Услуги электролаборатории

Мы проводим замер сопротивления изоляции на территории Санкт-Петербурга и Ленинградской области. По результатам выполненных работ Вы получите полный пакет документов для предоставления в МЧС и Ростехнадзор, в сжатые сроки и по умеренным расценкам. Даем гарантию, что наши расценки одни из самых низких среди конкурентов.

Сколько стоит замер сопротивления изоляции?

Стоимость работ зависит от количества линий, которые необходимо проверить. На небольших объектах (офис, салон красоты, магазин) Вы можете сами предварительно посчитать стоимость заказа, для этого необходимо количество автоматических выключателей, автоматов, которые установлены в щитке умножить на 200 рублей. Минимальная сумма договора 6000 рублей.

Отправьте Ваши реквизиты, указав площадь объекта или количество автоматических выключателей, в кратчайшие сроки мы вышлем договор и подробную смету.


Если у Вас несколько объектов или вы обращаетесь к нам повторно, предоставим скидку до 40%

Более подробный прайс-лист на замеры сопротивления изоляции, петли фазы нуль и другие Вы можете посмотреть в соответствующем разделе нашего сайта.

Почему мы?

  • Мы выполняем работы в максимально сжатые сроки. С момента поступления заявки до передачи готового отчета проходит не более трех дней.
  • Мы гарантируем присутствие руководителя лаборатории в случае возникновения разногласий с проверяющими органами, эти гарантии являются неотъемлемой частью договора.
  • При выявлении мелких неисправностей, устраним бесплатно, на месте.
  • Бесплатный выезд специалиста на объект, для расчета стоимости работ.

Что Вы получите по результатам выполненных работ?


По результатам выполненных работ мы передаем технический отчет, в полном соответствии с требованиями ГОСТ-Р-50571. В технический отчет будут вложены копии свидетельства о регистрации лаборатории (лицензии) и протоколы измерений.

Кто и как выполняет замер сопротивления изоляции?

Проверка сопротивления изоляции способна выявить отклонения данного параметра от нормы. Это, в свою очередь, может спасти от выхода из строя электрическое оборудование в результате короткого замыкания, от возгорания электропроводки и от поражения людей электрическим током. Для предотвращения аварийных ситуаций необходимо своевременно проводить данные измерения. Технический отчет о проведении замера сопротивления изоляции необходимо предъявить инспектору МЧС при проверке соблюдения требований пожарной безопасности на объекте защиты.

Значения сопротивления изоляции указывают в мегаомах [МОм]. Соответственно замер сопротивления изоляции проводится с использованием мегомметров. Для проведения таких работ нужен допуск на проведение специальных работ. Поэтому часто замер сопротивления изоляции проводят специальные электроизмерительные лаборатории, укомплектованные квалифицированным персоналом. Процедура измерения сопротивления изоляции описана в ГОСТ 3345-76. Она предусматривает подключение клемм мегомметра к жилам кабельной линии и подачу высокого напряжения. Пока идет проведение замера сопротивления изоляции, вся нагрузка должна быть отключена.


Замер сопротивления изоляцииСопротивление изоляции определяется согласно закону Ома для участка цепи, как отношение напряжения, приложенного к цепи, к току, который вызвал это напряжение. Однако сопротивление изоляции не является стабильным параметром. Оно зависит от таких факторов, как температура и влажность. Поэтому замер сопротивления изоляции проводов проложенных в земле лучше проводить в период максимальной влажности грунта. Нормированное значение сопротивления изоляции не должно быть ниже значений, которые указаны в ПТЭЭП и ПУЭ.

