1. Тепловой баланс котла характеризует равенство между количествами подведенной и расходуемой теплоты.

2. Расход топлива паровым котлом, вырабатывающим перегретый пар, определяется по формуле Кпд котла

3. Расход топлива паровым котлом, работающим на газообразном топливе, определяемый по формуле Кпд котлавыражается вм3/с.

4. Теплота Кпд котла, воспринятая водой и паром в паровом котле, вырабатывающем перегретый пар, может быть определена из уравненияКпд котла

5. Суммарные потери теплоты в котле складываются из потерь с уходящими газами, от химической неполноты сгорания топлива, от механического недожога, через ограждения топки и конвективных газоходов, с физической теплотой шлаков.

6. КПД котла «брутто» методом прямого баланса рассчитывается по формуле


Кпд котла

7.Если Q1 = 27 МДж/кг, Qi= 30 МДж/кг, то КПД котла «брутто» в % равен …

Кпд котла

8. Балансовые испытания проводят в установившемся (стационарном) режиме работы котла.

9. Если при балансовых испытаниях не представляется возможным точно измерить расход топлива котлом, то для его определения применяют метод обратного баланса.

10. КПД котла «брутто» методом обратного баланса рассчитывается по формуле

Кпд котла

11. В уравнении теплового баланса котла потери теплоты с физической теплотой шлаков, удаляемых из топки, обозначаются q6.

12. Если потери теплоты с уходящими газами, от химической неполноты сгорания топлива, от механического недожога, через ограждения топки и конвективных газоходов и с физической теплотой шлаков суммарно составляют 7,8%, то КПД котла «брутто» равен


Кпд котла

13. Если КПД котла «брутто» равен 92,5%, то потери теплоты с уходящими газами, от химической неполноты сгорания топлива, от механического недожога, через ограждения топки и конвективных газоходов и с физической теплотой шлаков суммарно равны

Кпд котла

14. КПД «брутто» современных котлов превышает 90 %.

7.4. Технологическая схема котельной установки

1. Пароперегреватель обозначен на рисунке цифрой 2.Кпд котла

2. Водяной экономайзер обозначен на рисунке цифрой 3.

3. Водоподготовка включает следующие процессы осветление, умягчение и деаэрацию.


4. Центробежный скруббер предназначен для очистки дымовых газов.

5. Назначение дымовой трубы уменьшение средней концентрации вредных веществ в атмосферном воздухе.

6. К снижению выбросов оксидов азота с дымовыми газами приводит снижение температуры в ядре факела.

7. Высота дымовых труб современных тепловых электростанций достигает 300 м.

8. Необходимость очистки дымовых газов от золы связана с защитой атмосферы и предотвращением абразивного износа оборудования.

9. В результате повышения термического сопротивления стенок экранных труб из-за отложений накипи металл труб может потерять прочность.

10. Из-за отложений накипи на внутренних стенках экранных труб охлаждение стенок труб движущимися внутри них водой или паром ухудшается.

11. Средством уменьшения уноса солей с паром является промывка пара питательной водой в барабане котла.

12. Если паропроизводительность котла D=14 т/ч, продувка составляет Dпр=0,35 т/ч, то расход питательной воды в т/ч равен

Кпд котла

7

studfiles.net

КПД твёрдотопливного котла


Мощность твердотопливного котла системы отопления, а значит способность обогревать помещение – это конечно важный параметр, но не настолько, чтобы ставить его во главу угла. Нужно обратить внимание ещё и на то, сколько он потребляет топлива для этого. Соотношение данных затрат к количеству полезного тепла, выделенного котлом для обогрева дома называется коэффициентом полезного действия, или сокращённо КПД.

От чего зависит КПД твёрдотопливного котла (а соответственно и мощность)? В первую очередь от потерь полезного тепла, которое может происходить из-за недожога выделяемых при горении газов (благодаря чему кстати образуется сажа), качественных характеристик топлива и степени выброса в трубу энергии тепла. Об этих и других факторах, снижающих показатель КПД, будет рассказано далее.

Почему не стоит доверять рекламе

При просмотре рекламных объявлений, относящихся к мощности твёрдотопливных котлов, часто можно увидеть предложения, обещающие от 90% КПД и выше. Однако если Вы запросите какой-нибудь официальный протокол или акт, подтверждающий этот показатель – Вам его не смогут предоставить, и вот почему.

