Преимущества и недостатки предохранителей

Преимуществами предохранителей является: высокая надёжность в работе, малая стоимость, высокая предельная отключающая способность при сравнительно малом номинальном токе.

Но они имеют и существенные недостатки:

– плавкие вставки с течением времени окисляются, и уменьшается их сечение и номинальный ток;

– предохранитель может сработать в одной фазе, что может явиться причиной перегрева включенных асинхронных электродвигателей;

– трудность защиты от перегрузки, так как вставка надежно плавится при токах, превышающих номинальный ток на 50 – 100%.

Электротехнической промышленностью выпускается очень много типов предохранителей как общепромышленного, так и специального назначения. Например, специальные быстродействующие предохранители для защиты тиристоров, с указателем срабатывания, с выключателем плавкой вставки, для защиты электрооборудования метрополитена на напряжение 750 В постоянного тока, для применения в быту «пробки», для автомобилей, тепловозов, радиоэлектроники и т. д.


К общепромышленным предохранителям низкого напряжения относятся в основном два типа: ПР–2 и ПН–2 на напряжение 500 В и модификация ПН–2 предохранители типа ППН–2 на напряжение

660 В, которые более экономичны.

ПР2 – предохранитель (разборный) трубчатый (рис. 71) имеет изолирующий корпус круглого сечения из фибры 1, контактные ножи 2, которые вставляются в контактные губки 3, бронзовое кольцо с наружной резьбой 4, которое крепится к корпусу, круглую гайку 5, которая может отворачиваться для замены плавкой вставки 6, (показана в увеличенном масштабе), которая имеет несколько сужений. Гашение дуги в закрытом объёме и за счёт газов, выделяемых фиброй.

Предохранители на малые токи до 60 А типа НПР–2 имеют трубчатый корпус из фарфора, контакты для подключения цилиндрической формы.

 
  Типы предохранителей

ПН2 – предохранитель с мелкозернистым наполнителем (кварцевый песок) имеет корпус 1 квадратного сечения из фарфора

(рис. 72), внутри которого плавкая вставка 2 и мелкозернистый наполнитель 3, контактные ножи 4 и контактные губки 5. Плавкая вставка 2 может быть одно, двух, или трехленточная (тонкая лента). Трехленточная вставка показана в увеличенном масштабе, где обозначено: 6 – тонкая медная лента, 7 – перфорированный участок,


8 – наплавленное олово в виде шарика, которое способствует в расплавленном состоянии растворению меди и уменьшает время перегорания вставки при малом объёме олова. При большом объёме олова время перегорания наоборот увеличивается, будет инерционная плавкая вставка.

Предохранители с жидкометаллическим контактом

Это высоковольтные предохранители способные отключать токи до 250 кА при напряжении 450 кВ. Конструктивная схема на рис. 73, где обозначено: 1 – электроды (контакты) для подключения, 2 – корпус изолирующий, 3 – изоляционная температуростойкая втулка, 4 – демпфер, 5 – капилляр с жидким металлом.

При протекании большого тока КЗ металл в капилляре нагревается и испаряется, разрывая тем самым цепь.

 
  Типы предохранителей

В это время необходимо автоматически отключить обесточенную цепь разъединителем, иначе при охлаждении металла предохранитель восстановит свои свойства и произойдёт повторное включение на КЗ.

 
  Типы предохранителей

Высоковольтные предохранители бывают различных типов: с мелкозернистым наполнителем, с жидкометаллическим контактом, стреляющие (с пружиной), взрывные и др.

studopedia.ru

Характеристика


Предохранитель – это общий термин, который достаточно устойчиво используется в области электрики. Эта деталь предполагает защиту для проводов, оборудования и электрических сетей. назначение предохранителейПредохранитель представляет собой коммутационное изделие. В чем его назначение? Предохранитель призван защитить электрическую сеть от высоких токов и коротких замыканий. Принцип действия детали очень простой – в случае образования сверхтоков разрушается специально предназначенный для этого элемент. Зачастую это плавкая вставка. Так устроены все виды стеклянных предохранителей.

