus.ru

Скучная теория

Выделяемое количество теплоты зависит от содержимого Вашего системного блока, от его энергопотребления. Это вовсе не значит, что охлаждать нужно абсолютно все задействованные составляющие системника. Вешать вентиляторы на розетки вовсе не нужно, но вот современным процессорам и видеокартам без охлаждения ну никак не обойтись!

От тепловыделения, увы, никуда не деться, но ведь эта проблема имеет немало решений. Другой вопрос – чем охлаждать. На данный момент существует достаточно много систем охлаждения, все они используют общий принцип действия — перенос тепла от более горячего тела (охлаждаемого объекта) к менее горячему (системе охлаждения). Мы рассмотрим только следующие системы:

— Радиатор;
— Радиатор+вентилятор = кулер;
— Система жидкостного охлаждения;
— Система охлаждения на элементах Пельтье;
— Система фазового перехода (фреонка);
— Система экстремального охлаждения на жидком азоте;

Можно использовать и наиболее эффективные установки, в которых совмещаются различные виды перечисленных систем, но это уже выходит за рамки данной статьи.

Мы же по-порядку начнем рассмотрение основных систем охлаждения и начнем с самого первого — радиатора.

Радиатор (новолат. radiator, «излучатель») — теплообменник, служит для рассеивания тепла от охлаждаемого объекта. Механизмом передачи тепла здесь является теплопроводность, способность вещества проводить тепло внутри своего объёма. Все, что нужно — создать физический контакт радиатора с охлаждаемым объектом, именно поэтому он всегда находится в тесном контакте с тем, что охлаждает. После того, как радиатор принимает на себя часть тепла от охлаждаемого объекта, его задача – рассеять его в окружающий воздух.

Но мало просто обеспечить физический контакт! Ведь рано или поздно от постоянно нагревающегося охлаждаемого объекта нагреется и сама система охлаждения. А процесса теплообмена в системе тел с одинаковой температурой, как мы знаем, быть не может. Чтобы найти выход из данной ситуации и не столкнуться с проблемой перегрева, необходимо организовать подвод какого-то холодного вещества, чтобы охлаждать саму систему охлаждения. Такое вещество общепринято называть хладагентом (холодильный агент, частный случай теплоносителя)

image

Радиатор является воздушной системой охлаждения, т.е. хладагентом в его случае является холодный воздух из окружения. Тепло от охлаждаемого объекта идет к основанию радиатора, потом равномерно распределяется по всем его рёбрам, а уже после этого оно уходит в окружающий воздух. Такой процесс называется теплопроводностью. Воздух вокруг радиатора постепенно нагревается, из-за чего процесс теплообмена становится все менее эффективным. Эффективность теплообмена в можно увеличить, если постоянно подавать холодный воздух к рёбрам радиатора. Говоря проще, для эффективного охлаждения нужна свободная циркуляция холодного воздуха.

image

Такие физические величины, как теплопроводность (скорость распространения тепла по телу) и теплоемкость (количество теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 градус) у радиатора должны быть на высоком уровне. Из того же школьного курса нам известно, что наибольшей теплопроводностью обладают металлы. На самом деле это не так – наибольшая теплопроводность у алмаза :), и лежит она в диапазоне от 1000 до 2600 Вт/(м·K). Из металлов же лучше всех тепло проводит серебро – его теплопроводность равна 430 Вт/(м·K). После серебра идет медь [390 Вт/(м·K)], потом золото [320 Вт/(м·K)]. Завершает цепочку алюминий [236 Вт/(м·K)].

image

Откинув драгоценности, становится понятно, что наиболее применимыми являются два материала – алюминий и медь. Первый — из-за низкой стоимости и высокой теплоёмкости (930 против 385 у меди), второй — из-за большой теплопроводности (к недостаткам меди можно отнести более высокую температуру плавления и сложность ее обработки). Серебро же, за его высокую теплопроводность, иногда используют для изготовления основания радиатора. Еще для изготовления радиаторов может применяться сплав алюминия с кремнием – силумин. Преимущество его использования – дешевле алюминия.

image

Если радиатор сделан из высоко теплопроводного материала, то температура в любой его точке будет одинакова. Выделение тепла будет одинаково эффективно со всей площади поверхности. Т.к. объект отдаёт тепло со своей поверхности, то это значит, что для достижения наилучшего отвода тепла, площадь поверхности охлаждаемого объекта должна быть максимальной. Существует два способа увеличения площади радиатора — увеличение площади рёбер с сохранением размеров радиатора и увеличение геометрических размеров радиатора. Второй вариант, понятно, предпочтительней, но это вносит ряд неудобств – например, увеличивает вес и размеры радиатора, что может затруднить монтаж устройства. Ну и цена, соответственно, растет пропорционально количеству израсходованного на изготовления материала.