Напряжение, которое генерирует мегомметр, выбирается в зависимости от того, на какое напряжение рассчитана сеть. Так, если напряжение цепи не превышает 100 В (например, цепи телемеханики или управления), то мегомметр имеет напряжение 100 В. Если цепи рассчитаны на напряжение свыше 1000 В (силовые кабели, обмотки трансформаторов и т.д.), то на них подаётся 2500 В для измерения сопротивления изоляцииЕсли же проводится проверка сопротивления изоляции кабелято испытательное напряжение выбирается исходя из его сечения: 1000 В для кабеля, сечение жилы которого меньше 16 мми 2500 В если проводится замер сопротивления изоляции проводов сечением 16 мми более.
По завершении измерений составляется протокол на замер сопротивления изоляции стоимость, которого зависит от количества кабельных линий, другое название этого документа — акт сопротивления изоляции.
т, в который записывается измерение сопротивления изоляции кабелей  должен храниться в электролаборатории не менее пяти лет.

Минимальные значения сопротивления изоляции

Минимальное нормированное значения этого показателя зависит от назначения цепи. Например, сопротивление изоляции кабеля силового до 1000 В должно быть не меньше 0,5 МОм. Таким же сопротивлением изоляции проводов должны обладать вторичные цепи и устройства защиты и управления. В случае, когда замеры сопротивления изоляции проводов показали значение 1 Мом, проводятся дополнительные испытания изоляции промышленной частотой.

Для силовых трансформаторов сопротивление основной изоляции ввода не должно быть меньше 10 ГОм. Сопротивление обмотки статора двигателя на напряжение до 660 В должно быть не менее 1 МОм и не менее 0,5 МОм при температуре 60 градусов по Цельсию.

Замер сопротивления изоляции

На фото выше сопротивление изоляции 0,14 Мом, что ниже допустимого 0,5 МОм и свидетельствует о повреждении кабельной линии. Измерение проводилось прибором METREL MI 3100S.


Периодичность измерения сопротивления изоляции

Периодичность  замеров сопротивления изоляции обозначена в ПТЭЭП (приложение 3.1). В частности, измерение сопротивления изоляции электропроводки (включая осветительную сеть) проводится на особо опасных объектах каждый год. В остальных случаях замеры сопротивления изоляции проводов проводят раз в три года. Проверка электрического сопротивления изоляции лифтов и кранов проводится каждый год. Сроки в которые должно проводится измерение сопротивления изоляции электрооборудования (сварочные аппараты, переносные электроприемники) составляют полгода. Несоблюдение сроков, в которые нужно выполнить измерение сопротивления изоляции проводов, не только повышает вероятность возникновения аварийной или опасной ситуации, но и влечёт за собой санкции.

Так, если проверка сопротивления изоляции проводов не будет выполнена в срок и не будет представлен акт сопротивления изоляции, то это будет квалифицировано, как нарушение статьи 9.11 административного кодекса РФ. Для юридических лиц ответственность по этой статье заключается в штрафе от 10 до 20 тыс. рублей, либо в административном приостановлении деятельности сроком до 90 суток.


В любой организации должна быть установлена периодичность проведения замера сопротивления изоляции проводов, в соответствии с техническими условиями эксплуатируемого оборудования.  Обычно измерение сопротивления изоляции кабеля проводят при эксплуатационных испытаниях.

Видео как производится измерение

Получить консультации или заказать измерение сопротивления изоляции от компании Балтсервис можно связавшись с нами любым удобным для Вас способом:

  • позвонить по телефону (812) 244 58 21 с 9 до 18 часов по Московскому времени
  • написать на электронный адрес office@baltservice.net
  • отправить заявку через форму заявки
  • написать в онлайн-консультант

Наши менеджеры всегда к Вашим услугам!!!

 

Источник: Baltservice.net

Как мы работаем:

Сколько стоит замер сопротивления изоляции?


Стоимость работ зависит от количества линий, которые необходимо проверить. На небольших объектах (офис, салон красоты, магазин) Вы можете сами предварительно посчитать стоимость заказа, для этого необходимо количество автоматических выключателей  (автоматов), которые установлены в щитке (-ах) умножить на 200 рублей. Минимальная сумма договора 6000 рублей.

Отправьте Ваши реквизиты, указав площадь объекта или количество автоматических выключателей, в кратчайшие сроки мы вышлем договор и подробную смету.

Если у Вас несколько объектов или вы обращаетесь к нам повторно, предоставим скидку до 40%

Нашли дешевле? Отправьте нам ценовое предложение конкурента на info@cenerg.ru, мы предоставим скидку в 15% от указанной стоимости.

