Повторное заземление нулевого защитного проводника — это заземление, выполненное через определенные промежутки по всей длине нулевого провода. Повторное заземление позволяет снизить напряжение нулевого провода и зануленного оборудования относительно земли при замыкании фазы на корпус как при нормальном режиме, так и при обрыве нулевого провода.

При занулении фазные и нулевые защитные проводники должны быть выбраны таким образом, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, обеспечивающий отключение автомата или плавление плавкой вставки ближайшего предохранителя.

Согласно ПУЭ, проводники зануления должны выбираться так, чтобы при замыкании на корпус или на нулевой провод возникал ток короткого замыкания, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя или номинальный ток расцепителя автоматического теплового выключателя, имеющего обратнозависимую от тока характеристику.


и защите сети автоматическими выключателями с электромагнитными расцепителями кратность тока принимается равной 1,1; при отсутствии заводских данных — 1,4 для автоматов с номинальным током до 100 А, а для прочих автоматов 1,25. Во взрывоопасных установках кратность тока должна быть не менее 4 при защите предохранителями, не менее 6 при защите автоматами с обратнозависимой от тока характеристикой и аналогично предыдущему при автоматах, имеющих только электромагнитный расцепитель. Полная проводимость нулевого провода во всех случаях должна быть не менее 50 % проводимости фазного провода.

Должна обеспечиваться непрерывность нулевого провода от каждого корпуса до нейтрали источника питания. Поэтому все соединения нулевого провода выполняются сварными. Присоединение нулевого провода к корпусам электроприемников осуществляется сваркой или с помощью болтов.

В цепи нулевых защитных проводников не должно быть разъединяющих приспособлений и предохранителей.
замыкание на корпус
При замыкании фазы на корпус в сети, не имеющей повторного заземления нулевого защитного проводника (см. рис.), участок нулевого защитного проводника, находящийся за местом замыкания, и все присоединенные к нему корпуса окажутся под напряжением относительно земли Uк, равным:
повторное заземление
где Iк – ток КЗ, проходящий по петле фаза-нуль, А; zPEN– полное сопротивление участка нулевого защитного проводника, обтекаемого током Iк, Ом (т. е. участка АВ).


Напряжение Uк будет существовать в течение аварийного периода, т. е. с момента замыкания фазы на корпус до автоматического отключения поврежденной установки от сети.

Если для упрощения пренебречь сопротивлением обмоток источника тока и индуктивным сопротивлением петли фаза-нуль, а также считать, что фазный и нулевой защитный проводники обладают лишь активными сопротивлениями RL1 и RPE, то (4.3) примет вид:
повторное заземление
Если нулевой защитный проводник будет иметь повторное заземление с сопротивлением rП (на рис. 4.9 это заземление показано пунктиром), то Uк снизится до значения, определяемого формулой:
повторное заземление
где Iз – ток, стекающий в землю через сопротивление rп, А; Uав – падение напряжения в нулевом защитном проводнике на участке АВ; r0– сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника снижает напряжение на зануленных корпусах в период замыкания фазы на корпус.

При случайном обрыве нулевого защитного проводника и замыкании фазы на корпус за местом обрыва (при отсутствии повторного заземления) напряжение относительно земли участка нулевого защитного проводника за местом обрыва и всех присоединенных к нему корпусов, в том числе корпусов исправных установок, окажется близким по значению фазному напряжению сети (рис.


10, а). Это напряжение будет существовать длительно, поскольку поврежденная установка автоматически не отключится, и ее будет трудно обнаружить среди исправных установок, чтобы отключить вручную.
обрыв нулевого проводника
Если же нулевой защитный проводник будет иметь повторное заземление, то при обрыве его сохранится цепь тока Iз, А, через землю (рис 4.10, б), благодаря чему напряжение зануленных корпусов, находящихся за местом обрыва, снизится до значений, определяемых формулой
повторное заземление
При этом корпуса установок, присоединенных к нулевому защитному проводнику до места обрыва, приобретут напряжение относительно земли:
повторное заземление
где r0 – сопротивление заземления нейтрали источника тока, Ом.