Типов конструкций ребер радиаторов существует огромное множество. Они могут быть толстыми, если были созданы процессом выдавливания. Или наоборот, тонкими – если ребра отливали. Они могут быть прямыми по всей длине радиатора, а могут быть расчерчены поперек. Могут быть плоскими, согнутыми из пластин, вдавленными в основание. Но лучше всего в работе на сегодняшний день себя показывают радиаторы игольчатого типа – в таких радиаторах вместо ребер квадратные или цилиндрические иглы.

image

Изготовление радиаторов

На данный момент мне известно 6 методов производства радиаторов:

1. Прессованные (экструзионные) радиаторы — самые дешевые и самые распространенные на рынке. Основным материалом, который используется в их производстве, является алюминий. Радиаторы такого типа изготавливаются путем прессования (экструзии), который позволяет получить достаточно сложные профили поверхностей ребер и достичь хороших теплоотводящих свойств.

2. Складчатые (ленточные) радиаторы — получаются тогда, когда тонка металлическая лента, свернутая в гармошку, пайкой (или с помощью адгезионных проводящих паст) прикрепляется на базовую пластину радиатора. Складки ленты-гармошки в данном случае играют роль ребер. Такая технология изготовления позволяет получать компактные изделия по сравнению с прессованными радиаторами, но с примерно такой же тепловой эффективностью.

3. Кованые (холоднодеформированные) радиаторы — радиаторы, получаемые в результате использования технологии холодного прессования. Эта технология позволяет создавать поверхность радиатора в виде стрежней произвольного сечения, а не только стандартных прямоугольных ребер. Как правило, они дороже радиаторов первых двух типов, но их эффективность зачастую гораздо ниже.

4. Составные радиаторы — близкие родственники «складчатых» радиаторов. Несмотря на это, их отличает существенный момент: в данном типе радиаторов поверхность ребер формируется не лентой-гармошкой, а тонкими раздельными пластинками, которые закрепляют пайкой или стыковой сваркой на подошве радиатора. Радиаторы этого типа немного более эффективны, чем экструзионные и складчатые.

5. Литые радиаторы – в производстве изделий такого типа используется технология литья в пресс-форму под давлением. Применение такой технологии позволяет получать профили реберной поверхности практически любой сложности, значительно улучшающий теплопередачу.

image

6. Точеные радиаторы — являются самыми дорогими и продвинутыми радиаторами. Изделия такого типа создаются прецизионной механической обработкой (на специальных высокоточных станках с ЧПУ) монолитных заготовок и отличаются самой высокой тепловой эффективностью. Если бы не производственная стоимость, то радиаторы такого типа давно смогли бы вытеснить своих конкурентов на рынке.

Тепловые трубки

В современных системах перестали быть редкостью применяемая в радиаторах и в кулерах – тепловые трубки или просто теплотрубки.

image

Она представляет собой герметическое теплопередающее устройство, которое работает по замкнутому испарительно-конденсационному циклу в тепловом контакте с внешними — источником и стоком тепла. Тепловая энергия берется на охлаждаемом объекте и затрачивается на испарение теплоносителя, который находится внутри корпуса тепловой трубки. Далее тепловая энергия переносится паром в виде скрытой теплоты испарения далее, на определенном расстоянии от места испарения, где при конденсации пара выделяется в сток. Образовавшийся конденсат снова возвращается в место испарения — либо под действием капиллярных сил (которые обеспечиваются наличием специализированной капиллярной структуры внутри тепловой трубки), либо за счет действия массовых сил (такая конструкция обычно именуется термосифоном).

Получается, что вместо привычного электронного механизма переноса тепла (путем теплопроводности, что имеет место в сплошном металлическом теплопроводе), в теплотрубке используется молекулярный механизм переноса (точнее, процесс переноса кинетической и колебательной энергии беспорядочного движения частиц пара).

image

image

image

Есть контакт! Какова площадь?

Нужно стремиться к тому, чтобы площадь контакта между радиатором и охлаждаемым объектом была как можно больше – ведь именно через эту площадь тепло от объекта будет поступать на радиатор. Но нужно учитывать то, что при соприкосновении двух даже самых гладких поверхностей, между ними все равно остаются мельчайшие полости и зазоры, заполненные воздухом [напомню, что теплопроводность воздуха 0.026 Вт/(м·K)] – это может сыграть свою злую шутку.