Более подробный прайс-лист на электроизмерительные работы Вы можете посмотреть в соответствующем разделе нашего сайта.

Что Вы получите по результатам выполненных работ?

По результатам выполненных работ передаем технический отчет, в полном соответствии с требованиями ГОСТ-Р-50571. В технический отчет будут вложены копии свидетельства о регистрации лаборатории (лицензии) и протоколы измерений.

Отзывы о нашей работе

Кто и как выполняет замер сопротивления изоляции?

Такая проверка способна выявить отклонения данного параметра от нормы. Это, в свою очередь, может спасти от выхода из строя электрическое оборудование в результате короткого замыкания, от возгорания электропроводки и поражения людей электрическим током. Для предотвращения аварийных ситуаций необходимо своевременно проводить данные измерения. Технический отчет необходимо предъявить инспектору МЧС при проверке соблюдения требований пожарной безопасности на объекте защиты.


Значения сопротивления указывают в мегаомах [МОм]. Соответственно испытания проводится с использованием мегомметров. Для проведения таких работ нужен допуск по электробезопасности с правом испытания оборудования повышенным напряжением. Поэтому испытание проводят специальные электроизмерительные лаборатории, укомплектованные квалифицированным персоналом. Процедура описана в ГОСТ 3345-76. Она предусматривает подключение клемм мегомметра к жилам кабельной линии и подачу высокого напряжения. На время проведения испытаний, вся нагрузка должна быть отключена.

измерение сопротивления изоляцииСопротивление определяется согласно закону Ома для участка цепи, как отношение напряжения, приложенного к цепи, к току, который вызвал это напряжение. Однако сопротивление изоляции не является стабильным параметром. Оно зависит от таких факторов, как температура и влажность. Поэтому проверка кабелей и проводов проложенных в земле лучше проводить в период максимальной влажности грунта. Нормированное значение не должно быть ниже значений, которые указаны в ПТЭЭП и ПУЭ.


Напряжение, которое генерирует мегомметр, выбирается в зависимости от того, на какое напряжение рассчитана сеть. Так, если напряжение цепи не превышает 100 В (например, цепи телемеханики или управления), то мегомметр имеет напряжение 100 В. Если цепи рассчитаны на напряжение свыше 1000 В (силовые кабели, обмотки трансформаторов и т.д.), то на них подаётся 2500 В. Если же проводится проверка кабеля, то испытательное напряжение выбирается исходя из его сечения: 1000 В для кабеля, сечение жилы которого меньше 16 мми 2500 В если проводится замер сопротивления изоляции проводов сечением 16 мми более.
По завершении измерений составляется протокол, другое название этого документа – акт.

Минимальные значения сопротивления изоляции

Минимальное нормированное значения этого показателя зависит от назначения цепи. Например, у кабеля силового до 1000 В должно быть не меньше 0,5 МОм. Такие же значение должны быть у вторичных цепей и устройств защиты и управления. В случае, когда измеренное значение 1 Мом, проводятся дополнительные испытания изоляции промышленной частотой.

Для силовых трансформаторов сопротивление основной изоляции ввода не должно быть меньше 10 ГОм. Сопротивление обмотки статора двигателя на напряжение до 660 В должно быть не менее 1 МОм и не менее 0,5 МОм при температуре 60 градусов по Цельсию.

На фото полученное значение 0,14 Мом, что ниже допустимого 0,5 МОм и свидетельствует о повреждении кабельной линии. Измерение проводилось прибором METREL MI 3100S.


Периодичность измерения сопротивления изоляции

Периодичность проведения испытаний обозначена в ПТЭЭП (приложение 3.1). В частности, проверка электропроводки (включая осветительную сеть) проводится на особо опасных объектах каждый год. В остальных случаях измерения проводят раз в три года. Также испытание необходимо проводить при вводе в эксплуатацию электроустановок, как правило это требует администрация торговый центров, управляющие компании и тд. Проверка лифтов и кранов проводится каждый год. Сроки в которые должно проводится измерение сопротивления изоляции электрооборудования (сварочные аппараты, переносные электроприёмники) составляют полгода. Несоблюдение сроков, в которые нужно выполнить испытание, не только повышает вероятность возникновения аварийной или опасной ситуации, но и влечёт за собой санкции.