Эти вставки – обязательный элемент, без которого невозможен ни один вид предохранительных элементов. Внутри нее также имеется и специальное дугогасительное устройство. Вставки в предохранителях изготавливаются из фарфоровых или фибровых корпусов и закрепляются в специальные части, что проводят электрический ток. Элементы, предназначенные под малые токи, могут и вовсе не иметь корпуса.

Плавкий

Это наиболее распространенные виды предохранителей для использования в быту. Наверное, это единственный элемент, который проще всего диагностировать на предмет исправности. Для этого нужно просто посмотреть деталь на просвет – будет видно, цела плавка вставки или нет. виды стеклянных предохранителейИзготавливают данные детали в стеклянном корпусе.

Плавкий трубчатый керамический


Этот элемент практически ничем не отличается от стеклянного изделия. Единственное различие в материале, из которого изготовлен корпус. Но в эксплуатации эти детали не так комфортны – диагностировать «на свет» уже не выйдет. Для проверки необходимо использовать тестеры или мультиметры.

Плавкая вставка ПВД

Эти типы предохранителей функционируют на базе такого же принципа. устройство предохранителяНо здесь конструкция модифицирована таким образом, чтобы видеть состояние детали. Так, если элемент перегорел, то в задней части изделия появится специальный флажок.

Элементы с кварцевым песком

Эти предохранители отличаются высокими дугогасящими характеристиками. Производят их в двух исполнениях: в корпусе из керамических материалов или в стеклянных корпусах. Зачастую изделие рассчитано на работу с большими токами. Существуют и еще усовершенствованные модели. Устройство предохранителя предусматривает еще одну деталь, по конструкции подобную ПВД. Он необходим, чтобы можно было узнать, какой из предохранителей перегорел.

Быстродействующие предохранители


Эти изделия ничем особенным от остальных не отличаются. Различие только в том, что при возникновении короткого замыкания плавкая часть сгорает очень быстро.

SMD

Данные изделия можно встретить в электронных устройствах. Они очень миниатюрны. Принцип действия и назначения предохранителей – защитить технику от высоких токов, с чем они отлично справляются.

Самовосстанавливающиеся

Это достаточно интересные решения. Самовосстанавливающийся предохранитель представляет собой деталь, внутри которой находится специальный пластик. Пока пластиковая вставка холодная, она может проводить электричество. Как только вставка разогреется до определенной температуры, ее токопроводящие свойства теряются за счет увеличения сопротивления. виды предохранителейПосле остывания ток снова сможет проходить через изделие. Плюс данных деталей в том, что после перегорания нет никакой нужды в замене элемента. Промышленность выпускает эти изделия в различных видах. Они подходят для пайки по технологии навесного или поверхностного монтажа. В основном эти виды предохранителей используют в маломощных схемах.

Взрывные


Если все вышеперечисленные изделия знает каждый, то взрывной предохранитель – это редкая группа. Процесс перегорания детали обеспечивается достаточно эффектным звуком. Специальное взрывное устройство, которое закрепляется на токопроводящей детали, взрывается. За это отвечают специальные датчики. Последние следят за током в электрической цепи. Это очень точные предохранители, так как они практически не зависят от характеристик металла на токопроводящей детали. Данный элемент зависит от точности датчика тока.

Другие типы предохранителей

Для работы в цепях высокого напряжения используют специальные автогазовые, газовые изделия, а также элементы жидкостного типа. Существуют даже стреляющие предохранители. В обыденной жизни их увидеть нельзя – это профессиональное мощное оборудование.

Маркировка и обозначения

Каждый производитель изготавливает предохранители под определенным кодом или артикулом. Номер предохранителя позволяет в каталогах найти и уточнить технические характеристики. Зачастую эти коды можно найти на корпусах изделий. Также код может наноситься на металлическую часть. Кроме кодов, на корпусе также могут указываться основные данные – это номинальный ток в А, номинальные напряжения в В, отключающие характеристики либо особенности конструкции. По этим данным можно определить назначение предохранителей.номер предохранителя


Итак, величина номинального тока – это максимально допустимое значение, при котором деталь может нормально функционировать в течение длительного срока.