Чтобы составить подобный документ, необходимо провести испытания, используя для этого соответствующим образом стандартизованное топливо. В отношении угля или дров получить такое топливо нельзя – потому что они по своим характеристикам и составу являются самыми нестабильными в мире. Как можно получить постоянный показатель, используя непостоянные составляющие?

Нестабильность твёрдого топлива


Рассмотрим, в чём же заключается нестабильность угля или дерева в качестве топлива. Начнём с угля.

Различных марок угля, предлагаемого на рынке, бесчисленное множество. Каждая марка отличается по структуре, химическому составу и влажностью. Может состоять как из крупных кусков, так и из мельчайших частиц, и все они могут быть смешаны в разных пропорциях. Соответственно теплотворность угля каждый раз будет разная. Соответственно КПД и мощность твердотопливного угля также будет разной.

Если говорить о дровах – то здесь ситуация точно такая же. Поленья обладают разными размерами, хранятся при различной влажности воздуха, а значит способность выделять тепло у них будет различная. Так, например, если при влажности дров, равной 15%, их теплотворность будет равна примерно 4.3 кВт*ч на килограмм, то при 20% она уже будет меньше 4 кВт*ч на килограмм. При большей влажности этот показатель будет ещё ниже.

Естественно, что при таких разбросах гарантировать точные КПД и мощность твёрдотопливного котла, равный 90% — мягко говоря вводить в заблуждение.

Рассмотрим другие факторы, влияющие на показатель коэффициента полезного действия.

Неправильная подача воздуха


мощность твердотопливного котла

От того, сколько кислорода поступает в топку, сильно зависит работа пламени. Чтобы топливо нормально горело и отдавало максимальное количество тепла, ему необходимо строго определённое количество воздуха – не больше, не меньше. Если воздуха будет мало – углеводороды, выделяемые при горении, будут плохо окисляться, а значит будет меньше выделяться тепла. Если же воздуха поступает много, а он, как правило, поступает охлаждённый, снижается температура выделяемых газов и они не успевают сгореть (оседая опять же сажей на трубах) и выделить тем самым полезное тепло. Стоит заметить, что в воздухе содержится влага, на испарение которой так же тратится тепло (вместо того, чтобы обогревать дом).

Большинство твёрдотопливных котлов, предлагаемых на рынке, работают по следующему принципу. В них установлен термостат, который регулирует температуру воды, циркулирующую по отопительной системе дома для его обогрева. Если вода становится слишком горячей – термостат уменьшает подачу воздуха в котёл (так регулируется мощность твердотопливного котла). Получается, что в тот момент, когда топливо разгорелось и КПД с мощность твердотопливного котла стало максимальным, а значит пламя стало нуждаться в большем количестве кислорода – термостат искусственно снижает КПД, ограничивая подачу воздуха.


После того, как температура снизилась, термостат опять начинает подавать воздух. Но к тому моменту топливо уже догорает и ему не нужно столько кислорода. Эффективность обогрева опять снижается за счёт охлаждения выделяемых газов, о чём было сказано ранее.

Получается, что принцип действия большинства твёрдотопливных котлов абсолютно противоречит понятию высокого КПД.

Холодные стенки котла

Обычно вокруг твёрдотопливного котла смонтирована ёмкость с водой, которая, нагреваясь, циркулирует по дому. Наличие воды способствует охлаждению стенок котла. Это опять же приводит к тому, что топливо не может нормально гореть. Его остатки вылетают в трубу и оседают на ней в виде сажи, не принеся никакой пользы. Ситуация усугубляется довольно тесным пространством в топке, что так же снижает количество кислорода, и без того низкое.

Круглосуточная потеря тепловой энергии

Для поддержания нужной температуры в доме твёрдотопливный котёл должен работать 24 часа в сутки. Теперь представьте, сколько за это время полезного тепла вылетает в трубу в виде сажи и несгоревших газов? КПД при такой работе никак не может быть 90%.

Здесь стоит упомянуть ещё такой тип котла, как пиролизный. В добавок к вышеуказанным недостаткам в его случае добавляется ещё два:

  1. Круглосуточно работающий вентилятор потребляет электроэнергию.
  2. Благодаря тому же вентилятору в котёл поступает избыточный кислород – снижается температура газов, они не успевают сгорать и улетают в трубу.

