Огромное количество электрических приборов, используемых в быту и промышленности, основывают свою работу на определении уровня температуры окружающей среды. Измерительный элемент в них представляет собой датчик температуры, срабатывающий при нагревании или охлаждении до установленного уровня. Их можно приобрести в большинстве магазинов, ими комплектуются духовки, контроллеры и прочие устройства, но гораздо интереснее изготовить терморегулятор своими руками.

Простой терморегулятор
Пример простого терморегулятора

Далее мы рассмотрим принцип действия и варианты изготовления такой самоделки.

Немного теории

Любой терморегулятор конструктивно включает в себя три основных блока:

  • измерительный;
  • логический;
  • исполнительный.

Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:


Датчик из полуплеча резисторов
Рис. 1. Датчик из полуплеча резисторов

На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.

На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.

Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:

Принципиальная схема терморегулятора
Рис. 2. Принципиальная схема терморегулятора

Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.


При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема  работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов  происходит в соответствии с заданной логикой.

Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.

Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:

  • для контроля работы электрического отопления по температурным показаниям в помещении;
  • для установки уровня температуры в самодельном инкубаторе;
  • при подключении теплого пола для контроля его работы;
  • для установки температурного диапазона работы двигателя,  с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
  • для паяльных станций или ручных паяльников;
  • в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
  • в духовках, печах как бытового, так и промышленного назначения.

Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.

Обзор схем

В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.

Схема терморегулятора №1
Рис. 3. Схема терморегулятора №1

На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор  R2  изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.

Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.


Схема терморегулятора №2
Рис. 4. Схема терморегулятора №2

Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в  тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.

Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.

Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.

Создаем простой терморегулятор


При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.

Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора  приведена на рисунке ниже.

Схема простейшего терморегулятора
Рис. 5. Схема простейшего терморегулятора

Для его изготовления вам понадобится:

  • понижающий трансформатор с 220 на 12 В;
  • шесть диодов (в рассматриваемом примере используются IN4007);
  • конденсаторы на 47 мкФ, 1 мФ и 2 мФ;
  • микросхема для стабилизатора на 5В;
  • транзистор (в рассматриваемом примере это КТ814А);
  • стабилитрон с регулируемым параметром (TL431);
  • резистивные элементы на 4,7; 160, 150 и 910 кОм;
  • резистор с изменяемым сопротивлением на 150 кОм;
  • термозависимый резистор 50 кОм;
  • светодиод;
  • электромагнитное реле 100 мА с питающим напряжением 12В (в рассматриваемом примере используется автомобильный вариант);
  • кнопка и корпус.

Процесс изготовления состоит из таких этапов:

  • При помощи паяльника соберите вышеперечисленные детали на печатную плату, как показано на схеме выше.
  • После этого выведите измерительный орган для терморегулятора на открытое пространство, чтобы установить в нужную локацию.
Выведите измерительный элемент
Рис. 6. Выведите измерительный элемент
  • Установите переменный резистор на жесткий каркас и нанесите градуировку температурных режимов для настройки прибора.
Установите регулятор на каркас и нанесите градуировку
Рис. 7. Установите регулятор на каркас и нанесите градуировку
  • На клеммник подключите шнур питания.
Рис. 8. Подключите питающий шнур к клеммнику
Подключите питающий шнур к клеммнику

В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.

  • Подключите все отдельно размещенные элементы к плате и закройте корпусом.

После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.

Источник: www.asutpp.ru

Преимущества использования термостата в отоплении

Газовое отопление уже само по себе является благом и существенно увеличивает качество быта. Но упрощение управлением газовым отопительным оборудованием вопрос не менее актуальный.

Настройка и управление работой газового котла может проводиться двумя способами – вручную или с помощью термостата, который автоматически обеспечит стабильный температурный режим.

Ручная регулировка помогает установить определенную температуру теплоносителя в системе – при повышении температуры до заданных значений котел выключается, при снижении – включается. В результате температура в доме поддерживается на определенном уровне.

Но с изменением температуры на улице установленный режим оказывается некорректным и приходится вручную перепрограммировать отопительное устройство. Такие манипуляции осуществляются на протяжении всего отопительного сезона, а это неудобно.


Кроме того, ручная регулировка означает работу газового котла в режиме постоянных включений-выключений, с периодом рабочего цикла длительностью около 10 минут. Это не лучшим образом влияет на продолжительность работы котла.