Номинальные напряжения – это максимально допустимое напряжение, при котором деталь безопасно разрывает цепь в случае короткого замыкания или при перегрузке в сети.

Отключающей способностью называют максимальные токи. При них предохранитель сработает, но корпус его не будет разрушен.

Характеристиками называют зависимость времени, при котором рушится плавкий элемент от тока, что протекает через деталь. Разные виды предохранителей по характеристикам объединены в группы по особенностям применения и скорости срабатывания. типы предохранителейОбычно эти характеристики указывают на силовых деталях. Для обозначения используются буквы латинского алфавита. Первой обозначается отключающая способность. Так, G – это полный диапазон, деталь способна защитить цепь и от перегрузки, и от короткого замыкания. А – диапазон частичный, а такие виды предохранителей защищают только от коротких замыканий.

Второй буквой обозначаются типы цепи:

  • G – цепь общего назначения.
  • L – защита кабелей, а также распределительных систем.
  • M – защита цепей в электродвигателях.
  • Tr – предохранитель, способный защитить трансформаторную сеть.

Элементы с буквой R используются вместе с силовым полупроводниковым оборудованием. А PV сможет обеспечивать защиту солнечных батарей.

Итак, мы рассмотрели, какие бывают виды предохранителей и какую они имеют маркировку.

fb.ru

Какие виды предохранителей существуют

Любая электрическая цепь состоит из отдельных элементов. Для каждого из них характерны определённые значения силы тока, при которых данный элемент работоспособен. Увеличение силы тока сверх этих значений может вызвать повреждение элемента. Это происходит из-за недопустимо высокой температуры или по причине довольно-таки быстрого изменения структуры этого элемента от воздействия тока. В таких ситуациях предохранители различных конструкций позволяют избежать порчи элементов электрических цепей.

Их классификация основана на способе разрыва электрической цепи этими предохранителями, и поэтому можно перечислить те из них, которые наиболее широко применяются следующие виды предохранителей:

  • плавкие,
  • электромеханические,
  • электронные,
  • самовосстанавливающиеся.

Способ разрыва электрической цепи охватывает всю совокупность процессов, которые происходят в предохранителе при его срабатывании.


  • Плавкие предохранители разрывают электрическую цепь в результате расплавления плавкой вставки.
  • Электромеханические предохранители содержат контакты, которые отключаются деформирующимся биметаллическим элементом.
  • Электронные предохранители содержат электронный ключ, который управляется специальной электронной схемой.
  • Самовосстанавливающиеся предохранители изготовлены с применением особых материалов. Их свойства изменяются при протекании тока, но восстанавливаются после уменьшения или исчезновения тока в электрической цепи. Соответственно сопротивление сначала увеличивается, а затем вновь уменьшается.

Плавкие

Самыми дешёвыми и наиболее надёжными являются плавкие предохранители. Плавкая вставка, которая после увеличения силы тока сверх установленной величины плавится, или даже испаряется, гарантированно создаёт разрыв в электрической цепи. Эффективность такого способа защиты определяется главным образом скоростью процесса разрушения плавкой вставки. Для этого она изготавливается из специальных металлов и сплавов. Главным образом это такие металлы как цинк, медь, железо и свинец. Поскольку плавкая вставка по сути своей токопроводящая жила она ведёт себя как проводник, для которого характерны графики, показанные далее.

Графики поведения проводника при нагреве и охлаждении

Поэтому для правильной работы плавкого предохранителя тепло, которое выделяется в плавкой вставке при номинальном токе нагрузки не должно приводить к её перегреву и разрушению. Оно рассеивается в окружающую среду через элементы корпуса предохранителя, нагревая вставку, но без разрушительных последствий для неё.


Баланс тепла в плавной вставке предохранителя

Но если ток увеличится, баланс тепла нарушится, и температура вставки начнёт возрастать.