Ускоренное движение газов по трубе становится причиной снижения ещё одного параметра – КПД теплообмена. Из за особой конструкции котла пламя в нём не успевает догореть и поднимается в теплообменник, где и затухает, оставляя попутно сажу и выбрасывая в трубу не сгоревшие газы.

eurosantehnik.ru

Подсчёт КПД газового котла отопления

Метод расчёта производительности осуществляется путём сравнения потраченной теплоэнергии на нагрев жидкости и фактического объёма всей теплоты, что была выделена в момент сжигания топлива. Вычисляется по такой формуле:

η = (Q/ Qобщ.)*100%
η — читается как “эта”;
Q1 — тепло, которое удалось аккумулировать и использовать для нагрева помещения;
Qобщ. — общее количество тепловой энергии, которое выделяется при сжигании топлива.

Однако эта формула не берёт в учёт многие нюансы, например, возможные тепловые потери, отклонения в рабочих параметрах системы и прочее. Расчёты дают возможность узнать только средний КПД самого котла от газа. Многие изготавливающие компании указывают именно это значение.

Тут же оценивают погрешности определения тепловой эффективности. Используют такую формулу:

η=100 — (q2 + q3 + q4 + q5 + q6)

Расчёты помогают проанализировать в соответствии с особенностями определённой отопительной системы.


Обозначение Значение
q2 Тепловые потери в отходящих газах и продуктах сгорания
q3 Потери, связанные с неверными пропорциями газовоздушной смеси, по причине которых появляется недожог газа
q4 Тепловые потери, связанные с появлением на горелках и теплообменнике сажи, а также, механический недожог
q5 Теплопотери, в зависимости от наружной температуры
q6 Потери тепла при охлаждении топочной камеры во время очистки её от шлаков. Последний коэффициент относится только к твердотопливным устройствам, не учитывается при расчётах КПД оборудования, функционирующего на природном газе

Настоящий коэффициент полезного действия рассчитывают только на месте, в зависимости от правильно выполненной системы удаления дыма и качественного монтажа.

Больше всего на тепловую эффективность влияет температура отходящих газов, которая отмечена в формуле сокращением q2. Если интенсивность нагрева газов на 10-15 °С, то производительность повышается на 1-2 %. Поэтому наивысший КПД в конденсационных котлах, что относятся к низкотемпературной технике отопления.

Экономичный газовый котёл с высоким КПД


Как показывает практика, а также доказывает техдокументация, котлы зарубежных производителей имеют более высокий коэффициент полезного действия. Европейские организации акцентируют усилия на совершенствовании энергосберегающих технологий. Зарубежные котлы от газа характеризуются высокой производительностью, потому что их устройство подразумевает:

  1. Модуляционную горелку. Котлы популярных компаний отличаются двухступенчатыми либо модулируемыми горелками, которые могут похвастаться автоматической приспособляемостью к фактическим рабочим параметрам отопительной системы. Остатков на выходе минимальное количество.
  2. Нагрев жидкости. Хороший котёл – это оборудование, которое разогревает теплоноситель максимум до 70 °С, в то время как отходящие газы нагреваются не более 110 °С, это и даёт наилучшую тепловую отдачу. Однако при низкотемпературном нагреве жидкости присутствуют некоторые недостатки, такие как малая тяга и активное образование конденсата. Теплообменники в агрегатах от газа с высокой производительностью выполняются из качественной нержавейки и имеют особый конденсаторный блок, который необходим для отбора энергии от конденсата.
  3. Нагрев подводящего газа и воздуха, что поступает в горелочное устройство. Подключение агрегатов закрытого типа происходит коаксиальному дымоходу. Воздух циркулирует в камеру сжигания через наружную полость трубы с двумя полостями, до этого подогреваясь, что способствует снижению нужных тепловых затрат на пару процентов. Горелочные устройства с предварительным изготовлением газовоздушной смеси тоже осуществляют подогрев газа перед подачей его на горелку.
  4. Монтаж системы повторной циркуляции отходящих газов. В таком случае дым поступает не сразу в камеру сжигания, а циркулирует через дымоход, смешивается с чистым воздухом и оказывается опять в горелке.

Наивысший коэффициент полезного действия наблюдается при нагреве образования конденсата либо «точки росы». Агрегаты, функционирующие при низкотемпературном нагреве, называют конденсационными. Их отличие в небольшом количестве потребляемого газа и высокая тепловая эффективность, что очень видно при подсоединении к оборудованиям от баллонов с газом и газгольдеру.

