Чаще всего искусственным заземлителем является стальной проводник, заложенный в грунт горизонтально или вертикально (наклонно), или группа таких проводников, соединенных между собой. В последнем случае заземлитель называется сложным, а если электроды образуют контур, то такой сложный заземлитель называется заземляющим контуром.

Название «горизонтальные» и «вертикальные» заземлители весьма условно. Строгое соблюдение горизонтальности в первом случае не обязательно, важно, чтобы электроды находились в грунте на нужной глубине, не подвергаясь повреждениям при работе машин. Поскольку поверхность земли в оврагах, на уклонах и в ряде других мест может оказаться не горизонтальной, то и протяженные (лучевые) заземлители будут следовать кривизне поверхности. Для вертикальных электродов также необязательно строгое соблюдение вертикальности.

Горизонтальные заземлители прокладывают на глубине 0,5 м, на пахотной земле – не менее 1 м.
и рациональны в тех случаях, когда электропроводность верхнего слоя грунта обеспечивает нужную проводимость. Монтаж таких заземлителей механизирован и выполняется с минимальной затратой ручного труда, однако верхние слои почвы часто имеют большее электрическое сопротивление, чем глубинные. Кроме того, близко к поверхности земли растекание тока не идет равномерно во все стороны, как на глубине. Следовательно, сопротивление горизонтальных электродов обычно больше, чем сопротивление вертикальных электродов такой же массы. Поэтому наибольшее распространение в качестве заземлителей получили именно вертикальные электроды. Глубинные вертикальные электроды наиболее экономичны, достигают хорошо проводящих слоев грунта.

Заземляющие электроды, смонтированные в грунте, перемычки между ними и выводы от заземлителей на поверхность должны иметь следующие минимальные размеры:

круглая сталь – диаметр не менее 10 мм;

круглая оцинкованная сталь – диаметр не менее 6 мм;

угловая сталь – толщина полки не менее 4 мм;

общее сечение для заземлителей молниезащиты (грозозащиты) – не менее 160 мм2;

полосовая сталь – толщина не менее 4 мм при сечении не ниже 48 мм2 (для магистралей заземления – не менее 100 мм2, для молниезащиты – не менее 160 мм2);

отбракованные трубы – толщина стенки не менее 3,5 мм.

Минимальные размеры электродов применяются в основном для временных электроустановок, где условия коррозии не имеют решающего значения. Для постоянных установок сечение заземлителей выбирают с запасом на коррозийное разрушение. По стойкости против коррозии предпочтительнее круглая сталь, так как разъедание электрода ржавчиной пропорционально площади поверхности электрода, соприкасающейся с грунтом, а площадь электрода круглого сечения из всех профилей наименьшая.


С целью обеспечения надежной работы заземлителя в течение 40-50 лет в благоприятных грунтовых условиях достаточно увеличения диаметра стержневого электрода против минимального всего на 2-3 мм, во влажных грунтах необходимо увеличение диаметра заземлителя вдвое.

От заземляемого элемента электроустановки, например от опоры воздушной линии электропередачи, горизонтальные лучи прокладывают в двух противоположных направлениях или, если лучей не 2, а 3-4, разносят под углом в плане 120° или 90°. Это необходимо для эффективного использования закладываемого металла, так как рядом расположенные заземлители взаимно экранируются и их эффективность снижается во много раз. По этой же причине вертикальные заземлители нужно удалять друг от друга на возможно большее расстояние, равное хотя бы длине электрода. Например, если десять вертикальных электродов длиной по 5 м расположить в одну линию на расстоянии по 5 м друг от друга, то коэффициент их использования составит 0,47, а если те же электроды для экономии места расположить по замкнутому треугольнику или четырехугольнику, то коэффициент их использования будет еще ниже. То же относится и к применению наклонных электродов, которые разносят под равными углами аналогично горизонтальным и погружают в землю под углом около 45° для наилучшего использования.


Неравномерность распределения потенциалов на поверхности земли над заземлителем и вокруг него создает опасные напряжения шага и прикосновения. Для выравнивания потенциалов в таких случаях заземлитель можно выполнить в виде сетки из горизонтальных элементов, прокладываемых в земле вдоль и поперек территории электроустановки и соединяемых сваркой в местах пересечений. Размер ячейки такой сетки обычно составляет от 6х6 до 10х10 м.

Вокруг опоры ВЛ потенциалы можно выровнять заземлителем, выполненным в виде концентрических колец, заложенных в грунт и соединенных с опорой.