Итак, повторное заземление нулевого защитного проводника значительно уменьшает опасность поражения током, возникающую в результате обрыва нулевого защитного проводника и замыкания фазы на корпус за местом обрыва, но не может устранить ее полностью, т. е. не может обеспечить тех условий безопасности, которые существовали до обрыва.


elektrikdom.com

• О сайте • Моя RSS-Лента • Карта сайта • 1. ЧЕЛОВЕК И СРЕДА ОБИТАНИЯ • 1. 1. ПЕРВАЯ МЕДИЦИНСКАЯ ПОМОЩЬ • 1.1.1. Рекомендации для экстремальных ситуаций • 1.1.2. Первая медицинская помощь при кровотечениях • 1.1.3. Особенности оказания первой помощи при некоторых кровотечениях • 1.1.4. Первая помощь при вывихах • 1.1.5. Первая помощь при переломах • 1.1.6. Оказание первой помощи при ожогах • 1.1.7. Электроожоги • 1.1.8. Первая помощь при отравлениях угарным газом (окись углерода) и синильной кислотой • 1.1.9. Первая помощь при боли в области сердца • 1.1.10. Первая помощь при утоплении • 1.1.11 Асфиксия • 1.1.12. Сердечно- легочная реанимация • 1.1.13. Правила оказания первой помощи при родах в отсутствие медицинских работников • 1.1.14. Терминальные состояния • 1.1.15. Первая помощь при судорожных состояниях (эпилепсии) • 1.1.16. Первая помощь при болях в области живота • 1.1.17. Острая боль в грудной клетке • 1.1.18. Первая помощь при ранениях • 1.1.19. Десмургия • 1.1.20.
репно-мозговая травма • 1.1.21. Первая помощь при электротравмах • 1.2. АВТОНОМНОЕ СУЩЕСТВОВАНИЕ • 1.2.1. Выживание в природной среде • 1.2.2. Выживание в автономных условиях • 1.2.3. Снаряжение • 1.2.4. Выживание в условиях холодного климата • 1.2.5. Ситуации • 1.3. ЗАЩИТА ОТ ЖИВОТНЫХ • 1.3.1. Комары и москиты • 1.3.2. Ядовитые насекомые • 1.3.3. Ядовитые членистоногие • 1.3.4. Собаки • 1.3.5. Ядовитые змеи • 1.4. БЕЗОПАСНОСТЬ В МОРЕ • 2. ТЕХНОГЕННЫЕ ОПАСНОСТИ • 2. 1. ЧЕРЕЗВЫЧАЙНЫЕ СИТУАЦИИ НА ТРАНСПОРТЕ • 2.2. БЕЗОПАСТНОСТЬ ПРИ ПОЖАРЕ • 2.2.1. Горение • 2.2.2. Тушение пожара • 2.2.3. Действия при возгорании • 2.3. ЭЛЕКТРИЧЕСКИЙ ТОК • 2.3.1. Поражение электрическим током • 2.3.2. Опасные напряжения, токи, частоты • 2.3.3. Подготовка к отсутствию электрического напряжения в сети • 2.4 . МЕРЫ БЕЗОПАСТНОСТИ ПРИ ВОДНЫХ ПЕРЕПРАВАХ • 2.5. БЕЗОПАСТНОСТЬ ПРИ ИСПОЛЬЗОВАНИИ ОГНЕСТРЕЛЬНОГО ОРУЖИЯ • 2.6. ПЕРЕЧЕНЬ МЕДИКАМЕНТОВ ПЕРВОЙ ПОМОЩИ • 2.7. ВИБРАЦИЯ И АКУСТИЧЕСКИЕ КОЛЕБАНИЯ • 2.7.1 Вибрации • 2.7.2 Акустические колебания • 2.8. ЭЛЕКТРОМАГНИТНЫЕ ПОЛЯ И ИЗЛУЧЕНИЯ • 3. ЗАЩИТА НАСЕЛЕНИЯ И ТЕРРИТОРИЙ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ • 3.1. Стихийные бедствия • 3.2. Действия в экстремальных ситуациях • 3.3. Радиация и безопасность • 3.3.1. Радиоактивность и свойства излучений • 3.3.2.
мерение радиоактивности и доз излучения • 3.3.3. Источники радиации на Земле • 3.3.4. Ядерное оружие • 3.4. Характеристика особо опасных инфекций • 4. АНТРОПОГЕННЫЕ ОПАСНОСТИ И ЗАЩИТА ОТ НИХ • 4.1. Рекомендации к поведению в криминальной обстановке • 4.2. Наркомания • 4.2.1. Чем опасна наркомания? • 4.2.2. Классификация наркотических веществ • 4.2.3 Действие наркотиков • 4.3 Алкоголизм • 5. Организация труда на рабочем месте при использовании персонального компьютера • 5.1. Организация рабочего места и ее особенности при использовании ПЭВМ • 5.2 Профессиональные заболевания при работе с ПЭВМ и их профилактика • 5.3. Защитные фильтры для дисплеев • 6. Научная организация труда на предприятиях информационного обслуживания • 6.1 Понятие научной