Известно множество брендов конденсационных агрегатов, самыми популярными из них являются только некоторые. Газовые котлы с высоким КПД для дома вы можете выбрать из следующих марок:

  • Виссман;
  • Будерус;
  • Вайлант;
  • Бакси;
  • Де Дитрих.

Как увеличить КПД газового котла своими руками?

Повысить коэффициент полезного действия самостоятельно, без помощи специалиста, возможно. Для этого необходимо соблюдать следующие пункты:

  1. Настроить заслонку поддувала. Выполнить это можно путём эксперимента, установив, при какой позиции температура жидкости будет выше всего. Контроль осуществляется по термометру, который установлен в корпусе котла.
  2. Проследить, чтобы трубопровод не зарастал изнутри, не появлялась накипь и скапливалась грязь. С трубами из пластика в этом плане в настоящее время проще, качество их известно. И всё же мастера советуют время от времени продувать отопительную систему.
  3. Следить за качеством дымовой трубы. Смотреть, чтобы трубы не засорялись, а сажа не налипала на стенках. Любые образования способствуют сужению сечения трубы отвода и ослабеванию тяги котла.
  4. Обязательно своевременно чистить камеру сгорания. Понятно, что газ коптит не так, как уголь либо поленья, однако нужно минимум раз в несколько лет мыть топочную камеру и удалять сажу.
  5. Для повышения КПД газовых котлов стоит снижать тягу дымоходной трубы в сильные мороза. С этой целью можно применять ограничитель тяги, устанавливаемый на самом верхнем краю дымохода. Его функция – регулировать сечения самой трубы.
  6. Сделать ниже химические теплопотери. Тут варианта два для достижения лучшего значения: установка ограничителя тяги (говорилось об этом выше) и проведения сразу после монтажа котла от газа качественной настройки техники. Это рекомендуется доверить специализированному работнику.
  7. Ещё одним ответом, на вопрос, как повысить КПД газового котла, может служить следующее – установка турбулизатора. Это особые пластины, устанавливаемые между топочной камерой и теплообменником. Они делают площадь отбора теплоэнергии больше.

Это основной список, следуя ему, вы можете рассчитывать на повышение коэффициента полезного действия своего котельного оборудования. Безусловно, подобных возможностей не мало, но эти являются основными.

teplofan.ru

Общее уравнение теплового баланса котельного агрегата

Соотношение, связывающее приход и расход теплоты в теплогенераторе, составляет его тепловой баланс. Целями составления теплового баланса котельного агрегата является определение всех приходных и расходных статей баланса; расчёт КПД котельного агрегата, анализ расходных статей баланса с целью установления причин ухудшения работы котельного агрегата.

В котельном агрегате при сжигании топлива происходит преобразование химической энергии топлива в тепловую энергию продуктов сгорания. Выделившаяся теплота топлива расходуется на выработку полезной теплоты, содержащейся в паре или горячей воде, и на покрытие тепловых потерь.

В соответствии с законом сохранения энергии между приходом и расходом теплоты в котельном агрегате должно существовать равенство, т. е.

Кпд котла

Для котельных установок тепловой баланс составляют на 1кг твёрдого или жидкого топлива или 1м3 газа, находящегося при нормальных условиях ( Кпд котла ). Статьи прихода и расхода в уравнении теплового баланса имеют размерность МДж/м3 для газообразного и МДж/кг для твёрдого и жидкого топлива.

Поступившая в котельный агрегат теплота от сжигания топлива называется также располагаемой теплотой, её обозначают Кпд котла .В общем случае приходная часть теплового баланса записывается в виде:

Кпд котла

где Кпд котла низшая теплота сгорания твёрдого или жидкого топлива на рабочую массу, МДж/кг;

Кпд котла низшая теплота сгорания газообразного топлива на сухую массу, МДж/м3;

Кпд котла физическая теплота топлива;

Кпд котла физическая теплота воздуха;

Кпд котла теплота, вносимая в топку котла с паром.

Рассмотрим составляющие приходной части теплового баланса. В расчётах принимается низшая рабочая теплота сгорания в том случае, если температура продуктов сгорания, покидающих котёл, выше температуры конденсации водяного пара (обычно tг = 110…120 0С). При охлаждении же продуктов сгорания до температуры, при которой на поверхности нагрева возможна конденсация водяных паров, расчёты следует выполнять с учётом высшей теплоты сгорания топлива Кпд котла

Физическая теплота топлива равна:

Кпд котла

где ст – удельная теплоёмкость топлива, Кпд котла для мазута и Кпд котла для газа;

tт – температура топлива, 0С.