Так, если проверка не будет выполнена в срок и не будет представлен акт сопротивления изоляции, то это будет квалифицировано, как нарушение статьи 9.11 административного кодекса РФ. Для юридических лиц ответственность по этой статье заключается в штрафе от 10 до 20 тыс. рублей, либо в административном приостановлении деятельности сроком до 90 суток.

В любой организации должна быть установлена периодичность проведения испытаний электролабораторией, в соответствии с техническими условиями эксплуатируемого оборудования. Обычно проверку кабелей и проводов проводят при эксплуатационных испытаниях.

Видео как производится измерение

Фото с последних объектов

Остались вопросы?

Заполните форму заявки, специалисты нашей компании свяжутся с вами, подробно расскажут о всех видах работ, действующих специальных предложениях и акциях.

Источник: cenerg.ru

Качественные изолирующие материалы определяют функциональность и надежность снабжения объектов электрической энергией. Каждый специалист на предприятии должен понимать важность свойств изоляции оборудования. Периодически необходимо контролировать работу электрических устройств, проводить измерение сопротивления изоляции.

Материал изоляции кабелей имеет свой срок службы. На качество диэлектрического материала изоляции влияют следующие факторы:
  • Высокое напряжение.
  • Солнечный свет.
  • Механические повреждения.
  • Температурный режим.
  • Среда использования.

Измерение сопротивления изоляции рекомендуется для более точного выяснения причин повреждений в кабельной цепи, или цепи электрических устройств, а также для проверки возможности дальнейшей эксплуатации изоляции.

Если дефект изоляции обнаружен визуально, то выполнять измерения сопротивления уже нет необходимости. При обнаружении нарушения изоляции с помощью мегомметра, можно предотвратить:
  • Неисправности устройств.
  • Возникновение пожара.
  • Аварийные ситуации.
  • Чрезмерный износ устройства.
  • Короткие замыкания.
  • Удары электрическим током персонала, обслуживающего устройства.
Методика

Главной характеристикой состояния изоляции электрооборудования принято считать сопротивление постоянному току, поэтому обязательной частью проверки цепей является контроль сопротивления изоляции.

Приборы

Значение сопротивления изоляции контролируется при помощи мегомметрами. Сегодня популярными являются мегомметры марок: М — 4100, ЭСО 202 / 2Г, MIC – 30, MIC — 1000, MIC-2500. Прогресс технологий в электротехнике не стоит на месте, поэтому виды измерительных приборов постоянно обновляются.

Izmerenie soprotivleniia izoliatsii MIC-30

Мегомметр состоит из источника питания постоянного тока и механизма измерения. В качестве источника тока может использоваться генератор переменного тока с выпрямительным мостом.

Мегомметры можно разделить по величине напряжения:
  • До 1000 вольт.
  • До 2500 вольт.

В комплекте к прибору приложены гибкие медные проводники. Их длина может достигать до 3 метров. Сопротивление изоляции измерительных проводов должно быть более 100 мегом. Концы проводов мегомметра должны быть оснащены наконечниками со стороны подключения к прибору. Другие концы проводов должны оснащаться зажимами вида «крокодил» с рукоятками из диэлектрического материала.

Порядок измерений
Перед началом контрольных измерений необходимо выполнить:
  • Перед непосредственным измерением необходимо выполнить контрольную проверку прибора. Такая проверка производится путем определения показаний прибора во время разомкнутых и замкнутых проводников. При разомкнутых проводниках стрелка или индикатор должны показывать бесконечное сопротивление. При замкнутых проводах показания должны быть близки к нулю.
  • Обесточить измеряемый кабель. Для проверки отсутствия напряжения необходимо пользоваться указателем напряжения, который испытан на заведомо подключенном к напряжению участке цепи электроустановки, согласно требованиям правил охраны труда.
  • Произвести заземление токоведущих жил испытуемого кабеля.