организации труда • 6.2 Планирование и внедрение научной организации труда на предприятиях ИО • 6.3. Создание благоприятных условий труда • 7. ОХРАНА ТРУДА И ТЕХНИКА БЕЗОПАСНОСТИ НА ПРЕДПРИЯТИЯХ ИНФОРМАЦИОННОГО ОБСЛУЖИВАНИЯ • 7.1. Производственный травматизм и профессиональные заболевания • 7.2. Электробезопасность на предприятиях ИО • 7.3. Пожарная безопасность на предприятиях ИО • 8. ОРГАНИЗАЦИЯ РАБОТЫ ПО ОХРАНЕ ТРУДА • 8.1. Основы законодательства Российской Федерации об охране труда • 8.2. Основные принципы системы управления охраной труда • 8.3. Нормативные акты по охране труда • 8.4 Анализ организации труда на рабочем месте • 9 Обеспечение безопасности информации • 9.1 Угрозы информационной безопасности • 9.2 Классификация программно-аппаратных комплексов защиты информации • 9.2.1 Идентификация и аутентификация • 9.2.2 Управление доступом • 9.2.2.1 Ролевое управление доступом • 9.2.3 Протоколирование и аудит • 9.2.3.1 Активный аудит • 9.2.4.
фрование • 9.2.5. Контроль целостности • 9.2.5.1. Цифровые сертификаты • 9.2.6. Экранирование • 9.2.6.1. Архитектурные аспекты • 9.2.6.2 Классификация межсетевых экранов • 9.2.7. Анализ защищенности • 9.2.8 Туннелирование • 9.2.9. Управление • 9.2.10 Возможности типичных систем • 9.3 Нормативно-правовые требования к созданию средств ЗИ • 9.3.1 Общие критерии • 9.3.2 Обзор руководящих документов Федеральной службы по техническому и экспортному контролю (ФСТЭК России) • 9.4 Развитие программно-аппаратных комплексов защиты информации в РФ • 10.1. Основные требования по обеспечению безопасности труда и регламентирующие их документы • 10.2 Паспортизация инженерно-технических средств безопасности • 10.3. Аттестация рабочих мест по организации труда на рабочем месте • 11.1. Оградительные устройства • 11.2 Предохранительные устройства • 11.3 Защита от источников тепловых излучени • 11.4 Защита от электромагнитных полей • 11.5.
щита от ионизирующих излучений • 11.6 Защита от шума, вибрации и ультразвука » 11.7 Защита от электрического тока • Безопасность эксплуатации электроустановок • Защитное заземление • (СН 102-76) и ГОСТ 12.1.030-81 • Заземлители. Строение и виды • Естественные заземлители • Искусственные заземлители • В качестве заземляющих проводников • Заземление оборудования, подвергающегося частому демонтажу • Заземляющие проводники в помещениях должны быть • В наружных условиях • Сопротивление заземляющего устройства • Паспорт на заземляющее устройство • Зануление » Повторное заземление нулевого провода • В цепи нулевых рабочих проводников • Соответствие устройств защитного заземления или зануления • Защитное отключение (ЗО • устройства защитного отключения (УЗО) • В основу классификации схем (УЗО) положена входная величина • Схемы с использованием напряжения корпуса • Схемы по току замыкания на землю • Устройства защитного отключения могут применяться • В системе мер электробезопасности боль¬шую роль играет • Блокировки по принципу действия бывают • Электрические блокировки • Расположение токоведущих частей • Электрозащитные средства • Изолирующие ЭЗС • Ограждающие ЭЗС • Изолирующие штанги • Изолирующие клещи • Электроизмерительные клещи • Указатели напряжения • Изолирующие подставки • Резиновые диэлектрические защитные средства • Слесарно-монтажный инструмент с изолирующими рукоятками • Переносные заземления • Вспомогательные защитные средства • 12.1 Порядок выдачи средств индивидуальной защиты