Нарушение теплового баланса в плавной вставке предохранителя

При этом произойдёт лавинообразное нарастание температуры из-за увеличения активного сопротивления плавкой вставки. В зависимости от скорости нарастания температуры вставка либо расплавляется, либо испарятся. Испарению способствует вольтова дуга, которая может возникать в предохранителе при значительных величинах напряжения и тока. Дуга на какое-то время заменяет собой разрушенную плавкую вставку, поддерживая ток в электрической цепи. Поэтому её существование также определяет временные характеристики отключения плавкой вставкой.

Характеристикаи отключения плавкой вставкой

  • Времятоковая характеристика — главный параметр плавкой вставки, по которому делается выбор её для той или иной электрической цепи.

В аварийном режиме важно наиболее быстро разорвать электрическую цепь. С этой целью для плавких вставок применяются специальные методы, такие как:

  • местное уменьшение её поперечника;
  • «металлургический эффект».

Формы применяемых плавких вставок

В принципе это похожие методы, которые позволяют, так или иначе, вызвать местный более быстрый нагрев вставки. Переменное сечение при меньшем поперечнике нагревается быстрее, чем при большем сечении. Чтобы дополнительно ускорить разрушение плавкой вставки она делается составной из пачки одинаковых проводников. Как только один из этих проводников перегорит, суммарное сечение уменьшится и перегорит следующий проводник и так далее до полного разрушения всей пачки из проводников.

Металлургический эффект применяется в тонких вставках. Он основан на получении местного расплава с более высоким сопротивлением и растворении в нём основного материала вставки с малым сопротивлением. В результате местное сопротивление увеличивается, и вставка более быстро расплавляется. Расплав получается из капель олова или свинца, которые наносятся на медную жилку. Такие методы применяются для маломощных предохранителей на токи до нескольких единиц ампер. В основном они применяются для различных бытовых электроприборов и устройств.

Плавкий трубчатый предохранитель со стеклянным корпусом  Плавкий трубчатый предохранитель со с керамическим корпусом

Форма, размеры и материал корпуса может изменяться в зависимости от модели плавкого предохранителя. Стеклянный корпус удобен тем, что позволяет увидеть, в каком состоянии пребывает плавкая вставка. Но зато керамический корпус дешевле и прочнее. Под определённые задачи адаптированы другие конструктивные исполнения. Некоторые из них показаны на изображении далее.

Различные модели плавких предохранителей

На основе трубчатых керамических корпусов устроены обычные электрические пробки. Собственно пробка – это корпус, который специально сделан под патрон для удобного использования предохранителя. Некоторые конструкции пробок и керамических предохранителей снабжены механическим индикатором состояния плавкой вставки. При перегорании её срабатывает устройство типа семафора.

При увеличении силы тока сверх 5 – 10 А появляется необходимость гашения вольтовой дуги внутри корпуса плавкого предохранителя. Для этого внутреннее пространство вокруг плавкой вставки заполняется кварцевым песком. Дуга быстро нагревает песок до выделения газов, которые препятствуют дальнейшему развитию вольтовой дуги.

Электрическая пробка с визуализацией целостности плавкой вставки Предохранитель ПВД с визуализацией целостности плавкой вставки

Несмотря на определённые неудобства, обусловленные необходимостью запаса предохранителей для замены, а также замедленным и недостаточно точным для некоторых электрических цепей срабатыванием, этот тип предохранителей самый надёжный из всех. Надёжность срабатывания тем больше, чем выше скорость нарастания тока через него.

Предохранитель, наполненный песком Предохранитель, наполненный песком

Электромеханические

Предохранители электромеханической конструкции принципиально отличаются от плавких предохранителей. В них есть механические контакты и механические элементы для управления ими. Поскольку надёжность любого устройства уменьшается по мере его усложнения, для этих предохранителей хотя бы теоретически, но существует вероятность такой неисправности, при которой установленный ток срабатывания не будет отключён. Многократность срабатывания – существенное преимущество этих устройств перед плавкими предохранителями. Недостатками можно обозначить такие свойства как:

  • появление дуги при выключении и постепенное разрушение контактов из-за её воздействия. Не исключена сварка контактов между собой.
  • Механический привод контактов, который дорого полностью автоматизировать. По этой причине повторное включение приходиться делать вручную;
  • недостаточно быстрое срабатывание, которое не может обеспечить сохранность некоторых «скоропортящихся» потребителей электроэнергии.