Снижает напряжения шага и прикосновения до допустимых значений на всей занимаемой им площади сетчатый заземлитель, однако за пределами сетки опасность может сохраняться. Поэтому в опасных местах, например на подходах к территории подстанций или вокруг фундаментов опор ВЛ, укладывают дополнительные заземлители на постепенно увеличивающейся глубине и соединяют их с основными заземлителями.

Отводимая под заземлитель площадь и расход металла могут быть снижены защитным изолирующим ограждением, сооружаемым вокруг заземлителя. Простейшее ограждение из диэлектрического материала препятствует растеканию тока по поверхности земли и снижает напряжение шага по сравнению с напряжением на заземлителе не менее чем в 100 раз и выравнивает потенциал за пределами заземлителя.


Вертикальная часть ограждения от уровня поверхности располагается на 0,4-0,6 м от глубины заложения верха заземлителя. Отбортовка ограждения выполняется под углом 90-95° к вертикали и имеет длину, составляющую (0,1–0,15)vS (S – площадь заземлителя). Для устройства ограждения может быть использован любой недорогой диэлектрический материал, обладающий достаточной механической прочностью и имеющий электрическую прочность не менее 1 МВ/м (изоляционные материалы на битумной основе, например бризол, выпускаемый из отходов производства и имеющий прочность не менее 20 МВ/м).

При стекании тока с заземлителя, например с заземляющей сетки, вокруг него формируется электрическое поле. На поверхности земли возникает электрический потенциал, и напряжение шага может достигать опасных значений непосредственно за пределами заземлителя, даже при применении известных способов выравнивания потенциалов. Поэтому геометрические параметры ограждения установлены в результате анализа электрического поля, формируемого заземлителем совместно с диэлектрическим выравнивающим ограждением, и отвечают требованиям безопасности. Устройство можно применять для заземлителей любой конструкции и при любых структурах грунта.

Часто заземлители из профильной стали не удовлетворяют требованиям, предъявляемым к заземляющим устройствам. Например, в засушливых местах трудно добиться стабильной проводимости таких заземлителей, в скальных грунтах их трудно монтировать, а в агрессивных грунтах трудно обеспечивать защиту от коррозии и долгий срок службы. Для таких ситуаций разработаны конструкции специальных заземлителей.


Для засушливых районов заземлитель может быть выполнен, например, в виде железобетонной емкости, устанавливаемой ниже поверхности земли и наполняемой водой через съемный люк. Заземлитель снабжают водораспределительной системой в виде отрезков металлических труб с отверстиями для стока воды, расположенными равномерно по всей длине труб. Трубы покрыты слоем влагопоглощающего материала (бетона, цемента). Скорость фильтрации влаги через бетон в землю устанавливается за счет подбора марки бетона, что дает возможность избежать частых регулировок увлажнения и сократить трудозатраты, связанные с необходимостью регулярного увлажнения. Вывод от железобетонной емкости к заземляемому оборудованию, например к нейтрали трансформатора, присоединяется к стальным стержням арматуры железобетона.

Обратим внимание на конструкцию заземлителя, предложенную за рубежом. Цель этой разработки – уменьшение металлоемкости и облегчение забивки в грунт. Заземлитель имеет тонкостенную (1?2 мм) металлическую трубку, в которую впрессован полужесткий стержень из пластичного материала, имеющий жесткость, достаточную для того, чтобы являться опорой упругой тонкостенной трубки. Это качество обеспечивает возможность некоторого изгибания электрода для обхода препятствий, встречающихся при его забивке в землю.
я повышения срока службы, т. е. для уменьшения коррозии, материалом для трубки предлагается нержавеющая сталь. Наконечник, имеющийся в нижнем конце электрода, нужен только для забивки, поэтому нет необходимости изготовлять его из антикоррозийного материала. Форма наконечника может быть острой либо закругленной для лучшего соскальзывания с препятствий, встречающихся в грунте. Вместо изготовления наконечника можно обжать конец трубки с заполнителем.

Типичный диаметр трубки – 15 мм. Предварительный диаметр сердечника, который прессуют в трубку, должен быть несколько больше, чем внутренний диаметр трубки. Трубка может быть заполнена (как вариант) текучим материалом затвердевающим внутри, например эпоксидной смолой, полиуретаном или эластомером. Полужесткий заполнитель располагается внутри стальной трубки по всей длине. Более жесткие материалы и более толстые стенки трубки снижают гибкость стержня и уменьшают способность электрода обходить препятствия в грунте, что ведет к поломкам. С другой стороны, чрезмерно пластичные материалы не обеспечивают достаточной прочности стенок, необходимой для забивки на достаточную глубину (около 2,3 м). Для забивки электрода предусмотрена съемная наковальня, имеющая плечо, упирающееся в конец трубки, и выступ, сопрягающийся с внутренним диаметром трубки и сердечником.

studopedia.ru

Что представляют собой искусственные заземлителиискусственные заземлители


В роли искусственного заземлителя выступает проводник, изготовленный из стали, зарытый в грунт в горизонтальном или вертикальном положении. В некоторых случаях используют целую группу подобных проводников, которые соединяют между собой. В таком случае, искусственный заземлитель получается сложным. Если же электроды образует контур, то это будет заземляющий контур.