www.bezzhd.ru


Прораб за поворотом с крапивой стоит. Повторное заземление нулевого провода

ЗачОт! Повторное заземление нулевого провода

1.7.101.

А разве кто спорит? Но ведь это только половина правды… Давайте я дополню:

1.7.97. При использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ с изолированной нейтралью должны быть выполнены условия 1.7.104.
При использовании заземляющего устройства одновременно для электроустановок напряжением до 1 кВ с глухозаземленной нейтралью сопротивление заземляющего устройства должно быть не более указанного в 1.7.101 либо к заземляющему устройству должны быть присоединены оболочки и броня не менее двух кабелей на напряжение до или выше 1 кВ или обоих напряжений, при общей протяженности этих кабелей не менее 1 км.


1.7.101. уже читали. А что такое 104..?

1.7.104. Сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей,в системе IT должно соответствовать условию:
R £ Uпр/I,
где R -сопротивление заземляющего устройства, Ом;
Uпр — напряжение прикосновения, значение которого принимается равным 50 В (см. также 1.7.53);
I — полный ток замыкания на землю, А.
Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность генераторов или трансформаторов не превышает 100 кВ×А, в том числе суммарная мощность генераторов или трансформаторов, работающих параллельно.

Менее 4 Ом не нужно в любом случае. А до 10 Ом допустимо иногда… Вот и волшебные 4 Ома нашлись, исключительно для заземляющего устройства.

www.mastergrad.com

Повторное заземление нулевого защитного проводника практически не влияет на отключающую способность схемы зануления.

Однако при отсутствии повторного заземления нулевого защитного проводника возникает опасность для людей, прикасающихся к зануленному оборудованию в период пока существует замыкание фазы на корпус. Кроме того, в случае обрыва нулевого защитного проводника и замыкании фазы на корпус за местом обрыва, эта опасность резко повышается, поскольку напряжение относительно земли оборванного участка нулевого провода и присоединенных к нему корпусов может достигать фазного напряжения сети. Рассмотрим эти два случая.

При замыкании фазы на корпус в сети, не имеющей повторного заземления нулевого защитного проводника, участок нулевого защитного проводника, находящийся за местом замыкания, и все присоединенные к нему корпуса окажутся под напряжением относительно земли равным; рис.5.

Uн = Iк Zнэ, (4)

где Iк — ток КЗ, проходящий по петле «фаза-нуль», А;

Zнэ — полное сопротивление участка нулевого защитного проводника, обтекаемого током Iк, Ом.

На другом участке нулевого защитного проводника (ближе к источнику энергии) напряжение будет изменяться от Uн до 0 по прямой линии. Эти напряжения будут существовать в течение аварийного периода, т.е. с момента замыкания фазы на корпус до автоматического отключения поврежденной установки от сети.

Если для упрощения пренебречь сопротивлением обмоток источника питания и индуктивным сопротивлением цепи фаза-нуль, а также считать, что фазный и нулевой защитный проводники обладают лишь активными сопротивлениями Rф, Rнэ Ом, то формула примет вид:

Uн = Iк Rнэ = Uф Rнэ / (Rф + Rнэ) (5)

Обычно на практике принимают Rнэ = 2 Rф, то UH = (2/3)Uф = 0,67*20 = 147В. Очевидно, существует реальная угроза поражения людей.

Чтобы уменьшить напряжение Uн надо снизить Rнэ, т.е. увеличить сечение нулевого защитного проводника в 8 раз превышающего сечение фазного проводника, что экономически нецелесообразно.

Если нулевой защитный проводник будет иметь повторное заземление с сопротивлением rn Ом, то Uн снизится до значения:

UH = Iэ rn = Uэм/(rn + r0), (6)

где. Iэ — ток, стекающий в землю через сопротивление rn; UЭМ — падение напряжения в нулевом защитном проводнике от места замыкания до нейтрали источника питания; r0 — сопротивление заземления нейтрали источника тока, Ом. При тех же допущениях падение напряжения в фазном проводнике составит Uф/3, а в нулевом защитном 2Uф/3. Тогда выражение (6) примет вид

Uн = 2Uф/ 3* rn /(rn + r0) = 2*220/3*r0/2r0 = 74В, (7)

где принято, что rn= r0.

Следовательно, повторное заземление нулевого защитного проводника снижает напряжение на зануленных корпусах в период замыкания фазы на корпус. Однако, этого снижения Uн = 74В недостаточно для полной безопасности человека.