Еще в системе с ручной регулировкой, независимо от работы функции обогрева, обеспечивается постоянная циркуляция теплоносителя с помощью насосного оборудования, а значит, расходуется лишняя электроэнергия.

Автоматическая регулировка, в отличие от ручного управления, отключает циркуляционный насос. Реагируя на температуру воздуха в помещении, а не теплоносителя в отопительном контуре, термостат для котла отопления поддерживает стабильную температуру в комнате.

В результате микроклимат в доме значительно улучшается, частота включений котла снижается, а значит, увеличивается его срок службы.

Использование термостата дает и другие преимущества:

  • устройство устанавливает оптимальный/экономный температурный режим в зависимости от времени суток;
  • решает проблемы тактования газового котла – частого включения и выключения;
  • облегчает эксплуатацию и повышает надежность отопительной системы.

Это лишь часть очевидных преимуществ, общих для всех типов терморегуляторов. Достоинства отдельных моделей можно более подробно изучить непосредственно перед приобретением.

Типы терморегуляторов для газовых котлов


Термостаты можно разделить на таких три основных типа: механические, электронные и электронные беспроводные.

Проводные модели стоят меньше, но требуют прокладки кабеля — установку терморегулятора на газовый котел лучше проводить до или вовремя ремонтных работ в доме. Беспроводные модели дороже, функциональнее, удобнее.

Выбор термостата для подключения к газовой системе отопления осуществляется с учетом таких основных критериев:

  • функциональность;
  • точность регулировки;
  • стоимость терморегулятора;
  • простота использования и монтажа.

По функциональности различают:

  • простые термостаты — помогают поддерживать заданную температуру в доме;
  • беспроводные терморегуляторы — имеют блок передатчика, который размещают в другом помещении для более точной регулировки температуры;
  • программируемые – позволяют настраивать стабильный температурный режим отдельно для дня и ночи, программировать работу системы отопления по дням недели, что значительно снижает расход топлива;
  • с функцией гидростата — помогают контролировать уровень влажности в помещении, снижая или увеличивая его согласно настройкам.
  • С дополнительным датчиком пола – модель используется, в том числе, для регулировки температуры теплоносителя в системе «теплый пол».
  • С дополнительным датчиком нагрева воды – устройство применяется и для регулировки температурного режима горячего водоснабжения, и для управления системой отопления.

Отдельно нужно сказать о программаторах — более сложных с точки зрения функциональности термостатах, которые устанавливаются, в том числе, для управления климатическими системами в так называемых умных домах.

Программаторы управляют работой не только отопительного и водонагревательного оборудования, но и кондиционеров, насосов, других устройств. Некоторые из них помогают программировать индивидуальный температурный режим для каждого дня недели с возможностью задать от 1 до 6 фиксированных режимных точек.

Общие принципы подключения термостата

Способ и схемы подключения термостата к самому отопительному оборудованию можно узнать из технического паспорта газового котла. Современное оборудование, независимо от производителя, предполагает наличие точек подключения для термостата. Подсоединение выполняется с помощью клемм на котле или кабеля терморегулятора, входящего в комплект поставки.

В случае использования беспроводного термостата размещать измерительный блок следует только в жилом помещении. Это может быть самая холодная комната или комната, где чаще всего собирается наибольшее количество людей, детская.

Устанавливать блок терморегулятора в кухне, холле или в котельной, где температурный режим непостоянный, нецелесообразно.

Подключение различных типов и моделей термостатов может иметь свои особенности, монтаж осуществляется в соответствии с инструкцией производителя, которая прилагается к прибору.

Рекомендации включают в себя исчерпывающее описание работы регулятора, способ и схемы подключения.  Далее мы расскажем, как правильно подключить терморегулятор к газовому котлу и об особенностях монтажа наиболее типичных моделей регулятора.

Подключение механического термостата

Термостат механического типа отличается надежностью и простотой конструкции, невысокой стоимостью, длительной эксплуатацией.

При этом он поддерживает лишь один температурный режим, который устанавливается путем изменения положения ручки на отметке температурной шкалы. Большинство терморегуляторов работает в диапазоне температур от 10 до 30°С.