Я не буду рассказывать чем отличаются друг от друга вертикальный и горизонтальный заземлитель, наверное и так понятно. Однако очень важно, чтобы проводники (см. след. страницу), образующие собой заземлитель или заземляющий контур, находились на требуемой глубине.

На какую глубину поместить горизонтальный искусственный заземлитель

По моему опыту, горизонтальный заземлитель лучше всего прокладывать на глубине примерно 0,5 м. Если же почва рыхлая, то глубину лучше всего увеличить до 1 м. Его следует применять в том случае, когда верхний слой почвы в состоянии обеспечить требуемую проводимость электрического тока.

Как правило, подобные искусственные заземлители устанавливаются с помощью специальной техники. Еще хочу добавить, что верхние слои грунта зачастую способны сильнее сопротивляться току, по сравнению с более глубокими.

Немаловажная деталь, у горизонтальных , сопротивление значительно выше, по сравнению с вертикальным. Поэтому, я вам советую, при проведении электромонтажа применять вертикальный искусственный заземлитель. Лучше всего применять вертикальные глубинные электроды, так как они способны добраться до хорошо проводящих ток слоев грунта.

Как подобрать размеры искусственных заземлителей

Лично я применяю минимально допустимые размеры:


  • круглая сталь — диаметр 10 мм;
  • круглая оцинкованная сталь — диаметр 6 мм;
  • угловая сталь — толщина 4 мм;
  • общее сечение для заземлителей с присоединенной к ним системой защиты от молний — 160 мм;
  • полосовая сталь — 4 мм, в случае, если сечение составляет 48 мм в кв;
  • бракованные трубы — толщина стенок 3,5 мм.

Но такие размеры используйте, если условиями коррозии можно пренебречь. Для того, чтобы искусственный заземлитель надежно функционировал долгое время, например, 40-50 лет, для его изготовления нужно брать материал гораздо большей толщины, чем указанное минимальное значение. Если у вас грунт влажный, увеличьте диаметр в два раза минимального значения.

podvi.ru

Что выступает в роли искусственного заземлителя

Заземляющий элемент выполняется в виде проводника (электрода) определенного материала, который помещается в грунт. В некоторых случаях монтируется несколько подобных заземлителей.

Определение ситуации, когда необходимо монтировать именно группу искусственных стержней, реализуется посредством специальных расчетов. Результатом вычисления обосновывается выбор конфигурации электрода по отношению к его сопротивлению — основному показателю, определяющему качество заземления.


Важно! Совокупность соединенных искусственных стержней, вмонтированных в землю и объединенных с электрооборудованием при помощи проводника, образует заземляющий контур.

Искусственный заземлитель изготавливается из таких материалов:

  1. Омедненная сталь. Соединение меди и стали имеет хорошее сцепление. Стержни прочные, отлично контактируют с любыми материалами. За счет химических особенностей сплав обладает отличной электропроводимостью. Электрохимическая активность меди и стали незначительна, нормальная эксплуатация заземлителей из такого металла может достигать больше ста лет.
  2. Оцинкованная сталь. Преимущества — коррозионная стойкость материала, низкое сопротивление, электроды устойчивы к кислотной среде.
  3. Черные металлы. Недостаток — быстрое разрушение в агрессивном грунте (образуются коррозия и ржавчина). Высокая прочность материала повышает сопротивление растеканию тока, что крайне опасно для человека.

Контур заземления из металлических полос

Помимо материала, искусственные заземлители различается по форме и по расположению в почве (углубленный вертикальный и протяжной горизонтальный тип).


Чем отличаются вертикальные и горизонтальные заземлители

Особого функционального отличия между такими типами электродов нет. При монтаже как вертикального, так и горизонтального элемента важна лишь глубина их погружения.