Чтобы избавиться от вредного воздуха и позволить радиатору работать с максимальной отдачей, применяют различные тепловые интерфейсы, чаще всего это термопроводная паста (термопаста). Она имеют большую теплопроводность [благодаря использованию в своем составе таких веществ, как алюминий и серебро (до 90% содержания)] и за счет текучести заполняет собой все неровности в соприкасающихся поверхностях.

Термопаста поставляются в комплекте с большинством брендовых кулеров и радиаторов. Бывает в виде шприца или небольшого тюбика-пакетика. Рекомендуется избегать попадания термопасты на электрические элементы компьютера.

image

Одним из параметров термопаст является продолжительность периода, когда она выходит на максимальную эффективность. В среднем это время составляет около недели. Компания Coolink недавно произвела первую термопасту с добавлением наночастиц – ее преимуществом является то, что никакого периода ожидания нет.

Помимо термопасты есть и другой вид теплового интерфейса – проводящие прокладки. Суть их работы та же, но используются они по другому – кладутся на поверхность контакта и при тепловом воздействии меняют свое агрегатное состояние, заполняя неровности и вытесняя воздух.

Итог по радиаторам


Несмотря на всевозможные вариации, самое главное преимущество радиатора то, что он не является источником какого-либо шума. К минусам можно отнести относительно низкую эффективность, отсутствие потенциала для разгона системы и зачастую крупные габариты.

Если доверять охлаждение современных видеокарт и процессоров пассивным радиаторам достаточно опасно, то охлаждение модулей памяти, жестких дисков, чипсета, цепей питания – можно и положиться.

Кулер (англ. cooler — охладитель) совокупность радиатора и вентилятора, устанавливаемого на электронные компоненты компьютера с повышенным тепловыделением. Самая главная задача устройства — снижение температуры охлаждаемого объекта и поддержание ее на определенном уровне. Достигается это за счет непрерывного потока воздуха, обдувающего радиатор. То есть менее эффективный процесс излучения превращается в более эффективный — конвекцию. Кулеры — это самый простой, самый быстрый, доступный и, в большинстве случаев, достаточный способ охлаждения компонентов компьютера — воздухом охлаждается все.

Вариантов исполнения существует гигантское множество. Если говорить про внешний вид можно долго, то касательно функциональных отличий много не расскажешь.

Кулеры бывают разных размеров – обычно от 40х40мм до 320х320мм.

image

Шарики за ролики

Самой важной частью любого кулера является его вентилятор. Именно он шумит у Вас в Вашем системном блоке. А если быть более точным, то шум этот появляется при столкновении воздушного потока с радиатором. Особенно этот шум ощутим на дешевых моделях кулеров, т.к. над их дизайном никто не работает.

Вентилятор состоит из крыльчатки (в ней по внутреннему диаметру расположен магнит) и электромотора, который этот магнит вместе с крыльчаткой вращает. Через центр вентилятора идет осевой штырь, который размещается в центре мотора. Для большей плавности хода крыльчатки могут использоваться три вида подшипников (срок службы которых производители указывают в тысячах часов на упаковке):

— Подшипник скольжения (sleeve bearing ) — наиболее дешевый и наименее надежный вариант, создающий при работе высокий уровень шума.
— 1 подшипник скольжения (sleeve bearing ) + 1 подшипник качения (ball bearing) — комбинированный подшипник- более долговечная конструкция, работающая в среднем в два раза дольше, чем на подшипнике скольжения.
— 2 или 4 подшипника качения (ball bearing) — наиболее надежные варианты с низким уровнем шума, но стоят такие вентиляторы существенно дороже первых двух.
— Игольчатые и NCB (наномиллиметровые керамические) подшипники — устанавливаются в вентиляторы ограниченным числом производителей. Они отличаются низким уровнем шума, невысокой стоимостью и очень большим сроком службы.

image

Кстати, о сроке службы (сроке безотказной работы. Если срок службы указан в 40-50 тысяч часов (почти 5 лет. Хотя бывает и больше — до 300 000 часов!), это вовсе не значит, что вспомнить о кулере в следующий раз придется только через это время. Нет! Это число нужно делить на два-три, и все равно время от времени производить профилактические действия – протирать от пыли, продувать, смазывать. Если не ухаживать за кулером, он может начать шуметь, а если совсем про него забыть – то и остановиться.