Механический термостат имеет наиболее простой принцип действия и срабатывает через размыкание и размыкание цепи, которое происходит с помощью биметаллической пластины. К котлу термостат подключают через клеммную коробку на плате управления котла.

Монтаж электронного терморегулятора

Конструкция электронного термостата предполагает наличие электронной платы, которая отвечает за управление устройством.

Управляющим сигналом служит потенциал – на вход котла передается напряжение, которое приводит к замыканию или размыканию контакта. К терморегулятору необходимо подвести напряжение 220 или 24 вольт.

Термостат с электронным управлением используют для организации работы сложных климатических систем. Он поможет в управлении не только атмосферным или турбинированным газовым котлом, но и насосом, кондиционером, сервоприводом в системе отопления.

Как подключить беспроводной термостат?

Беспроводной терморегулятор состоит из двух блоков, один из которых устанавливается в жилом помещении и выполняет роль передатчика. Второй блок монтируется около отопительного котла и подсоединяется к его клапану или контроллеру.

Передача данных от одного блока к другому осуществляется по радиоканалу. Для управления устройством контрольный блок оснащается ЖК-дисплеем и небольшой клавиатурой. Для подключения термостата настраивают адрес датчика и устанавливают блок в точке с устойчивым сигналом.

Основной недостаток беспроводного терморегулятора – питание выносного блока от батарей, которые имеют ограниченный ресурс и поэтому требуют частой замены. Для обеспечения бесперебойной работы устройство оснащают сигнальной функцией, которая предупреждает о необходимости замены батареи.

Выводы и полезное видео по теме

Как подключается термостат к газовому котлу:

Комнатные термостаты для регулировки системы отопления:

Самостоятельный монтаж устройства не должен вызвать абсолютно никаких трудностей. Но не забудьте при подключении термостата к газовому котлу изучить инструкцию, которая прилагается к устройству, и техническую документацию к отопительному оборудованию.

Расскажите о собственном опыте в выборе и подключении термостата к газовому котлу. Поделитесь полезной информацией, которая может пригодиться посетителям сайта. Оставляйте, пожалуйста, комментарии в расположенной ниже блок-форме, задавайте вопросы, публикуйте фото по теме статьи.

Источник: sovet-ingenera.com

Общая схема подключения механического термостата к отопительным и охладительным системам

Вообще, производители предлагают различные модели терморегуляторов, которые могут отличаться между собой наличием или отсутствием некоторых дополнительных опций, но основной набор функций обычно единый.

Тут стоит напомнить, что для работы механическому терморегулятору не требуется подключение к сети или использование элементов питания. Внутри него производится лишь коммутация проводки, идущей до климатических систем, а работа всех алгоритмов управления заложенных в них, основана на изменении механических свойств материалов при изменении температуры. Подробнее о принципе работы, устройстве и применении стандартных комнатных механических терморегуляторов в отоплении читайте в нашей статье «Механический терморегулятор для отопления | Термостат»

Зачастую, производители не особо стараются сопроводить свои механические терморегуляторы удобными, подробными инструкциями по подключению, ограничиваясь лишь общей схемой, которую без знания основ электротехники бывает тяжело понять. Так, например, с комнатным механическим термостатом Zilon za-1 в комплекте поставляется вот такая схема подключения:

Схема подключения поставляемая вместе с комнатным механическим термостатом Zilon za-1

Согласитесь, схема совершенно не информативная, подключить согласно такой инструкции механический термостат сможет далеко не каждый. И этот пример, к сожалению, не единичный и подобное встречается довольно часто.

Ниже я привожу более наглядную, чем стандартная, схему подключения механического терморегулятора. 

Наглядная схема подключения механического терморегулятора к отоплению и охлаждению

Как видите, основные здесь клеммы для подключения «4», «5» и «6», а сам терморегулятор работает по принципу переключателя. Пока температура окружающего воздуха не достигла выставленной регулятором величины, электрический ток, подведенный на клемму «6», подаётся на контакт «4», но как только будет достигнута необходимая температура, режим меняется и ток начинает поступать на клемму «5». Таким образом, к клемме «4» подключаются отопительные приборы, которые обогревают помещение и, если ничего не подключено к клемме «5», просто отключаться при достижении нужной температуры. А к контакту «5» обычно подключается охладительные системы, которые начинают работать лишь когда температура воздуха превысит заданное значение.