Стандартные показатели заглубления:

  1. Верхний конец вертикально заложенных в грунт заземляющих элементов углубляется на 0,7 м. Укладываются на дно горизонтально, по периметру фундамента. Диаметр электродов — от десяти до шестнадцати мм, длина — до 5 м.
  2. Горизонтальные элементы заземляющего устройства углубляются в грунт на 0,5 м. Если земля пахотная, прокладывать их необходимо на глубину не меньше 1 м. Рациональность их применения обоснована лишь при хорошей электропроводимости верхнего слоя почвы. Такой вид электродов может использоваться для связи вертикальных заземляющих элементов. Соединения выполняются при помощи сварки. Применяется или сталь округлой формы диаметром более 10 мм, или стальные полосы толщиной больше 4 мм.

Вертикальное заземление системы Jupiter

Обратите внимание! Практичнее использовать вертикальные заземлители. Горизонтальные элементы заземления крайне сложно заглубить в почву на необходимую глубину. При небольшой глубине в таких заземлителях начинает ухудшаться основной характеризующий показатель — увеличивается удельное сопротивление.

Конкретного профильного требования, которое регламентирует монтаж заземлителей четко в вертикальном положении, не существует (исключительно рекомендательный характер). Возможен вариант установки вертикального электрода под незначительным углом. Такой фактор не отражается на функциональности заземлителя.

Функции искусственного заземляющего элемента

Согласно пункту ПУЭ 1.7.28, заземление должно быть организованно для всех видов промышленных и бытовых электроустановок. Необходимость установки аргументирована практической значимостью функций системы. Каждой части заземляющего устройства отведена своя задача.

Проводящий элемент или совокупность соединенных между собой аналогичных элементов заземляющего устройства играют важную роль в надлежащей работе всей системы заземления объекта.

Существует две основных функции заземления, которые реализуются при помощи искусственного заземлителя:

  1. Обеспечение электрической безопасности пользователям электроустановки. Основные задачи защитной функции — уменьшение показателей разности потенциалов, отвод блуждающего тока. Ток утечки образуется при взаимодействии заземляющего предмета с фазным кабелем.
  2. Поддержка эффективной и бесперебойной работы как электрического оборудования, так и всей электроустановки.

Основное назначение заземления - обеспечение безопасности пользователей электроустановок

Важно! Заземление более эффективно, когда электрическая система объекта оснащена УЗО (устройством защитного отключения) или аналогичными защитными приборами. Такие устройства моментально реагируют на утечку тока.

Искусственный заземлитель имеет ряд требований, реализация которых позволит добиться надлежащего результата выполнения функций. Основа — надежный монтаж и оптимальное расположение в грунте заземляющего элемента.

Как устанавливать искусственный электрод в грунт

Искусственный заземлитель в процессе изготовления неоднократно подвергается проверке на соответствие всем параметрам нормативных требований. Аналогичная ситуация с его установкой и расположением в грунте. Обобщив данные, можно выделить основные моменты производства такого электромонтажа:

  1. Процесс установки практически полностью механизирован.
  2. Если предусмотрено два протяженных (горизонтальных) луча, от заземляемой части электроустановки электроды прокладываются в противоположных направлениях. При условии, что заземлителей больше двух, прокладка лучей осуществляется под наклоном (угол в 120° – 90°). Обусловлено такое размещение улучшением показателя сопротивляемости.
  3. При монтаже заземлителя часто происходит распределение потенциалов. Разница потенциала на поверхности грунта (сверху заземлителя) и вокруг элемента (внутри почвы) служит причиной возникновения опасных напряжений. Для выравнивания потенциалов в таких случаях искусственный заземлитель изготавливается в форме сетки. Горизонтальные электроды прокладываются как вдоль, так и поперек площади электроустановки. Соединения на местах пересечения выполняются сваркой.

Установка в грунт вертикального заземляющего электрода

Важно! При близком расположении электродов такого типа происходит экранирование. Снижается показатель их эффективности.

Завершающим этапом выполнения заземления обязательно будет работа по измерению параметров сопротивления заземления.

Как определить сопротивление

Согласно нормативной документации, такой показатель считается основным для определения качества заземляющего устройства. Сопротивление регламентирует надежность производства основных функций заземляющих элементов.

Факторы, которые оказывают первостепенное влияние на показатель:

  1. Площадь (S) заземляющих электродов с почвой («стекание» тока).
  2. Удельное электрическое сопротивление грунта (R).

Существуют стандартные показатели сопротивления растекания, при соответствии которым реализуется эффективная работа заземляющей системы. Определяется уровень проводимости тока устройством.

Обратите внимание! Для электроустановки с напряжением в 380 В показатель сопротивления не должен превышать 30 Ом. Системы видеонаблюдения, серверные блоки и медаппаратура выполняется заземлением с сопротивлением заземляющих элементов в 0,5–1 Ом.

Определение такого показателя проводимости не единичная рекомендация. Существует еще и ряд общеобязательных требований по структуре и монтажу такого элемента заземления.