Во время измерения сопротивления на участках цепи свыше 1000 вольт, необходимо применять диэлектрические резиновые перчатки. Запрещается касаться токоведущих элементов, присоединенных к мегомметру.

Сопротивление проверяется для отдельной фазы по отношению к другим фазам. При отрицательном результате необходимо проверить сопротивление изоляции между отдельной фазой и землей.

Схема проверки сопротивления

Izmerenie soprotivleniia izoliatsii skhema

Измерение сопротивления изоляции на кабеле, рассчитанном на напряжение более 1000 вольт, на изоляцию накладывают экранное кольцо, которое соединено с экраном.

При работах с кабелями до 1000 вольт, имеющих нулевые жилы, необходимо знать:
  • Изоляция нулевых проводов должна быть не хуже, чем у фазных проводников.
  • Нулевые проводники должны быть отключены от заземления со стороны приемника и источника питания.

При вращении ручки привода генератора мегомметра необходимо добиться устойчивого состояния стрелки прибора. Только после этого можно измерять сопротивление. Для устойчивого положения стрелки ручку вращают со скоростью около 120 об / мин.

После начала вращения ручки до момента измерения должно пройти не менее 1 минуты. Далее после подключения проводов к кабелю необходимо выждать 15 секунд. После этого зафиксировать величину сопротивления.

При ошибочно выбранном интервале измерений, необходимо выполнить следующие мероприятия:
  • Снять напряжение с измеряемого проводника, подключить к нему заземление.
  • Установить правильное положение переключателя и возобновить измерение на новом диапазоне.

При подключении и снятии заземления применение диэлектрических перчаток является обязательным. После проведения измерений на кабеле накапливается заряд энергии, который необходимо снять перед отключением прибора. Заряд снимается при помощи наложения заземления.

Проверка изоляции осветительной цепи
Измерение сопротивления изоляции осветительной цепи выполняется мегомметром, рассчитанным на напряжение до 1000 вольт. Работы по измерению включают в себя следующие этапы:
  • Измерение сопротивления изоляции магистрали: от щитов 0,4 кВ до электрических автоматов распредщитов.
  • Сопротивления изоляции от этажных распредщитов до квартирных щитков.
  • Измерение сопротивления изоляции цепи освещения от автоматов выключения и групповых щитков до арматур освещения. В светильниках перед измерением отключается напряжение, выключатели света должны находиться во включенном состоянии, нулевые рабочие и защитные провода должны быть отключены, лампы освещения вывернуты. Если применяются газоразрядные лампы, то их допускается не выкручивать, однако необходимо снять стартеры.
  • Значение сопротивления на участках освещения и осветительной арматуры должно быть выше 0,5 мегома.

Информация по применению в измерениях приборов, и итоги замеров оформляются протоколами.

Требования безопасности

Работники измерительной лаборатории, направленные для исполнения работ в различных электроустановках, и не находящиеся в штате предприятия, владеющего электроустановкой, считаются командированными работниками.

Специалисты должны иметь в наличии определенной формы удостоверения. При этом должна быть отметка комиссии командирующей фирмы о присвоении группы электробезопасности. Фирма, отправляющая специалистов, несет ответственность за исполнение нормативов по технике безопасности и соответствию групп по электробезопасности.

Организация работ сотрудников предполагает выполнение мероприятий перед началом работ:
  • Извещение владельца проверяемой электроустановки о целях работы.
  • Предоставление специалистам права производства работ в виде выдачи наряда, назначения ответственных лиц.
  • Проведение вводного инструктажа.
  • Ознакомление с электросхемой и особенностями установки.
  • Подготовка рабочего места.

Организация (владелец) несет ответственность за соблюдением требований охраны труда. Работы осуществляются по наряду-допуску.