При поступлении в котёл твёрдое топливо имеет обычно малую температуру, приближающуюся к нулю, поэтому Qф.т. невелика по значению, и ей можно пренебречь.

Мазут (жидкое топливо) для снижения вязкости и улучшения распыления поступает в топку подогретым до температуры 80…1200С, поэтому его физическая теплота учитывается при выполнении расчётов. При этом теплоёмкость мазута может быть определена по формуле:

Кпд котла

Учёт Qф.т. проводится только при сжигании газообразного топлива с низкой теплотой сгорания (например, доменного газа) при условии его подогрева (до 200…300 0С). При сжигании газообразного топлива с высокой теплотой сгорания (например, природного газа) имеет место, повышенное соотношение массы воздуха и газа (примерно 10 Кпд котла 1). В этом случае топливо – газ обычно не подогревают.

Физическая теплота воздуха Qф.в. учитывается лишь при подогреве его вне котла за счёт постороннего источника (например, в паровом калорифере или в автономном подогревателе при сжигании в нём дополнительного топлива). В этом случае теплота, внесённая воздухом равна:

Кпд котла

где Кпд котла отношение количества воздуха на входе в котёл (воздухоподогреватель) к теоретически необходимому;

Кпд котла энтальпия теоретически необходимого подогретого перед воздушным подогревателем воздуха, Кпд котла :

Кпд котла ,

здесь Кпд котла температура подогретого воздуха перед воздухоподогревателем котельного агрегата, 0С;

Кпд котла энтальпия теоретически необходимого холодного воздуха, Кпд котла :

Кпд котла

Теплота, вносимая в топку котла с паром при паровом распылении мазута учитывается в виде формулы:

Кпд котла

где Gп – расход пара, кг на 1 кг топлива (при паровом распыливании мазута Gп = 0,3…0,35 кг/кг);

hп – энтальпия пара, МДж/кг;

2,51 –примерное значение энтальпии водяного пара в продуктах сгорания, покидающих котельный агрегат, МДж/кг.

При отсутствии подогрева топлива и воздуха от посторонних источников располагаемая теплота будет равна:

Кпд котла

Расходная часть теплового баланса включает в себя полезно используемую теплоту Qпол в котельном агрегате, т.е. теплоту, затраченную на выработку пара (или горячей воды), и разные тепловые потери Кпд котла , т.е.

Кпд котла ,

Кпд котла ,

где Qу.г. – потери теплоты с уходящими газами;

Qх.н., Qм.н. – потери теплоты от химической и механической неполноты сгорания топлива;

Qн.о. – потери теплоты от наружного охлаждения внешних ограждений котла;

Qф.ш. – потеря с физической теплотой шлаков;

Qакк. – расход (знак «+») и приход (знак «-») теплоты, связанный с неустановившимся тепловым режимом работы котла. При установившемся тепловом состоянии Qакк. = 0.

Итак общее уравнение теплового баланса котельного агрегата при установившемся тепловом режиме можно записать в виде:

Кпд котла

Если обе части представленного уравнения разделить на Кпд котла и умножить на 100%, то получим:

Кпд котла

где Кпд котла слагаемые расходной части теплового баланса, %.

 

3.1 Потери теплоты с уходящими газами

Потеря теплоты с уходящими газами Кпд котла возникает из-за того, что физическая теплота (энтальпия) газов Кпд котла покидающих котёл при температуре tу.г., превышает физическую теплоту поступающих в котёл воздуха αу.г. Кпд котла и топлива ст tт. Разница между энтальпией уходящих газов Кпд котла и теплотой, поступившей в котёл с воздухом из окружающей среды αу.г. Кпд котла , представляет собой потерю теплоты с уходящими газами, МДж/кг или (МДж/м3):

Кпд котла .

Потеря теплоты с уходящими газами занимает обычно основное место среди тепловых потерь котла, составляя 5…12% располагаемой теплоты топлива. Эти потери теплоты зависят от температуры, объёма и состава продуктов сгорания, которые, в свою очередь, зависит от балластных составляющих топлива:

Кпд котла

Отношение Кпд котла , характеризующее качество топлива, показывает относительный выход газообразных продуктов сгорания (при α = 1) на единицу теплоты сгорания топлива и зависит от содержания в нём балластных составляющих (влаги Wр и золы Ар для твердого и жидкого топлива, азота N2, диоксида углерода СО2 и кислорода О2 для газообразного топлива). С увеличением содержания в топливе балластных составляющих, и, следовательно, Кпд котла , потеря теплоты с уходящими газами соответственно возрастает.