Клеммы «1» и «2» это контакты для подачи питания на лампу – индикатор работы домашнего механического терморегулятора. К клемме «2», требуется подключать последовательно провод, идущий от клеммы «4» или «5», в зависимости от того к какой из них подключена нагрузка  — отопление или охлаждение. Таким образом, пока электрический ток поступает на климатический прибор, индикатор светится, указывая нам о том, что прибор в рабочем режиме.

 

Правильное подключение индикаторной лампы в механическом терморегуляторе

Клемма «1» нужна для подключения нулевого провода, требуемого для того, чтобы лампа светилась или как общая клемма для нуля, если у вас реализована следующая схема подключения механического термостата:

Схема подключения отопления через комнатный термостат

Как видите, в этой схеме, в терморегуляторе осуществляется вся коммутация, минуя распределительные (распаячные) коробки. В терморегулятор заходит кабель с фазой и нулем домашней электросети, а также от него проброшен провод до управляемых им климатическим систем, например, до обогревателя. Внутри произведена вся необходимая коммутация, необходимая для работы такой системы. Иногда такая схема подключения бывает единственно возможной, особенно когда требуется подключить отопительные или охладительные приборы с наименьшими трудозатратами. Достаточно проложить до термостата фазу и ноль и так же прокинуть от него две жилы кабеля до приборов, которыми он будет управлять.

 

Основные характеристики механического термотата

Очень важно! Все представленные выше варианты схем подключения комнатного механического термостата актуальны лишь для подключения к нему нагрузки с током не более 10-16 ампер ( в зависимости от модели). Довольно часто этого бывает достаточно, но если используете термостат с энергоёмкими устройствами, то чаще всего единственно возможным вариантном становится подключение механического терморегулятора через пускатель.

 

Схема подключения механического терморегулятора через магнитный пускатель

Электромагнитный пускатель – это по большому счету выключатель (реле), рассчитанный на управление большими токами.

Принцип действия пускателя достаточно прост, при подаче даже небольшого тока его на управляющую клемму, которая связана с магнитной катушкой, эта катушка втягивает сердечник, в результате чего некоторые контакты пускателя замыкаются, а другие наоборот размыкаются. Применяется магнитный пускатель как раз в таких случаях как наш, когда требуется управлять электрооборудованием с большими токовыми нагрузками.

При срабатывании механического термостата, ток поступает на уравляющую клемму пускателя, который в свою очередь подключает нагрузку – например электрообогреватель. Когда в помещении температура воздуха поднимется до нужного уровня, указанного регулятором термостата, цепь разомнется и соответственно пускатель отключит отопительный прибор.

Выбор той или иной схемы подключения зависит от вашей конкретной ситуации, но как вы уже могли заметить, вариантов использования у механического термостата масса. Если же вы не можете определиться, как лучше выполнить монтаж, какую схему или алгоритм лучше использовать, пишите в комментариях к статье, постараемся помочь.

Источник: RozetkaOnline.ru

Необходимые материалы и оборудование

Разберемся сначала с необходимым оборудованием для данной операции:

  1. Термостат.
  2. Кабель 2х2.5, если такового нет в комплекте или необходимо удлинить его.
  3. Отвертка.
  4. Тестер.
  5. Техническая документация котла и термостата.

Этого нехитрого набора инструментов в подавляющем большинстве случаев хватает для полного подключения термостата к котлу.

Виды термостатов

виды термостатов

Термостаты делятся на две основные категории: механические, более простые в конструкции и дешевые, и электронные, более интуитивно понятные и функциональные.

Регулировка механических термостатов происходит за счет поворотного колеса, регулирующего температуру, и кнопки включения/выключения. Погрешность такого термостата обычно 1-1,5 градуса. Термостат работает при помощи специального газа, объем которого меняется при отклонении температуры в помещении от заданной нормы. При увеличении или уменьшении температуры механический термостат размыкает или замыкает контакты, тем самым включая или отключая горелку в котле.

Электрические же термостаты устроены чуть сложнее, но при этом просты в обращении. Обычно на них есть дисплей и несколько функциональных кнопок, при помощи которых и происходит регуляция температуры. При этом на многих моделях можно выставить также различный температурный режим для дня и ночи, тем самым создавая комфортную температуру для сна. Такая функция также полезна для рабочих помещений после окончания рабочего дня. Это позволяет сократить расходы на газ.