Электромеханический предохранитель часто именуется как «автомат» и присоединяется к электрической цепи либо цоколем, либо клеммами для проводов, зачищенных от изоляции.

Электромеханический предохранитель с цоколем Электромеханический предохранитель с клеммами

Электронные

В этих устройствах механика полностью заменена электроникой. У них только один недостаток с его несколькими проявлениями:

  • физические свойства полупроводников.

Этот недостаток проявляется:

  • в необратимых внутренних повреждениях электронного ключа от нештатных физических воздействий (превышение напряжения, тока, температуры, радиации);
  • ложное срабатывание или поломка схемы управления электронным ключом от нештатных физических воздействий (превышение температуры, радиации, электромагнитного излучения).

Структурная схема электронного предохранителя

Самовосстанавливающиеся

Из специального полимерного материала сделан брусок и снабжён электродами для присоединения к электрической цепи. Такова конструкция этой разновидности предохранителей. Сопротивление материала в заданном температурном диапазоне мало, но резко увеличивается, начиная с определённой температуры. По мере остывания сопротивление снова уменьшается. Недостатки:

  • зависимость сопротивления от температуры окружающей среды;
  • длительное восстановление после срабатывания;
  • пробой превышенным напряжением и выход из строя по этой причине.

Правильный выбор предохранителя обеспечивает существенную экономию средств. Дорогостоящее оборудование, своевременно отключенное предохранителем при аварии в электрической цепи, сохраняет свою работоспособность.

podvi.ru

КОНСТРУКЦИИ ПРЕДОХРАНИТЕЛЕЙ ОБЩЕГО НАЗНАЧЕНИЯ

 

Пример конструкции предохранителя со сменными плавкими вставками общего назначения без наполнителя приведен на рис. 5-4. Такие предохранители изготовляются на напряжение до 500 В и токи до 1000 А. Гашение дуги у них происходит за счет высокого давления (до 10 МПа и более), возникающего вследствие газогенерации из стенок трубок при высокой температуре электрической дуги. Другая характерная конструкция предохранителей — резьбовая. Примером современной конструкции с наполнителем является приведенный на рис. 5-5 предохранитель серии ПН-2.

Предохранители серии ПН-2 предназначены для защиты силовых цепей до 500 В переменного тока и 440 В постоянного тока, они выполняются на номинальные токи 100, 250, 400 и 630 А, обладают токоограничивающим действием и высокой разрывной способностью.

 

Предохранители серии ПР-2

 

Рис. 5-4. Предохранители серии ПР-2: а — общий вид; б, в — патроны на номинальные токи 15—63 А и 100—1000 А; г — формы плавких вставок

1 — неподвижные контактные стойки; 2 — патрон; 3 — фибровая (газогенерирующая) трубка; 4 — плавкая вставка; 5 — латунная втулка; б — латунные колпачки (подвижный контакт); 7 — контактный нож

 

Предохранители серии ПН-2

 

Рис. 5-5. Предохранители серии ПН-2: а — общий вид и детали; б — разрез

 

Корпус 1 (рис. 5-5) представляет собой глазурованную квадратную снаружи, круглую внутри фарфоровую трубку с четырьмя резьбовыми отверстиями с каждого торца. В трубку введен узел с плавкой вставкой 2, приваренной электроконтактной точечной сваркой к шайбам врубных контактных выводов 3. Контактный узел с каждого торца трубки крепится к крышке 4 винтами. Крышки с асбестовыми прокладками 5 привинчиваются к корпусу и герметически закрывают его.