Одним из возможных направлений снижения потери теплоты с уходящими газами является уменьшение коэффициента избытка воздуха в уходящих газах αу.г, который зависит от коэффициента расхода воздуха в топке Кпд котла и балластного воздуха, присосанного в газоходы котла, находящиеся обычно под разряжением:

Кпд котла

Кпд котла Рис. 14.8. Определение оптимального коэффициента избытка воздуха в топке котла С уменьшением Кпд котла потеря теплоты Qу.г. снижается (рис.14.8), однако при этом в связи с уменьшением количества воздуха, подаваемого в топочную камеру, возможно появление другой потери теплоты – от химической неполноты сгорания топлива Qх.н. . Поэтому оптимальное значение Кпд котла выбирается с учётом достижения минимального суммарного значения Кпд котла

Возможность уменьшения α, зависит от вида топлива, способа его сжигания, типа горелок и толочного устройства. При благоприятных условиях смешения топлива и воздуха избыток воздуха Кпд котла , необходимый для горения, может быть уменьшен. При сжигании газообразного топлива коэффициент избытка воздуха принимают Кпд котла Кпд котла 1,1, при сжигании мазута Кпд котла =1,1…1,15.

Присосы воздуха по газовому тракту котла Кпд котла в пределе могут быть сведены нулю. Однако полное уплотнение мест прохода труб через обмуровку, уплотнение лючков и гляделок затруднено и практически Кпд котла =0,15..0,3.

Балластный воздух в продуктах сгорания помимо увеличения потери теплоты Qу.г. приводит также к дополнительным затратам электроэнергии на дымосос.

Другим важнейшим фактором, влияющим на величину Qу.г., является температура уходящих газов tу.г. . Её снижение достигается установкой в хвостовой части котла теплоиспользующих элементов (экономайзера, воздушного подогревателя). Чем ниже температура уходящих газов и, соответственно, меньше разность температур Кпд котла между газами и нагреваемым рабочим телом (например, воздухом), тем большая площадь поверхности нагрева требуется для охлаждения продуктов сгорания.

Повышение же температуры уходящих газов приводит к увеличению потери с Qу.г. и, следовательно, к дополнительным затратам топлива Кпд котла на выработку одного и того же количества пара или горячей воды. В связи с этим оптимальная температура tу.г. определяется на основе технико-экономических расчётов при сопоставлении готовых капитальных затрат на сооружение поверхности нагрева и затрат на топливо (рис.3.).

Кроме того, при работе котла поверхности нагрева могут загрязняться сажей и золой топлива. Это приводит к ухудшению теплообмена продуктов сгорания с поверхностью нагрева. При этом для сохранения заданной паропроизводительности приходится идти на увеличение расхода топлива. Занос поверхностей нагрева приводит также к увеличению сопротивления газового тракта котла. В связи с этим для обеспечения нормальной эксплуатации агрегата требуется систематическая очистка его поверхностей нагрева.

 

3.2Потери теплоты от химической неполноты сгорания

Потеря теплоты от химической неполноты сгорания (химический недожог) Кпд котла возникает при неполном сгорании топлива в пределах топочной камеры и появления в продуктах сгорания горючих газообразных составляющих – СО, H2, СH4, CmHn и др. догорание же этих горючих газов за пределами топки практически невозможно из-за относительно низкой их температуры.

Причинами появления химической неполноты сгорания могут быть:

· общий недостаток количества воздуха;

· плохое смесеобразование, особенно на начальных стадиях горения топлива;

· низкая температура в топочной камере, особенно в зоне догорания топлива;

· недостаточное время пребывания топлива в пределах топочной камеры, в течении которого химическая реакция горения не может завершиться полностью.

При достаточном для полного сгорания топлива количестве воздуха и хорошем смесеобразовании потери Кпд котла зависят от объёмной плотности тепловыделения в топке, МВт/м3:

Кпд котла где В – расход топлива, кг/с;

Vт – объём топки, м3.