Производительность вентилятора (расходная характеристика) – пожалуй, основная его характеристика. Измеряется она в количестве кубических футов воздуха, перегоняемых им в минуту, сокращенно — CFM (Cubic Feet per Minute). Эта характеристика главным образом зависит от площади вентилятора, профиля лопастей и скорости их вращения. Чем больше это значение, тем выше эффективность охлаждения и, как правило, тем выше уровень шума, создаваемый вентилятором при работе.

Здоровое питание

Перегонять кубометры воздуха кулер может своими лопастями на скорости до 8000 оборотов в минуту (для сравнения, двигатель обычнго легкового автомобиля выдает 5-8 тысяч оборотов. Двигатель болида «Формула-1» — до 22 000 оборотов). Но понятное дело, что при такой скорости шум от работы кулера будет ощутимым. Поэтому предпочтительнее брать кулеры с термодатчиками – которые «анализируют» температуру и в зависимости от ситуации могут увеличивать или уменьшать количество оборотов. Чаще всего это положительно сказывается на шуме от работы.

Все компьютерные кулеры питаются от постоянного тока, напряжение которого чаще всего составляет 12В. Для подключения к питанию они используют Molex-коннекторы (для Smart-вентиляторов) или PC-Plug-коннекторы.

PC-Plug имеет четыре провода: два чёрных (земля), жёлтый (+12В) и красный (+5В).

Разъёмы Molex на материнских платах используются для того, чтобы система сама могла контролировать скорость вращения вентилятора, подавая на красный провод различное напряжение (обычно от 8 до 12 В). По жёлтому (сигнальному) проводу система узнает от кулера сведения о скорости вращения его лопастей. Использование Molex имеет один весомый недостаток: опасно цеплять вентиляторы с потребляемой мощностью более 6Вт.

Дело обстоит иначе с разъемом PC-Plug – он выдерживает десятки Ватт. Но и без дегтя не обошлось — при подключении к нему Вы не сможете узнать, работает Ваш вентилятор или нет.
Найти переходник с одного разъема на другой сейчас не составляет никакого труда – они часто идут в комплекте.

Так же для снижения шума кулер иногда переводят на 5В или 7В. Шлейфы округляют, провода заплетают в косички или обтягивают оплеткой и убирают в укромное местечко – чтобы не мешали продуманной воздушной циркуляции.

image

О шумах

Все кулеры классифицируются по уровню шума, издаваемому от их работы на следующие классы (чем ниже уровень шума, тем более комфортной будет работа за компьютером):

Условно бесшумный. Уровень шума такой системы охлаждения составляет менее 24 дБ. Этот показатель ниже типового фонового шума в тихой комнате (в вечернее или ночное время суток). Таким образом, кулер не вносит практически никакого существенного вклада в шумовую картину. Обычно это значение достигается при минимальном числе оборотов вентилятора для систем с регулятором скорости вращения.

Малошумный. Уровень шума от такой системы охлаждения лежит в пределах от 24 до 30 дБ включительно. Кулер вносит еле ощущаемый вклад в акустику ПК.

Эргономичный. Уровень шума такой системы охлаждения лежит в диапазоне от 37 до 42 дБ включительно. Шум от такого кулера по всей вероятности будет заметен в большинстве пользовательских конфигураций компьютера.

Не эргономичный. Уровень шума рассматриваемой системы охлаждения больше 42 дБ. В таких условиях кулер будет являться основным «генератором» шума компьютера практически любой конфигурации. Домашнее применение такого кулера неоправданно – он больше подойдет для производственных и офисных помещений с фоновым шумом более 45 дБ.

Итог по кулерам


К плюсам кулеров относятся их распространенность, универсальность, доступность. Небольшую стоимость тоже можно отнести к плюсу, но стоит учитывать, что на хороший кулер жадничать не стоит – ведь это, по сути, второе сердце компьютера – нельзя, чтобы остановилось.

К минусам я отнесу возможные шумы, которые рано или поздно появятся на любом кулере.

Подводя итог вышесказанному. На данный момент кулер – самая распространенная система охлаждения, охладить которой можно что угодно – от процессора до винчестера и памяти. Вопрос заключается в выборе и подборе нужного кулера – ведь их существует великое множества от десятков производителей.

Кому-то нужна золотая середина между тишиной и производительностью. Кому-то нужны гигагерцы и плевать на шум, кто-то наоборот, предпочитает тишину.

Источник: habr.com


Categories: Радиаторы

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.