Выбор одного из вариантов полностью зависит от ваших нужд и модели котла. Некоторые производители газовой техники рекомендуют использовать для их оборудования именно механические термостаты, так как не поддерживают высокотехнологичные электронные. Поэтому перед покупкой термостата  и подключением его к котлу в обязательном порядке необходимо ознакомиться с техническими характеристиками вашего котла и его совместимостью с различными устройствами.

Дистанционные термостаты и выбор места для их установки

Существенным плюсом в пользу электронных моделей может послужить наличие дистанционных термостатов. В таком случае регулировка происходит при помощи отдельно вынесенной панели, которую можно разместить в любом удобном вам месте. Выбор места для размещения дистанционного термостата в любом здании должен осуществляться под руководством параметров безопасности и комфорта. Термостат лучше расположить в недоступном для детей месте, также стоит учесть факторы, которые могут вывести прибор из строя.

В настоящее время производятся также электронные термостаты с Wi-FI модулем. Данные с термостатов могут передаваться на ваш смартфон напрямую по средствам специальных приложений, созданных разработчиками. При помощи таких приложений можно настроить температуру дистанционно. Подобные модели отлично впишутся в систему «умный дом».

Принцип работы

Перейдем к разбору принципа работы непосредственно газового котла, без подключенного термостата. Допустим, на вашем котле в данный момент установлена температура 60 градусов Цельсия. Как только горелка разгорается, температура начинает стремиться к предустановленному значению (в нашем случае 60 градусов). После достижения этой температуры горелка выключается, а насос, охлаждающий теплоноситель в системе отопления, продолжает работать, а температура воды падать.

С тем, что происходит в электронике котла в это время тоже стоит разобраться. Пока котел нагревается, некий сигнал беспрепятственно проходит из точки А в точку Б по замкнутой цепи. Как только температура достигает нужных значений цепь размыкается, и горелка гаснет. Размыкает сеть ничто иное, как кусочек провода, так называемая перемычка. Релейный термостат по своей сути тоже является такой перемычкой, только работающий не на основании температуры воды, а учитывая температуру воздуха в помещении.

Схема подключения

Практически все существующие на современном рынке термостаты являются релейными. Это означает, что работают они за счет реле, размыкающей и замыкающей контакты на основе предустановленной пользователем температуры. В качестве теоретически подключаемого термостата, будем использовать электрический термостат релейного типа с сухими контактами. Сухие контакты – термин, обозначающий, что в любом состоянии, сомкнутом или разомкнутом, на контактах нет никакого напряжения.

схема подключения термостата к котлу

Для подключения к котлу на термостате расположены клеммы, подключать нужно открытый и общий порты. В случае, если в мануале для конкретно вашей модели они не указаны, нужно просто прозвонить контакты тестером. Далее нам потребуется убедиться в возможности подключения термостата к котлу. Обычно это указано непосредственно в технической документации, если таковой нет, то информацию легко найти в любой из поисковых систем.

На найденной электронной схеме платы обозначено нахождение той самой перемычки, в которую будет подключаться термостат к котлу. В зависимости от модели котла, придется открутить несколько болтиков, чтобы добраться к необходимой части. Колодка может быть установлена как на плате управления, так и вынесена отдельно. Подключение термостата для любого из этих вариантов не будет отличаться ничем.

Далее необходимо вытащить перемычку, а ее место поставить кабель, поставляющийся в комплекте с термостатом (либо купленным отдельно). Это двухжильный провод с сечением не менее 0,75 квадратных миллиметров. Полярность при подключении не имеет значения. К блоку управления термостатом кабель подключается в нормальный открытый и общий порты, как описано выше. Порты находятся с одной из сторон блока управления, с другой же порты для подключения электроподающего кабеля. Можно как приобрести новый кабель желаемого сечения, так и использовать комплектный.

На этом подключение термостата к газовому котлу окончено. Остается только проверить работоспособность системы. На термостате выставляем необходимую температуру воздуха в комнате, сигнал передается на блок управления и в зависимости от выставленной температуры контакты реле замыкаются или размыкаются. При выставлении температуры, которая ниже текущей, горелка превращает нагревать воду в системе, при выставлении температуры выше, горелка наоборот начинает работать.