Кпд котла Рис. 14.9 Зависимость потери теплоты от химической неполноты сгорания qх.н, %, от объемной плотности тепловыделения в топке qv, МВт/м3. Характер зависимости Кпд котла представлен на рис.4. . В области низких значений Кпд котла (левая часть кривой), т.е. при малых расходах топлива В, потери Кпд котла увеличиваются в связи со снижением температурного уровня в топочной камере. Увеличение объёмной плотности тепловыделения Кпд котла (с увеличением расхода топлива) приводит к повышению температурного уровня в топке и снижению Кпд котла

Однако по достижении определённого уровня Кпд котла при дальнейшем увеличении расхода топлива (правая часть кривой) потери Кпд котла вновь начинают возрастать, что связано с уменьшением времени пребывания газов в объёме топки и невозможностью в связи с этим завершения реакции горения.

Оптимальное значение Кпд котла , при котором потери Кпд котла минимальны, зависит от вида топлива, способа его сжигания и конструкции топки. Для современных топочных устройств потеря теплоты от химической неполноты сгорания составляет 0…2% при Кпд котла .

При обработке материалов испытания котельной установки потерю теплоты от химической неполноты сгорания определяют по формуле:

Кпд котла

где Кпд котла объёмы горючих газов Кпд котла в продуктах горения топлива, м3/кг Кпд котла

Кпд котла теплоты сгорания соответственно СО, Н2, СН4 Кпд котла

Объёмы горючих газов можно определить по выражениям:

Кпд котла

где Кпд котла содержание горючих газов в продуктах сгорания, %;

Кпд котла объём сухих газов, м3.

при сжигании твёрдого и жидкого топлива:

Кпд котла

при сжигании газообразного топлива:

Кпд котла

При разработке мероприятий по снижению величины Кпд котла следует иметь в виду, что при наличии условий для появления продуктов неполного сгорания в первую очередь образуется CO как наиболее трудносжигаемый компонент, а затем Н2 и другие газы. Из этого следует, что если в продуктах горения отсутствует СО, то в них нет и Н2.

Коэффициент полезного действия котельного агрегата

Коэффициентом полезного действия котельного агрегата называют отношение полезной теплоты, израсходованной на выработку пара (или горячей воды), к располагаемой теплоте котельного агрегата. Однако не вся полезная теплота, выработанная котельным агрегатом, направляется потребителям, часть теплоты расходуется на собственные нужды. С учётом этого различают КПД котельного агрегата по выработанной теплоте (КПД – брутто) и по отпущенной теплоте (КПД – нетто).

По разности выработанной и отпущенной теплот определяется расход на собственные нужды. На собственные нужды расходуется не только теплота, но и электрическая энергия (например, на привод дымососа, вентилятора, питательных насосов, механизмов топливоподачи), т.е. расход на собственные нужды включает в себя расход всех видов энергии, затраченных на производство пара или горячей воды.

Итак, КПД – брутто котельного агрегата характеризует степень его технического совершенства, а КПД – нетто – коммерческую экономичность.

КПД – брутто котельного агрегата можно определить или по уравнению прямого баланса или по уравнению обратного баланса.

По уравнению прямого баланса:

Кпд котла

Например, при производстве водяного пара полезно используемая теплота равна (см. 2 вопрос) :

Кпд котла

Тогда Кпд котла

Из представленного выражения можно получить формулу для определения необходимого расхода топлива, кг/с (м3/с):

Кпд котла

По уравнению обратного баланса:

Кпд котла

Определение КПД – брутто по уравнению прямого баланса проводят преимущественно при отчётности за отдельный период (декада, месяц), а по уравнению обратного баланса – при испытании котельных агрегатов. Вычисление КПД по обратному балансу значительно точнее, так как погрешности при измерении потерь теплоты меньше, чем при определении расхода топлива.

КПД – нетто определяется по выражению:

Кпд котла

где Кпд котла расход энергии на собственные нужды, % .

Таким образом, для повышения эффективности котельных агрегатов недостаточно стремиться к снижению тепловых потерь; необходимо также всемерно сокращать расходы тепловой и электрической энергии на собственные нужды, которые составляют в среднем 3…5% теплоты, располагаемой котельным агрегатом.КПД котельного агрегата зависит от его нагрузки. Для построенияй зависимости нужно от 100% вычесть последовательно все потери котельного агрегата, которые зависят от нагрузки, т.е. Кпд котла

helpiks.org


Categories: Котельная

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.