Внутренняя полость трубки наполняется чистым и сухим кварцевым песком 6, полностью охватывающим рабочую длину вставки. Применяется песок с содержанием кварца не менее 98 %, с диаметром зерен 0,2 — 0,3 мм, обработанный двухпроцентным раствором соляной кислоты, промытый и прокаленный при температуре 120-180 °С. Герметизация корпуса предохраняет песок от увлажнения.

Плавкая вставка выполняется из одной или нескольких медных ленточек толщиной 0,15—0,35 мм и шириной до 4 мм с просечками 7, уменьшающими на длине не менее 6 мм сечение вставки в два раза. Применение тонких параллельных ленточек позволяет снизить сечение плавкой вставки для данного номинального тока, а следовательно, и количество паров металла в дуге. Последнее обстоятельство облегчает гашение дуги. Возникновение нескольких дуг в параллельных каналах позволяет участвовать в рассеянии энергии дуги большему объему наполнителя, чем также облегчается гашение дуги.

Для снижения нагрева предохранителя при малых перегрузках используется металлургический эффект. На каждую ленточку вставки напаивается оловянный шарик 8. Температура плавления металла ленточки в месте, где напаян оловянный шарик, достигает 475 °С. Превышение температуры деталей предохранителя находится в пределах нормы. Отключающая способность — от 50 кА для предохранителя на 100 А до 100 кА для предохранителя на 630 А.

 

ПРЕДОХРАНИТЕЛИ БЫСТРОДЕЙСТВУЮЩИЕ

 

Для защиты полупроводниковых преобразователей потребовалось создание специального класса предохранителей, так называемых быстродействующих (время до расплавления плавкого элемента и начала ограничения тока 2—3 мс), на напряжение до 2000 В и токи 2000—5000 А (в общепромышленных электротехнических установках номинальные напряжения не превышают 660 В, а номинальные токи практически равны 1000 А) [33].

 

Общий вид быстродействующего предохранителя

 

Рис. 5-6. Общий вид быстродействующего предохранителя.

 

Термическая стойкость электротехнического устройства определяется, интегралом Джоуля (см. § 2-8), а защитные свойства плавкого предохранителя при этом оцениваются фактическим значением I2! предохранителя, которое имеет место от момента наступления короткого замыкания (перегрузки) до момента отключения цепи и которое должно быть меньше допустимого для защищаемого объекта. По отношению к полупроводниковым приборам дело обстоит наоборот: так, тиристор типа Т171-320 на 320 А имеет интеграл Джоуля 2,5-105 А2-с, а у предохранителей типа ПН2-400 на 400 А он равен 3-106 А2-с.

Основными характеристиками быстродействующих предохранителей являются наибольшие интегралы Джоуля отключения, наибольший пропускаемый ток и преддуговое время.

Современные быстродействующие предохранители отечественного и зарубежного производства изготовляются в виде закрытых неразборных плавких вставок (рис. 5-6), устанавливаемых, как правило, непосредственно на проводниках комплектного устройства. Плавкая вставка размещена в керамическом корпусе 2 призматической формы, на котором винтами 4 с шурупной резьбой укрепляются выводы 1 плавкой вставки, герметизирующие прокладки 3 и торцевые крышки 5.

Плавкие элементы быстродействующих предохранителей обычно изготовляются из листовых материалов толщиной 0,05—0,2 мм в виде лент, в которых с помощью отверстий той или иной формы при штамповке образуются места ослабленного поперечного сечения — перешейки (рис. 5-7, а), а концы плавкого элемен­та соединяются с контактными выводами плавкой вставки обычно точечной сваркой. Чем больше перешейков, тем интенсивнее гашение дуги, так как суммарное падение напряжения на плавкой вставке в этот период пропорционально числу последовательно включенных дуг и тем больше на каждой дуге, чем меньше в ней ток, т. е. больше параллельно включенных перешейков (плавких вставок).

При работе плавкого предохранителя в режиме циклических нагрузок перешейки плавкого элемента испытывают большие знакопеременные механические воздействия (удлинение и укорочение). Для повышения срока службы предохранителя его плавкие элементы выполняют с изгибами, принимающими на себя температурные деформации (рис. 5-7,б).