При случайном обрыве нулевого защитного проводника и замыкании фазы на корпус за местом обрыва (при отсутствии повторного заземления) напряжение относительно земли участка нулевого защитного проводника за местом обрыва и всех, присоединенных к нему корпусов, в том числе корпуса исправных установок, окажется близким по значению фазному напряжению сети. Это напряжение будет существовать длительно, поскольку поврежденная установка автоматически не отключится и ее будет трудно обнаружить среди исправных установок, чтобы отключить вручную, рис.6.

Если же нулевой защитный проводник будет иметь повторное заземление, то при обрыве его сохранится цепь тока Iк через землю, благодаря чему напряжение зануленных корпусов, находящихся за местом обрыва, снизится до:

Uн= Iэrn= Uф rn /(rn + r0) = Uфr0/(rn + r0) = 0.5Uф = 0,5*220=110В (8)

Повторное заземление нулевого защитного проводника значительно уменьшает опасность поражения электрическим током возникающую в результате обрыва нулевого защитного проводника и замыкания фазы на корпус за местом обрыва, но не может устранить ее полностью, т.е. не обеспечить тех условий безопасности, которые существовали до обрыва. В связи с этим требуется тщательная прокладка нулевого защитного проводника, чтобы исключить возможность его обрыва; в нулевом защитном проводнике запрещается ставить выключатели, предохранители и другие приборы, способные нарушить его целостность.

studfiles.net

Основные виды

Защитное заземление позволяет защитить человека от удара током, если на корпусе прибора или установки случайно возникает напряжение. Опасный потенциал снимается либо обеспечивается срабатывание электрических защитных устройств с минимальным запаздыванием.

Повторное заземление нулевого провода

Естественными заземлителями считаются любые металлические предметы, которые находятся в земле. Устанавливающими норму документами не рекомендуется использование естественных проводников, потому что невозможно учесть такую величину, как сопротивление растеканию тока в грунте от них.

Искусственными заземлителями считаются устройства с заранее рассчитанными параметрами, специально созданные для сооружения заземления.

Глухое погружение нейтрали

Повторное заземление нулевого проводаСистемы заземления разделяют на две большие группы: с глухо заземленной нейтралью и с изолированной. В схеме первого типа нейтральный проводник (обозначается N) всегда заземлен и может быть независимым от защитного PE-проводника, а может соединяться с ним, образуя PEN-проводник.

Если нейтральный провод объединен с защитным проводником, он образует систему TN-C, если проводиться отдельно − систему TN-S, в случае, когда объединен на подстанции с защитным проводником, а при входе в здание разделяется на два проводника – защитный PE и функциональный N, образуется система TN-C-S. Еще одним видом является система, при которой нейтральный проводник заземляется на подстанции и к потребителю трехфазный ток поступает по четырем проводам, одним из которых является ноль N. Это − система TT.

Применение системы TN-C

Система TN-C широко использовалась ранее при так называемой двухпроводной сети. В этом случае в розетках отсутствовал заземленный контакт. В сетях, сконструированных по этой системе, заземлялся нулевой провод, но при обрыве его, все приборы оставались под напряжением. Это вынуждало заземлять корпуса каждого отдельного электроприбора. В современных строящихся зданиях эта система не проектируется. Используется только в старых зданиях.

Повторное заземление нулевого провода

Применение системы TN-S

Система TN-S более совершенна, обладает высокой степенью электробезопасности, так как имеет отдельный заземленный проводник, но стоимость ее неоправданно высока. При трехфазном питании приходится прокладывать от источника пять проводов – три фазы, нейтраль и защитный проводник PE.

Повторное заземление нулевого провода

Для устранения недостатка системы TN-S была создана TN-C-S. Она предусматривает один проводник PEN, который представляет собой общий провод, заземленный по всей длине от источника питания до ввода в здание, а перед вводом разделяется на нейтраль N и защитный проводник PE. Эта система тоже имеет весомый недостаток. При повреждении проводника PEN на протяжении участка от подстанции до здания, все подключенные внутри здания приборы остаются под опасным напряжением. Для этой системы ПУЭ (Правила устройства электроустановок) требуют проведения мероприятий по устройству дополнительной защиты проводника PEN от механических повреждений.

Тип заземления ТТ

Система ТТ используется для подачи электричества за городом и в сельской местности по линиям электропередач, устанавливаемым на опорах. Подключение электроустановок по этой системе разрешается лишь в том случае, если невозможно обеспечить все условия электробезопасности в системе TN и избежать при этом неоправданных материальных затрат. При контакте с электроприборами защита от тока должна осуществляться путем отключения питания в цепи. Для этого правилами предписываются специальные изделия – устройства защитного отключения – УЗО.