Измерение сопротивления искусственного заземлителя

Основные требования

Большая часть профильных рекомендаций и правил регламентирует конструкцию и размещение такой составной части заземляющей системы. Требования, которым должен соответствовать искусственный заземлитель:

  1. Для засушливых территорий существует отдельная технология производства заземления с применением железобетонных конструкций.
  2. Искусственный заземлитель не подлежит окраске. Объясняется тем, что любое окрашивание выполняет роль изолятора. Изоляция будет препятствовать протеканию тока в почву. Искусственный заземлитель должен иметь естественный цвет.
  3. Окраске подлежат сварочные швы (соединения проводников). Окрашиваются битумной краской, предотвращается преждевременное разрушение соединительных элементов.
  4. Нестандартные (уменьшенные) значения электродов применяются исключительно при установке временных электроустановок.

Оптимальным выбором материала заземлителя считается круглая арматура. Обоснование такого приоритета:

  1. Минимальный расход металла. Следовательно, снижается себестоимость заземляющего устройства.
  2. Коррозионная стойкость у такого электрода значительно выше, чем у его аналогов.
  3. Легкость монтажа.

Схема контура заземления из круглой арматуры

Помимо профильных требований, существует рекомендационная стандартизация параметров (размеров) материала, используемого для создания искусственного заземляющего элемента.

Как подбираются размеры искусственных электродов

Все параметры основной конфигурации проводников в обязательном порядке должны соответствовать нормативным требованиям профильной документации, в частности ГОСТ Р 50571.5.54-2013.

Основные аспекты:

  1. Стальной прут в диаметре должен быть свыше 10 мм.
  2. Оцинкованный арматурный стержень должен иметь диаметр 6 мм и больше.
  3. Соблюдение толщины стенок в уголках — свыше 4 мм.
  4. Молниезащитные заземлители применяются с сечением свыше 155 мм².
  5. Стенки отбракованных труб монтируются с толщиной свыше 3,5 мм.
  6. Толщина стенок отбракованных труб не менее 3,5 мм.

Правильно подобранные материалы и размеры электродов, применение оптимальной вариации производства такого электромонтажа — основные рабочие моменты заземления, которые влияют на качество работы заземлителя.

Искусственный электрод обладает важным эксплуатационным преимуществом, обусловленным принципом монтажа. Такой вид чаще монтируется глубоко в грунт. За счет грунтовых вод уменьшается показатель удельного сопротивления материала. Итог — реализация оптимальной характеристики и стабильности конечного сопротивления заземлителя.

220.guru

Основные функции

В электротехнике используются такие понятия, как заземление рабочее и защитное. Рабочее заземление применяется с целью обеспечения эффективной и бесперебойной работы установки. Молниеотводы, защищающие электроустановки от небесного электричества и воспламенений, также принадлежат к категории рабочих, поскольку в этом случае заземление никак не ограждает от поражений электрическим током.

Что такое искусственный заземлитель

Для защиты человека от электротока или удара молнией применяется защитное заземление. Другими словами, защитное заземление выполняется с целью снизить напряжение прикосновения до безопасного уровня. Это особенно важно на электрооборудовании с высоким, опасным для жизни напряжением.
Заземлитель является частью заземляющего устройства (заземления, ЗУ). Он плотно контактирует с грунтом. Один его конец подключен к электроприбору, благодаря чему происходит выравнивание потенциалов прибора и земли, и это защищает от удара током.

Согласно пункту 1.7.28 ПУЭ, заземлением является преднамеренно выполненное электрическое соединение точки электросети, электроустановки или оборудования с заземляющим устройством. Заземление подключают на всех электроустановках.

Расположение в грунте

Искусственное заземление применяется там, где нет возможности воспользоваться естественным заземлением, либо когда токовые нагрузки на естественные заземлители превышают допустимые нормы. Искусственные заземляющие устройства изготавливаются из стальных конструкций, но если в почвах превышена кислотность, или напротив, она подвержена ощелачиванию, применяются ЗУ из меди или оцинкованного металла.

Что такое искусственный заземлительПо форме и структуре искусственный заземлитель похож на классический электрод. Чаще, это стержень, выполненный из стальной полосы или круглого прута. По типу расположения существуют 2 основных вида ЗУ. В горизонтальном типе заземлители укладывают по периметру фундамента на дне траншеи.

Вертикальные заземлители делают из стержней диаметром 12-15 мм и длиной до 4-5 метров. Их забивают в грунт на глубину 0,5-0,7 м.

Допускается расположение искусственных заземлителей под некоторым углом, и тогда понятия вертикальный или горизонтальный становится условным.