 

Схемы форм плавких вставок быстродействующих предохранителей

 

Рис. 5-7. Схемы форм плавких вставок быстродействующих предохранителей.

 

В качестве материала плавкого элемента обычно используется технически чистое серебро, которое более стойко к коррозии под воздействием температуры и имеет лучшую электропроводимость, чем, например, медь. Соединение его с медными выводами контактной сваркой не вызывает технологических трудностей. Ведутся работы по исследованию возможностей применения других материалов. Наиболее перспективным в этом отношении является стойкий к коррозии алюминий: образующаяся на его поверхности очень тонкая плотная оксидная пленка защищает основной металл от развития коррозии.

 

 

ПРЕДОХРАНИТЕЛИ ВЗРЫВНЫЕ

 

Разновидностью специальных предохранителей являются устройства, в которых токоведущая вставка в аварийном режиме разрушается под действием взрывного заряда. Эти устройства получили название взрывных предохранителей (коммутаторов). Схема такого устройства приведена на рис. 5-8. Контроль тока в цепи осуществляется датчиком Д. При коротком замыкании датчик выдает сигнал через преобразователь Пр на импульсный трансформатор Т, который повышает напряжение сигнала до значения, достаточного для срабатывания взрывного устройства ВУ, расположенного в корпусе плавкой вставки П. В результате взрыва токопроводящая вставка разрушается. Следует отметить, что сигнал от датчика может быть не только по значению тока, но и по скорости его нарастания, что существенно ускоряет выдачу сигнала.

 

Схема устройства взрывного передохранителя

 

Рис. 5-8. Схема устройства взрывного передохранителя.

 

Гашение дуги, возникающей при разрушении вставки, может быть осуществлено различными способами, например в трансформаторном масле, окружающем вставку (работы, выполняемые в СССР), обдувом дуги струёй газа взрывного вещества, установкой «дугогасящей» вставки ПП параллельно основной (наподобие дугогасительного контакта). В последнем примере сперва происходит ограничение тока за счет сопротивления дугогасящего контура, а затем отключение цепи вставкой ПП.

Время срабатывания — интервал времени от момента достижения аварийным током значения, равного току уставки, до начала токоограничения предохранителем — в этих устройствах составляет доли миллисекунды (0,2 — 0,7 мс).

Эксплуатация взрывных предохранителей связана с некоторыми неудобствами при замене взрывного устройства. Однако сейчас нет других аппаратов защиты на большие номинальные токи (в частности, постоянного тока) и напряжения, способных отключать аварийные токи за столь короткое время при практически неограниченной отключающей способности.

 

КОНСТРУКЦИИ ПРЕДОХРАНИТЕЛЕЙ ВЫСОКОГО НАПРЯЖЕНИЯ

 

Назначение и принцип работы предохранителей высокого напряжения такие же, как и предохранителей низкого напряжения. Основная трудность создания предохранителей высокого напряжения — гашение дуги. В современных конструкциях применяется главным образом гашение в узких каналах при высоком давле­нии (предохранители с мелкозернистым наполнителем) и гашение при помощи автогазового или жидкостного дутья.

Предохранители с мелкозернистым наполнителем серий ПК и ПКТ. Они выполняются на напряжения 3; 6,3; 10 и 35 кВ и номинальные токи 400, 300, 200 и 40 А соответственно. Небольшая разрывная способность 200 MB-А для силовых предохранителей и 1000 MB-А и более (не ограничено) у предохранителей (серия ПКТ) на малые токи для защиты цепей измерительных трансформаторов напряжения. Такая высокая отключающая способность достигается токоограничивающим эффектом. Полное время отключения силовыми предохранителями тока короткого замыкания достигает 0,005—0,007 с. Предохранители предназначены для внутренней и наружной установки.