Повторное заземление нулевого провода

Изолированный нейтральный проводник

Во втором варианте нейтральный провод совершенно не заземлен, или может быть связан с землей через установочные устройства, имеющие очень большое сопротивление. Такие системы применяют для ответственных объектов, например в медучреждениях для питания оборудования, используемого при поддержании жизнеобеспечения, на энергетических и нефтеперерабатывающих предприятиях. Нейтраль, изолированная от заземляющего провода, защищена от возникновения наведенных токов. Заземление идет по отдельной шине, к которой подключены все заземляющие контакты в розетках.

Назначение и устройство

При изготовлении заземления по принципам вышеописанных систем, при обрыве заземленных проводников на корпусах электроприборов всегда существует возможность возникновения опасного напряжения, поэтому в таких системах ПУЭ регламентируют обязательное наличие повторного заземления в сетях.

Повторное заземление нулевого провода

Главной задачей, которая стоит при монтаже повторного заземления, является понижение напряжения, возникающего при касании открытых токопроводящих элементов электроприборов. Вследствие этого при замыкании на землю или на токопроводящие элементы корпуса, уменьшается вероятность получить травму от действия электрического тока.

Если смонтировано повторное заземление, то происходит следующее. При замыкании на корпусе отдельного электроприбора ток частично проходит в земле. В результате разность потенциалов между корпусом и землей уменьшается, и пользователь становится защищенным от удара током.

При реализации системы TN-C выполняется повторное заземление нулевого провода. Оно производится путем связывания проводника с землей через определенные интервалы и применяется вместе с основным контуром заземления.

В системе TN-C-S оно представляет собой повторное заземление нулевого защитного проводника PEN перед вводом в здание. Получается, что при обрыве проводника на участке «источник-здание» эффект заземления осуществляется через заземленный PE провод.

На вводе в электроустановку напряжением до 1 кВ обязательно монтируют повторное заземление, чтобы увеличить степень безопасности.

Повторное заземление на вводе в здание, независимо от его устройства, устанавливают еще и для того, чтобы исключить занос в цепи электротехники дома наведенных токов через внешние коммуникации. К тому же оно уменьшает потенциал на корпусе электроприборов, если вдруг оборвался N-проводник.

Линии электропередач

При использовании системы ТТ принцип повторного заземления реализуется путем соединения нулевого провода, расположенного на опоре линии электропередач с землей. Осуществляется заземление всех опор. Одновременно заземляются все стальные кронштейны, на которых закреплены изоляторы фазных проводов.

Повторное заземление нулевого провода

Необходимо устраивать повторное заземление на концах линий электропередач или на ответвлениях длиною 200 и больше метров. Для создания контура в первую очередь применяют естественные заземлители.

Совместимость с устройствами отключения

Все сказанное выше о повторном заземлении, как об одной из мер для повышения уровня безопасности при эксплуатации электроустановок, будет справедливо в том случае, если цепи в электроустановках защищены автоматами и предохранителями. При этом характеристики устройств отключения должны выбираться в соответствии с параметрами сети, полезной нагрузки.

Важно правильно выбрать материал и сечение проводников, как нулевого, так и заземляющего. Если в них возникнет ток короткого замыкания, то он должен минимум в 3 раза превышать порог срабатывания автоматики или других защитных приспособлений.

Нулевой провод делают непрерывным по всей длине от каждого корпуса до нейтрали источника питания. Для соединения всех деталей этом участке применяют сварку. Присоединение к нейтрали допускается при помощи сварки или на болтах.

evosnab.ru

заземление нулевого проводаОчень часто спрашивают, надо ли устанавливать перемычки между ГЗШ (главной заземляющей шиной) и нулевой рабочей шиной? Второй распространенный вопрос: если нет заземления, можно ли использовать зануление (то есть, сделать перемычку в розетке с нулевого провода на заземляющий контакт)? Сегодня мы посмотрим и рассмотрим, что можно, а что нельзя.