Источник: eurosantehnik.ru

Бытовые обогревательные приборы получили в настоящее время довольно широкое распространение. Для удобства использования и обеспечения стабильной и комфортной температуры в помещении их стали использовать совместно с терморегуляторами. Купив такую систему устройств, покупатель сразу же предстает перед проблемой как их подключить?

Не всегда их мощность расположена в диапазоне допустимой мощности терморегуляторов. Поэтому подключение отопительных приборов к устройствам, реагирующим на изменение температуры,производиться через специальные аппараты, которые называют пускателями.

Что это за приборы и принцип их действия?

Электромагнитным пускателем называют реле или специальный выключатель, который рассчитан на управление большими токами.

Принцип его действия достаточно прост. Подача даже тока не большой мощности на управляющую клемму, связанную с магнитной катушкой,обеспечивает втягивание последней собственного сердечника. Это механическое движение производит смыкание и размыкание разных групп контактов пускателя. Используется это устройство зачастую в тех случаях, когда необходимо управлять обогревательным прибором с токовыми нагрузками большой величины.

Работает цепь этих устройств следующим образом. Когда срабатывает механический термостат, ток подается на управляющую клемму, через которую в свою очередь происходит подключение нагрузки – непосредственно отопительного прибора.

Когда температура воздуха в помещении достигает установленного на терморегуляторе предела, цепь размыкается и пускатель производит отключение отопительного прибора.

Существует несколько схем подключения этих устройств. Выбор той или иной зависит от конкретной ситуации, так как существует множество способов применения механического термостата.

Необходимо отметить, что существует масса разнообразных с технической точки зрения и разных по принципу действия терморегуляторов. Поэтому, какая бы схема не использовалась для организации подключения отопительного электроприбора после монтажа цепочки устройств обеспечивающих их функционирование в заданном режиме необходимо производить калибровку.

Осуществляется она в два этапа. Первоначально производится приблизительная настройка, как говорится «на глазок», а впоследствии уже точная с применением измерительных приборов.

Пример схемы монтажа системы «термореле-пускатель-нагревательный прибор» и ее описание

Схема подключения к трехфазной сети системы обогревателей «теплофон»

Между первой фазой и нулевым проводом в последовательном порядке включается терморегулятор и катушка пускателя, на схеме обозначены Т1 и К1 соответственно. Подключение элементов нагревателя осуществляется равномерно между всеми фазами и нулевым проводом через контакты пускателя в разомкнутом состоянии, на схеме отображены — К1.1-К1.3. В этом схематическом примере подключения выбран пускатель марки АВВ 20-40, 4р.

Схема эта работает следующим образом

При приближении уровня температуры в обогреваемом помещении к установленному на терморегуляторе и ориентированному на включение значению, он срабатывает и приводит в действие пускатель, который в свою очередь подключает к электросети нагревательные элементы. После достижения температурой воздуха, в помещении установленного на терморегуляторе верхнего ее значения он выключается, отключая от питания пускатель, после срабатывания, которого происходит обесточивание нагревательных элементов.

Существует большое количество разнообразных терморегуляторов, как больших, так и очень маленьких, но их коммутируемая мощность не превышает двух киловатт. Поэтому самым оптимальным в такой ситуации есть использование в этой цепи устройств, между терморегулятором и пускателем электронного блочка, предназначенного для управления пускателем. Это предоставит возможность подключать к пускателю нагревательные элементы, мощность которых может превышать 1,5 кВт.

Схема такого подключения

Работает такая схемка следующим образом.

Когда срабатывает терморегулятор, электронный сигнал заходит в мощный транзисторный ключ, принцип работы которого основан на биполярных технологиях. При этом в коллекторную цепь включено электронное реле. Для примера, это может быть РЭС-9. Запитывается вся эта схема от нестабилизированного источника, который собран на базе трансформатора Т1 и выпрямителей VD1-VD4.

Собрав блок регулировки–коммутации нужно вначале осуществить проверку правильности монтажа, и только после этого приступать к настройке системы целиком. Если она собрана безошибочно, наладочные работы не потребуются.

Необходимо отметить, что важным при настройке нужно правильно установить опорное напряжение компаратора (это устройство сравнения), которое соответствует желаемой температуре срабатывания.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Источник: zen.yandex.ru


Categories: Котельная

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.