При выполнении измерений необходимо:
  • Соблюдать указания инструкций, применяемых приборов, разработанных на предприятии. Также необходимо выполнять вспомогательные требования согласно нарядам-допускам.
  • Запрещается начинать работы по измерениям, не убедившись в отсутствии напряжения на измеряемом участке. Контролировать отсутствие напряжения питания при выполнении измерений. Это требование выполняется с помощью испытанного указателя, который должен быть протестирован на подключенных к напряжению элементах электроустановки, согласно правилам ТБ. Напряжения контролировать между фазами, землей и фазами. Эта операция требует особой тщательности и ответственности.
  • Коммутацию приборов осуществлять при обесточенных токоведущих частях.
  • Обеспечить использование средств защиты и специального инструмента с диэлектрическими ручками, которые заранее испытаны.

Бригада специалистов должна иметь в составе не менее 2-х человек, включая производителя работ с 4 группой электробезопасности, и работника с 3 группой электробезопасности. При выполнении измерений запрещается подходить к токоведущим элементам ближе безопасного расстояния, которое определено в таблице.

 Izmerenie soprotivleniia izoliatsii tablitsa
Интервалы проведения проверок

Временные нормативы проведения плановых измерений величин сопротивлений, значение напряжения для измерения изоляции описываются в правилах технической эксплуатации. Ежегодно производится измерение сопротивления изоляции осветительной аппаратуры, лифтовой проводки, а также электропроводки подъемно-транспортных механизмов.

В остальных случаях такие проверки осуществляются один раз в несколько лет. Каждые 6 месяцев производится проверка переносного электрооборудования и инструмента, а также сварочных аппаратов.

При невыполнении установленных интервалов проверок повышается вероятность появления различных нежелательных неисправностей электроустановок. Нарушители этих правил могут подвергаться определенным санкциям и штрафам. В организациях должны быть разработаны планы проведения проверок изоляции. При этом делается упор на особенности и технические запросы, которым должны соответствовать электроустановки, а также кабельные сети. Изоляция проверяется во время эксплуатационных испытаний.

Похожие темы:
  • Инструмент для электрика. Измерительные приборы. Вспомогательный…
  • Проверка обмоток электродвигателя. Неисправности и методы проверок
  • Измерение напряжения. Виды и принцип измерений
  • Источник: electrosam.ru

    Проверка: испытание или измерение?

    На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

    испытание электрической прочности изоляции

    Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

    измерение сопротивления изоляции является неразрушающим тестированием.

    При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

    Типовые причины неисправности изоляция

    Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

    Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

    1. Электрические нагрузки

    В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

    2. Механические нагрузки

    Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

    3. Химические воздействия

    Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

    4. Напряжения, связанные с колебаниями температуры:

    В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

    5. Загрязнение окружающей среды

    Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

    В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

    Типовые причины неисправности изоляция

    Внешние загрязнения:

    Внешние загрязнения изоляции

     

    В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

    Принцип измерения сопротивления изоляции и влияющие на него факторы

    Принцип измерения сопротивления изоляции и влияющие на него факторы

    Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

    На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

    Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

    • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
    • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
    • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

    На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

    Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

    На графике три тока показаны в зависимости от времени

    Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

    Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

    Влияние температуры

    Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

    Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

    Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

    Коррекция сопротивления изоляции в зависимости от температуры

     

    Методы тестирования и интерпретация результатов

    Кратковременное или точечное измерение

    Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

    Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

    На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

    пример показаний сопротивления изоляции для электродвигателя

    В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

    Резкое падение в точке B указывает на повреждение изоляции.

    В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

    Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

    Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

    Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

    Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

    Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

    Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

    Показатель поляризации (PI)

    При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

    Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

    Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

    PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

    Результаты интерпретируются следующим образом:

    Коэффициент диэлектрической абсорбции (DAR)

    Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

    DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

    Результаты интерпретируются следующим образом:

     

    Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

    Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

    Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

    Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

    Метод испытания рассеиванием в диэлектрике (DD)

    Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

    Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

    Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

    DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

    Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

    Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.

    Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

    Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре

    При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).

    При измерении значений сопротивления изоляции на точность измерений могут повлиять токи утечки

    При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.

    Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.

     

    Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно

    Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.

    Нормы испытательного напряжения для кабелей/оборудования

     

    В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).

    Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).

    Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).

    Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.

    Безопасность при тестировании изоляции

    Безопасность при тестировании изоляции

    Перед тестированием

    A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.

    B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).

    C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.

    D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.

    E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.

    После тестирования

    К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.

    Часто задаваемые вопросы

    Результат моих измерений – x МОм. Это нормально?

     

    Результат моих измерений – x МОм. Это нормально?

    Какое должно быть сопротивление изоляции — на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.

    Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?

    Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.

    Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?

    При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.

    • Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
    • Используйте чистые, сухие провода.
    • Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
    • Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
    • Для стабилизации измерения выждите необходимое время.

    Почему два последовательных измерения не всегда дают одинаковый результат?

    Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.

    Как протестировать изоляцию, если я не могу отключить установку?

    Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.

    Как выбрать измеритель сопротивления изоляции (мегомметр)?

    Как выбрать измеритель сопротивления изоляции (мегомметр)

    При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:

    • Какое максимальное испытательное напряжение необходимо?
    • Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
    • Какое максимальное значение сопротивления изоляции будет измеряться?
    • Как будет подаваться питание на мегомметр?
    • Каковы возможности хранения результатов измерений?

    Примеры измерений сопротивления изоляции

    Измерение изоляции на электрической установке, электрооборудовании

    Измерение изоляции на электрической установке, электрооборудовании

    Измерение изоляции на вращающейся машине (электродвигатель)

    Измерение изоляции на вращающейся машине (электродвигатель)

    Измерение изоляции на электроинструменте

    Измерение изоляции на электроинструменте

    Источник: skomplekt.com

    Работа с мегаомметром

    Что такое мегаомметр?

    Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.

    Итак:

    • На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.
    • По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.

    Кто и когда имеет право производить замеры мегаомметром

    Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.
    Итак:

    • Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.

    Обратите внимание! Наружная электропроводка и проводка, выполненная в особо опасных помещениях, должна проходить замер сопротивления изоляции ежегодно. Кроме того ежегодно проходит проверку электропроводка кранов, лифтов, детских и оздоровительных учреждений.

    • Периодичность проверки сопротивления изоляции электропроводки электрических печей составляет 1 раз в полгода. При этом замеры должны производиться во время максимально нагретого состояния печи.
      Кроме того раз в полгода следует визуально осматривать состояние заземления печи. Эти же нормы проверки относятся и к сварочным аппаратам.

    Как работать с мегаомметром?

    Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.

    Обратите внимание! Для работы с мегаомметром во всех электроустановках, на которых предстоит производить замеры, следует снять напряжение. Кроме того следует снять напряжение с соседних электроустановок, к которым возможно случайное прикосновение.

    Итак:

    • Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
    • После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
      1. В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
      2. После этого включаем все выключатели сети освещения.
      3. Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
      4. Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.

    Обратите внимание! При выполнении замера должны быть приняты меры по предотвращению повреждения полупроводниковых и микроэлектронных приборов в цепи. Поэтому если в вашей цепи таковые присутствуют, их необходимо «выцепить» до проведения замеров.

    • После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
    • Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.
    • Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.

    Несколько слов о мультиметре

    Большинство мультиметров имеют функцию замера сопротивления. Но измеряют они не сопротивление изоляции, а сопротивление электрической цепи.

    Поэтому для проведения периодических проверок сопротивления изоляции он не предназначен. Мультиметр позволит вам своими руками отыскать место повреждения провода, найти плохой контакт, проверить целостность заземляющего проводника, а также еще целый ряд необходимых задач. Но замерить сопротивление изоляции он не способен.

    Вывод

    Надеемся, наша инструкция поможет вам определиться со сроками и методами проведения проверки сопротивления изоляции. Ведь многочисленные видео в сети интернет зачастую дают информацию несоответствующую действительности о возможности использования для этих целей мультиметра.

    Недаром в большинстве случаев такими измерениями занимаются специальные высоковольтные лаборатории, которые имеют все необходимое оборудование, специалистов и сертификацию, согласно действующего законодательства.

    Источник: Elektrik-a.su



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.