Наклонное расположение применяют в том случае, если стена строения расположена под углом к вертикали. Наклон не сказывается существенным образом на выполняемых функциях устройства.

В заземлении электроустановок с высоким напряжением используются так называемые сложные заземлители, в которых вертикальные элементы соединены с горизонтальными.

Когда устройство искусственных заземлителей оказывается на пахотной земле, все электроды должны размещаться на глубине не менее 1 метра. Это позволяет увеличить контакт с грунтом.

Какие требования предъявляются к искусственным заземлителям

Искусственные заземлители не подлежат окрашиванию, так как окраска играет роль изолятора и препятствует отведению электротока в землю. Таким образом, цвет заземлителя должен быть естественным, которым обладает применяемый в заземляющих устройствах, металл. Но места соединения проводников (сварочные швы) должны быть окрашены битумной краской, для предотвращения разрушения.

Что такое искусственный заземлительНельзя размещать искусственные или применять естественные заземлители вблизи источников тепла, которые сушат землю. Для засушливых территорий существует особая железобетонная конструкция. Заземлитель делают в форме емкости, и помещают ниже поверхности земли. Емкость заполняют водой через люк. Таким образом, в заземлении принимает участие водораспределительная система. Стальные электроды соединены с выводом из емкости. Так обеспечивается оптимальное сопротивление.

Для создания искусственных заземлителей используются следующие материалы с указанными параметрами:

  • диаметр стального арматурного прута не менее 10 мм;
  • диаметр оцинкованного прута не менее 6 мм;
  • в уголках толщина стенок от 4 мм;
  • при использовании полосовой стали ее толщина должна быть не менее 4 мм;
  • в молниезащитных заземлителях сечение берется от 155 мм2;
  • толщина стенок отбракованных труб не менее 3,5мм.

Только для временных электроустановок можно применять электроды с минимальными значениями. Чтобы заземляющее устройство служило 40-50 лет в благоприятных грунтовых условиях, достаточно выбрать стержни для него на 2-3 мм больше. Во влажных грунтах толщина и диаметры ЗУ должны быть в 2 раза выше минимального.

Из всех названых материалов наиболее оптимальным признано использование круглой арматуры, поскольку расход металла в этом случае снижается в 1,5 раза, уменьшается соответственно и себестоимость заземляющих устройств.

Что такое искусственный заземлительКоррозионная стойкость у круглой стали выше, чем у линейной, потому что у круглого электрода площадь соприкосновения с землей самая малая в сравнении с другими формами ИЗ. Еще одно преимущество состоит в том, что стержневые круглые электроды легче монтируются, экономится время, затрачиваемое на устройство ЗУ.

При заземлении мощных высоковольтных установок применяются контуры, состоящие из горизонтальных лучей, раскинувшихся на сотни метров и нескольких десятков вертикально установленных стержней. Чтобы искусственные заземлители не экранировали друг на друга, лучи разводят горизонтально в противоположные стороны. Если лучей 3, или 4, их располагают под углом 90 и 120 градусов соответственно.

Сопротивление искусственного заземлителя

Чтобы ЗУ эффективно выполняло свою задачу, оно должно иметь сопротивление растекания, не превышающее определенных значений. Данный параметр показывает, насколько хорошо устройство проводит электрический ток.

Для заземляемой электроустановки с напряжением 380В сопротивление искусственного заземлителя не должно превышать 30 Ом. Работающие под высоким напряжением, медицинская аппаратура, серверные блоки, системы видеонаблюдения заземляются с сопротивлением 0,5-1 Ом.

Расчет для искусственных заземлителей производится с целью определить, какое количество вертикальных и горизонтальных токопроводящих стержней должно быть смонтировано для получения оптимального сопротивления.

evosnab.ru

Что представляет собой искусственный заземлитель?

В большинстве случаев в роли искусственного заземлителя выступает проводник, изготовленный из стали и помещенный в грунт в горизонтальной или вертикальной плоскости. В некоторых случаях используют целую группу подобных проводников, которые соединяют между собой. В таком случае заземлитель получается сложным. Если же электроды образуют контур, то это уже будет заземляющий контур.

Чем отличаются друг от друга вертикальные и горизонтальные заземлители?

Фактически эти понятия достаточно условны, так как, например, во втором случае, совершенно необязательно, чтобы положение заземлителя в грунте было строго горизонтальным. Однако очень важно, чтобы проводники, образующие собой заземлитель или заземляющий контур, находились на требуемой глубине. Это необходимо для того, чтобы в случае земляных работ они не получили никаких механических повреждений.