Основным документом, конечно же, можно назвать главу 1.7 из «библии» электрика ПУЭ. Из всей главы нам потребуется несколько пунктов:
1.7.351.7.571.7.591.7.61

1.7.101

1.7.102

Ну а теперь переведем это на более понятный язык. В первую очередь остановимся на том, что система TN-S, когда используется пятипроводная система (то есть нулевой и заземляющий проводники разделены на всем протяжении линии) от подстанции до потребителя практически используется настолько редко, что за 10 лет практики я ее еще не встречал. Именно об этом и говорит пункт 1.7.57. А, значит, остается система TN-C, когда заземляющий и нулевой рабочий проводник объединены в один провод, то есть, по сути, являются одним проводом, выполняющем две функции. Может использоваться система TN-C-S – в таком случае, в каком-то месте этот общий провод разделяется на нулевой и защитный и в этом случае уже нельзя их объединять в любом другом участке цепи. Это говорит о том, что если вы приняли решение разделить PEN-проводник на PE и N-проводники, то дальше снова в PEN-проводник их объединять нельзя.

схема

Повторное заземления нулевого провода. Заземление нулевого провода на опоре
Идем дальше. Пункт 1.7.35 дает определение нулевого провода и там же черным по белому прописано, что нулевой провод в сетях с глухозаземленной нейтралью объединен с заземлением уже на подстанции. А пункт 1.7.102 предписывает заземление минимум через каждые 200 метров (а иногда и чаще, если требуется дополнительная защита от молний).
Заземление нулевого провода на вводе
Ну и наконец, мучающий всех вопрос, надо ли заземлять главную заземляющую шину и нулевой провод. На этот вопрос есть рекомендация в ПУЭ 1.7.61. Этим пунктом преследуется как миниму две цели:

  1. Уравнивание потенциалов. Земля, где делается заземляющий контур, и на которой стоит объект имеет определенный потенциал. Объект в той или иной мере проводит электрический ток, и следовательно имеет потенциал этой земли. Давайте предположим вариант, что ваш дом стоит на земле, которая немыслимым образом имеет потенциал 50 вольт. Следовательно, ваш дом находится под напряжением 50 вольт относительно нулевого рабочего проводника. Вы не объединяете заземляющий контур и нулевой рабочий проводник в вашем доме. Следовательно на корпус, относительно вашего дома подается потенциал с разностью в 50 вольт (а это может быть смертельно).
  2. Дополнительная защита при грозовых явлениях, таких как молния. В случае замыкания молнии на провод, ток, возникающий в проводах идет по пути наименьшего сопротивления и если у вас нет заземления, то ток пойдет через все оборудование, включенное в розетку в вашем доме, вместо того, чтобы по пути наименьшего сопротивления уйти в землю. По оборудованию он распределится пропорционально сопротивлению. К примеру, сопротивление заземлителя должно быть не больше 4 Ом. Сопротивление же самой мощной конфорки плиты равно примерно 24 Ом. Значит, ток пропорционально разделится 5/6 пойдет через заземлитель и только 1/6 через плиту, если она в этот момент будет включена. То есть ,чем больше сопротивление устройства, тем меньший через него будет протекать ток, если есть хорошее заземление.

Ну и есть еще одна защита, от дурака, можно сказать так, или от неблагоприятных погодных условиях. В моей практике встречалось такое, что нулевой провод вдруг стал фазным и в доме с однофазной сетью вместо 220 вольт внезапно оказалось 380 вольт.  Если бы в доме было заземление, то возникло бы замыкание на землю (в нашем случае это можно признать коротким замыканием) которое вызвало бы протекание сверхтока через автомат и произошло бы срабатывание расцепителя автомата. И многие устройства остались бы живы.

И последний вопрос, очень часто появляющийся на просторах интернета: можно ли в розетке в качестве заземления использовать перемычку от нулевого провода на заземляющий контакт. Ведь, казалось бы, мы уже рассмотрели все эти варианты и выяснили, что нулевой провод уже заземлен. Но так делать нельзя. Есть две опаснейшие ситуации. Обрыв нулевого провода (я уже писал выше о таком явлении). И ладно бы если обрыв, но по нему может прийти другая фаза, а значит на корпусе мы получим 220 вольт опасного напряжения. А может быть и так. Пришел электрик, произвел какие-то ремонтные работы и случайно поменял местами фазу и ноль. Что вы получите в квартире? Опять же 220 вольт на корпусах всех заземленных подобным родом устройств, а это, как правило: холодильники, микроволновки, плиты, стиральные и посудомоечные машины, электрообогреватели в металлическом корпусе, системные блоки компьютеров, утюги и прочая бытовая техника. На мой взгляд, совершенно бессмысленно так рисковать жизнью. Уж лучше тогда вовсе не заземлять, чем заземлять таким образом. Но лучше протянуть провод от щита в подъезде (который обычно заземлен) и третьим проводом, отдельным, не соприкасающимся с нулем заземлить необходимое оборудование.