Предохранитель (рис. 5-9) состоит из контактных стоек 1, укрепленных через соответствующие изоляторы 2 на стальном основании 3, и патрона 4. Патрон состоит из изоляционного корпуса 8, армированного по концам латунными колпаками 13 и закрытого герметично с обеих сторон крышками 5. Внутри патрона размещаются плавкие вставки 7. Весь объем заполнен кварцевым песком 6. Перегорание предохранителя сигнализируется якорем 14, который после перегорания удерживающей его стальной указательной вставки 11 выталкивается пружиной 12.

На малые токи плавкая вставка выполняется в виде намотки из тонких проволок 9 на керамическом сердечнике 10. На большие токи плавкие вставки выполняются в виде отдельных спирально свитых проволок 9 (рис. 5-9,6). Проволоки медные, посеребренные либо константановые. Такая форма вставок обусловлена стремлением разместить достаточно длинную вставку в патроне ограниченной длины. Согласно работе [4] длина плавкой вставки (в миллиметрах) для этих предохранителей составляет l= 160+70 Uном, где Uном — номинальное напряжение, кВ.

Для снижения температуры предохранителя при небольших перегрузках на места скрутки плавких вставок напаяны оловянные шарики. На токи 7,5 А и ниже для ограничения перенапряжении вставки имеют переменное сечение. Разное времяперегорания отдельных участков приводит к снижению перенапряжений при отключении.

 

Предохранители серии ПК

Рис. 5-9. Предохранители серии ПК: а – общий вид; б – патрон с плавкой вставкой на керамическом сердечнике; в – патрон со спиральными плавкими вставками.

 

Предохранители с автогазовым и жидкостным гашением

 

Рис. 5-10. Предохранители с автогазовым (а) и жидкостным (б) гашением.

 

Предохранители с автогазовым, газовым и жидкостным гашением дуги (рис. 5-10). Эти предохранители выполняются с короткой плавкой вставкой. Плавкая вставка состоит из медной 4 (токоведущей) и стальной 5 (удерживающей) частей. После расплавления (перегорания) вставки (сначала медной части, а затем стальной) дуговой промежуток удлиняется с помощью пружин или давления образующихся газов. Дуга втягивается в дугогасящую или газогенерирующую среду и под действием газового или жидкостного дутья гаснет.

В стреляющем предохранителе (тип ПСН — рис. 5-10, а) вытягивание гибкой связи 3 из патрона осуществляется пружиной ножа, связанного с контактным наконечником 1. Дуга, втянутая в газогенерирующую трубку 2, резко повышает давление в трубке (до 10-12 МПа) и создает весьма интенсивное продольное автодутье. Гибкая связь окончательно выбрасывается из патрона, дуга энергично гасится. Га­шение сопровождается выбросом раскаленных газов, световым и звуковым эффектом.

В жидкостном предохранителе (рис. 5-10,б) пружина 8, растягивая дуговой промежуток, тянет поршень б и проталкивает через отверстия 7 жидкость, заполняющую весь объем под поршнем. Создаваемое интенсивное продольное дутье надежно гасит дугу.

Автогазовое и жидкостное гашение позволяет создать конструкции предохранителей на напряжения 110—220 кВ с высокой отключающей способностью.

 

ПРЕДОХРАНИТЕЛЬ-ВЫКЛЮЧАТЕЛЬ

 

Предохранитель-выключатель — аппарат (блок), выполненный как рубильник, в котором в качестве подвижных контактов (ножей) применены предохранители. Таким образом, он одновременно предназначен для неавтоматической коммутации силовых электрических цепей в устройствах распределения электрической энергии, а также для защиты этих цепей при токах перегрузки и короткого замыкания. Используется на напряжение до 380 В частотой 50 Гц с номинальными токами до 400 А и отключающей способностью в соответствии с примененным предохранителем.

Аппарат состоит из несущей конструкции, неподвижных контактов, подвижных контактов-предохранителей, ручного привода с системой рычагов. Привод обеспечивает необходимое перемещение патронов предохранителей из положения «Отключено» в положение «Включено» и обратно. В закрытом исполнении имеется блокировка, исключающая открывание дверцы (кожуха) при включенном положе­нии аппарата и включение аппарата при открытой дверце.

 

www.eti.su



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.