Из-за того что поверхность земли на различных ее участках не является достаточно ровной, горизонтальные заземлители должны следовать рельефу поверхности, по возможности в точности повторяя его.

Точно так же вертикальные электроды могут быть установлены не совсем вертикально, а под незначительным наклоном, который, впрочем, не будет оказывать существенного влияния на их работу.

На какую глубину помещают горизонтальный заземлитель?

Горизонтальные заземлители лучше всего прокладывать на глубине приблизительно 0,5 м. Если же земли пахотные, то глубину лучше всего увеличить приблизительно до 1 м. Их следует использовать в тех случаях, когда верхний слой грунта в состоянии обеспечить требуемую проводимость электрического тока.

Как правило, подобные заземлители устанавливаются с помощью специальных аппаратов, поэтому ручной труд здесь практически не задействуется. Следует отметить, что верхние слои почвы зачастую способны сильнее сопротивляться электрическому току по сравнению с более глубокими.

Если же заложить горизонтальный заземлитель слишком близко к поверхности земли, то в этом случае растекание электрического тока по почве будет проходить не слишком равномерно, а на более значительной глубине такой эффект достигается без лишних затрат и усилий.

У горизонтально заложенных проводников сопротивление значительно выше по сравнению с аналогичным проводником, установленным в вертикальное положение. Именно по этой причине чаще всего при проведении электромонтажных работ пользуются вертикальными проводниками.

Лучше всего для этой цели использовать глубинные вертикальные электроды, так как они способны добраться до хорошо проводящих электрический ток слоев грунта.

Как подобрать размеры искусственных заземлителей?

Заземляющие электроды, установленные в почве, а также выводы от них и любые перемычки, должны иметь следующие минимально допустимые размеры:

—              круглая сталь — диаметр 10 мм;

—              круглая оцинкованная сталь — диаметр 6 мм;

—              угловая сталь — толщина полки 4 мм;

—              общее сечение для заземлителей с присоединенной к ним системой защиты от молний — 160 мм2;

—              полосовая сталь — 4 мм, в случае, если сечение составляет 48 мм2 (при изготовлении магистрали заземления сечение должно составлять не менее 100 мм2, а для заземления с молниезащитой — 160 мм2);

—              отбракованные трубы — толщина стенок труб 3,5 мм.

Исходя из чего вычисляются минимальные размеры?

Указанные выше минимальные размеры для электродов в искусственной системе заземления берутся, главным образом, для их использования во временных установках, где условиями коррозии можно пренебречь, так как они не будут иметь решающей роли.

Если же необходимо соорудить систему заземления для постоянной установки, то в этом случае сечение заземлителей нужно выбирать таким образом, чтобы был еще и запас на коррозионное разрушение материалов. Лучше всего способна сопротивляться негативному воздействию коррозионный процессов круглая сталь. Дело в том, что разъедание металла ржавчиной напрямую зависит от поверхности металла, которая будет непосредственно соприкасаться с землей. Из-за того что площадь круглой стали наименьшая, она значительно медленнее разрушается.

Для того чтобы заземлитель надежно функционировал достаточно долгое время, например 40—50 лет, для его изготовления нужно брать материал гораздо большей толщины, чем указанное минимальное значение. Например, если фунтовые условия достаточно благоприятные, то есть не слишком влажные, то диаметр заземлителя должен быть больше всего на 2—3 мм. Если же грунт влажный, то диаметр должен быть больше минимального значения в два раза.

Как устанавливать в грунте искусственный заземлитель?

От заземляемой части электроустановки горизонтальные лучи заземляющего устройства должны расходиться в противоположных направлениях. Если же этих лучей не два, а больше, то лучше всего их располагать под углом друг к другу.

Это делают с той целью, чтобы как можно большая площадь земли использовалась рационально. Если же установить заземлители рядом друг с другом, то они будут экранироваться друг другом, следовательно, их эффективность будет в значительной степени снижена. По такой же причине на значительном расстоянии друг от друга устанавливают и вертикальные заземлители. Вертикальные заземлители лучше всего установить на расстояние, равное как минимум длине самого заземлителя.

Из-за того что потенциалы на поверхности земли могут распределиться не слишком равномерно, вокруг заземлителя будут создаваться опасные напряжения. Для того чтобы выровнять разные потенциалы, заземлитель изготавливают в форме сетки, которая должна быть сделана из горизонтальных элементов. В почве их нужно уложить вдоль и поперек места электроустановки. Также их следует соединить друг с другом с помощью сварки. Как правило, размер одной ячейки полученной сетки составляет от 6 х 6 до 10 х 10 м.