Надеюсь, я ответил на большинство ваших вопросов. Ну а если нет, не стесняйтесь, спрашивайте в комментариях.

jelektro.ru

Виды опор

Деревянные

Подобная конструкция изготавливается из бревен без коры (круглый лес). Длина одного бревна от 5 до 13 метров с шагом 50 см. Толщина опоры от 12 до 26 сантиметров с шагом 20 мм. Чтобы деревянная подпора поддавалась гниению медленнее, ее покрывают специальным антисептиком. Существует два типа такой конструкции: С1 и С2.

Столб из дерева

Железобетонные

Подобное приспособление изготавливается из бетона и арматуры в виде прямоугольника или в форме трапеции. Железобетонное устройство обладает своей маркировкой и помечается как СВ. После этих букв пишутся номера, которые указывают длину конструкции. Например, подпора СВ 85. Цифра помечает, что ее протяженность составляет 8,5 метров. На фото ниже наглядно показано, как выглядит ЖБ опора:

Железобетонный столб

Используются такие ЖБ конструкции:

  • CВ 105;
  • CВ 110;
  • CВ 95;
  • CВ 85.

Для того чтобы осуществлять вторичное заземление PEN проводника, с двух сторон приспособления приваривают арматуру.

Для чего это нужно?

Что такое повторное заземление ВЛИ и почему оно так называется? Дело в том, что проводной кабель уже заземлен на комплексную трансформаторную подстанцию. Система TN–C–S (трансформаторная подстанция с глухозаземленной нейтралью) представляет собой 2 или 4 провода СИП, которые проводят по ВЛИ. Один из кабельных проводников считается основным – PEN проводник, остальные – фазные. В свою очередь PEN-проводник делится на N (нулевой рабочий) и РЕ (нулевой защитный). Это в случае, если он находится на подпоре и на устройстве стоит вводное устройство (ВУ) или в щитке в помещении.

Схема выглядит следующим образом:

Схема вторичной защиты линии электропередач

В ПУЭ указывается, что повторное заземление ВЛИ означает погружение в грунт PEN или РЕ проводника в воздушной электрической линии с изолированными проводами.

Важно! Повторный заземляющий контур осуществляется на подпоре без вводного приспособления или вводного щитка (ВЩ). Оно присоединяется к вводному автомату или к совместному рубильнику.

Защитный и рабочий нулевые провода подключаются вверху ЖБ (железобетонного столба) к арматурному выпуску. Если есть подкосной столб, то присоединять необходимо и к нему, а не только к основному.

На фото ниже изображено, как нужно соорудить повторное заземление ВЛИ основного проводника с использованием прокалывающего зажима на проходном столбе, без отвода. Осуществлять подобное необходимо на каждой третьей опоре ВЛ и на столбе, который ведет к жилому зданию.

Использование прокалывающего зажима

На опоре из дерева устанавливается заземляющий спуск (на схеме ниже обозначен цифрой 3). Как правило, он вырабатывается из металлической проволоки. Все это прикрепляется к штырьевому электроду, который вбивается в грунт. В случае если проволока больше 6 мм, то желательно чтобы он был сделан из оцинкованного металла, а если меньше 6 мм – из черного металла с нанесенным антикоррозийным средством.

Заземление опоры

  • 1 – место сварки;
  • 2 – заземлители;
  • 3 — спуск.

Подобным образом осуществляется повторное заземление ВЛИ для ЖБ столба только без арматурного выпуска.

Согласно правилам устройства электроустановок, если на деревянной конструкции было выполнено повторное заземление PEN-проводников, то необходимо заземлить полностью все штыри и крюки опоры из металла. Если же на столбе из дерева или железобетона не организовывают повторный заземляющий контур, то ничего делать не нужно (ПУЭ 2.4.41).

Электрооборудование из металла, которое находится на опорах, в обязательном порядке должно заземляться индивидуальными проводами. Это такое оборудование как щиты ВУ, молниезащита или защита от высокого напряжения. В случае ТП с глухозаземленной нейтралью сопротивление вторичного заземлителя должно быть 30 Ом или меньше.

Учтите! Для частного жилья повторная защита PEN-проводников ВЛИ не освобождает от установки специального заземляющего контура. О том, как сделать заземление в доме своими руками, мы рассказывали в соответствующей статье!

samelectrik.ru



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.