Кроме того, в некоторых случаях потенциалы выравнивают с помощью заземлителя, который изготавливают в форме концентрических колец. Их необходимо поместить в почву и соединить с заземляемым устройством.

Напряжение на поверхности можно снизить за счет сетчатого заземлителя, только в этом случае все равно высока вероятность того, что за пределами этой сетки возможность поражения электрическим током будет сохраняться. В связи с этим нужно уложить дополнительные заземлители, глубина закладки которых должна постепенно увеличиваться. Такие дополнительные конструкции также нужно соединить с основными заземлителями.

Как дополнительно обезопасить участок заземления?

Площадь заземлителя и расход металла можно сократить за счет сооружения специального изолирующего заграждения, которое устанавливается по периметру заземлителя. Следует отметить, что ограждение должно быть изготовлено из диэлектрика. Такой подход позволяет не допустить растекания электрического тока по земной поверхности. Кроме того, ограждение из диэлектрика позволяет выровнять потенциал за пределами заземлителя.

Из чего лучше всего изготовить заграждение?

Для сооружения данной конструкции можно использовать любой материал, не пропускающий электрический ток, также он должен быть весьма прочным с механической точки зрения, а электрическая прочность его должна составлять не меньше 1 МВ/м. Для этой цели лучше всего подойдут изоляторы, которые изготавливают на битумной основе. Например, к ним относят бризол, производимый из отходов производства. Его электрическая прочность обычно бывает не менее 20 МВ/м.

Какие трудности могут возникнуть при изготовлении заземлителя?

Зачастую заземлители, изготовленные из профильной стали, не в состоянии удовлетворить те требования, которые предъявляют к заземляющим конструкциям. Допустим, в засушливой местности достаточно проблематично добиться того, чтобы данный вид заземлителя имел необходимую проводимость электрического тока. В скальных породах затруднен монтаж данного типа заземлителей, а в агрессивной среде очень сложно защитить их от коррозии и одновременно добиться необходимого уровня проводимости электрического тока. Для подобных случаев разработаны специальные конструкции искусственных заземлителей.

Из чего делают заземлитель в районах с засушливыми почвами?

Для засушливых районов чаще всего используется следующая конструкция. Заземлитель представляет собой емкость, изготовленную из железобетона. Ее размещают ниже поверхности земли. Водой такая емкость наполняется через специальный съемный люк.

Такая конструкция оборудуется водораспределительной системой. Она представляет собой отрезки стальных труб, в которых имеются отверстия для стока воды, располагающиеся равномерно по всей длине трубы. Трубы покрывают слоем материала, способного поглощать влагу, например бетоном или цементом. Скорость фильтрации влаги, с которой вода будет просачиваться через бетон и уходить в почву, напрямую зависит от марки бетона. Правильно подобранный бетон позволит сократить затраты усилий, направленных на регулярное увлажнение. Вывод от железобетонной емкости соединяется со стальными стержнями.

Какие отличительные черты иностранной конструкции заземлителя современного образца?

Основная цель данной конструкции состоит в уменьшении металлоемкости и облегчении помещения этого устройства в грунт. Заземлитель в этом случае оснащен тонкостенной металлической трубкой (толщина ее стенок равна 1—2 мм). При этом в нее установлен полужесткий стержень, изготовленный из пластичного материала. Однако его жесткость достаточна для того, чтобы служить опорой для упругой трубки с не слишком толстыми стенками. Данное свойство позволяет заземлителю обходить препятствия, которые встречаются на его пути. Для того чтобы максимально увеличить срок службы данного заземлителя, трубку изготавливают из нержавеющей стали.

На конце, этой трубки имеется конусообразный стальной наконечник, изготовленный из обычной стали. Он предназначен для того, чтобы трубку можно было как можно легче забивать в землю. Если же наконечника нет, то трубку можно попросту обжать в тисках.

Диаметр данной трубки обычно составляет 15 см. При этом диаметр сердечника, который впрессовывают в такую трубку, обычно больше его. Трубку иногда заполняют не полужестким сердечником, а текучим материалом, затвердевающим после заполнения. Чаще всего для этой цели используют эпоксидную смолу, полиуретан или эластомер.

Однако не следует использовать для этой цели слишком пластичные материалы, так как они не способны создать достаточную прочность для стенок трубки, ведь ее придется забивать на относительно большую глубину — приблизительно 2,3 м. Для того чтобы забить такую конструкцию в почву, используют специальную съемную наковальню. В ее конструкции предусмотрено плечо, которое упирается в конец трубки, а также выступ, который соединяется не только с внутренним диаметром самой трубки, но и пластичным сердечником.

www.eti.su


Categories: Заземление

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector