В промышленности и быту постоянно существует необходимость контроля за уровнями жидкостей в емкостях. Устройства измерения классифицируют как контактные и бесконтактные. Для обоих вариантов датчик уровня воды располагают на определенной высоте резервуара, и он срабатывает, сигнализируя или подавая команду на изменение режима ее подачи.Индикатор уровня воды в баке«>

Контактные устройства работают на основе поплавков, переключающих схемы при достижении жидкостью заданных отметок.

Бесконтактные способы подразделяются на магнитные, емкостные, ультразвуковые, оптические и другие. Устройства не имеют подвижных частей. Они погружаются в контролируемые жидкие или сыпучие среды или закрепляются на стенках баков.

Поплавковые датчики

Надежные и дешевые устройства для контроля уровня жидкостей с помощью поплавков наиболее распространены. Конструктивно они могут различаться. Рассморим их виды.

Вертикальное расположение


Часто применяется поплавковый датчик уровня воды с вертикальным штоком. Внутри него размещен круглый магнит. Шток представляет собой полую пластиковую трубку с расположенными внутри герконами.Индикатор уровня воды в баке«> Поплавок с закрепленным магнитом всегда располагается на поверхности жидкости. Подходя к геркону, поле магнита вызывает срабатывание его контактов, что является сигналом о заполнении емкости до определенного объема. При последовательном соединении контактных пар между собой через резисторы можно постоянно следить за уровнем воды по общему сопротивлению цепи. Стандартный сигнал при этом меняется от 4 до 20 мА. Датчик уровня воды чаще всего размещается в верхней части резервуара на участке длиной до 3 м.

Электрические схемы с герконами могут отличаться при внешнем сходстве механической части. Датчики располагаются на одном, двух и большем количестве уровней, подавая сигнал о том, насколько наполнен бак. Они также могут быть линейными, непрерывно передавая сигнал.

Горизонтальное расположение

Если сверху датчик установить не удается, его крепят горизонтально к стене резервуара. Магнит с поплавком устанавливают на рычаге с шарниром, а геркон помещают в корпусе. При подъеме жидкости в верхнее положение магнит подходит к коннтактам и датчик срабатывает, сигнализируя о достижении предельного положения.


Индикатор уровня воды в баке«>

При повышенной загрязненности или замерзании жидкости применяется более надежный поплавковый датчик уровня воды на гибком тросе. Он состоит из размещенной на глубине небольшой герметичной емкости с металлическим шариком с герконовым контактом или тумблером внутри. При совпадении уровня воды с положением датчика происходит переворот емкости и срабатывание контакта.

Одними из самых точных и надежных поплавковых датчиков являются магнитострикционные. Они содержат поплавок с магнитом, которые скользят по металлическому стержню. Принцип работы заключается в изменении продолжительности прохождения через стержень ультразвукового импульса. Отсутствие электрических контактов существенно повышает четкость срабатывания при достижении границы раздела сред заданного положения.

Емкостные датчики

Бесконтактное устройство реагирует на разницу между диэлектрической проницаемостью разных материаллов. Датчик уровня воды в резервуаре устанавливается снаружи боковой стенки емкости. В этом месте должна быть вставка из стекла или фторопласта, чтобы через нее можно было различить границу раздела сред. Расстояние, на котором чувствительный элемент улавливает изменение контролируемой среды, составляет 25 мм.

Герметичное исполнение емкостного датчика дает возможность помещать его в контролируемую среду, например, в трубопровод или в крышку резервуара. При этом он может находиться под давлением. Таким образом поддерживается наличие жидкости в закрытом реакторе при осуществлении технологического процесса.

Электродные датчики


Датчик уровня воды с помещенными в жидкость электродами реагирует на изменение электропроводности между ними. Для этого их крепят зажимами и размещают на предельно верхнем и нижнем уровнях. С более длинным в паре устанавливают еще один проводник, но обычно вместо него используют металлический корпус резервуара.Индикатор уровня воды в баке«>

Схема датчика уровня воды соединяется с системой управления электродвигателем насоса. При полном баке все электроды погружены в жидкость и между ними протекает ток управления, который является сигналом на отключение двигателя водяного насоса. Вода также не поступает, еслти она не касается оголенного верхнего проводника. Сигналом включения насоса является снижение уровня ниже длинного электрода.

Проблемой всех датчиков является окисление контактов, находящихся в воде. Чтобы уменьшить его влияние, применяют нержавеющую сталь или графитовые стержни.

Датчик уровня воды своими руками

Простота устройства дает возможность изготовить его самостоятельно. Для этого нужен поплавок, рычаг и клапан. Вся конструкция размещается в верхней части бака. Поплавок с рычагом соединяется со штоком, перемещающим поршень.Индикатор уровня воды в баке«>

При достижении водой верхнего предельного уровня поплавок перемещает рычаг, который воздействует на поршень и закрывает подачу через нижнюю трубу.

По мере расхода воды поплавок опускается, после чего поршень снова открывает отверстие, через которое можно опять наполнять резервуар.

При правильном выборе и изготовлении датчик уровня воды, своими руками собранный, надежно работает в домашнем хозяйстве.

Заключение


Датчик уровня воды незаменим в частном секторе. С ним не теряется время при контроле за наполнением бака на огороде, уровнем в колодце, скважине или септике. Простое устройство без помощи хозяина вовремя запустит или отключит водяной насос. Только не стоит забывать о его профилактике.

www.syl.ru

Автор: Юрий Всеволодович Ревич

Проблема оценки уровня воды в баке, установленном на летнем душе или на чердаке дачного домика, не всегда решается просто. В сам бак, размещенный зачастую высоко над головой, так просто не заглянешь, однако количество находящейся в нем воды знать иногда просто необходимо, иначе можно попасть в ситуацию того героя Ильфа и Петрова, у которого вода перестала идти, как раз когда он только-только намылился. Самое простое решение — водомерное стекло — привязано к месту расположения бака, то есть тоже будет находиться далеко не на виду.
тому хочется применить какие-то решения, позволяющие дистанционно оценить количество оставшейся в баке воды, не прикладывая к этому больших усилий.
Уровнемер при этом должен быть максимально простым и надежным, не требовать дефицитных и дорогих деталей и иметь возможность работать в уличных условиях (конечно, не на прямом дожде, а под крышей, но как минимум, 100% влажность воздуха осенней дождливой ночью он должен выдерживать). Перебрав все возможные конструкции — покупные и самодельные — автор пришел к выводу, что не устраивает ни одна. Одни весьма совершенны (как ультразвуковые), но сложны, капризны и дороги, другие дают слишком грубую оценку на уровне «полный-неполный» (как простое решение с поплавком от бачка и концевым выключателем).
Потому вашему вниманию предлагается самостоятельно придуманная автором конструкция электронно-механического уровнемера, содержащая минимум деталей, имеющая высокую надежность и информативность. Особенно удобно, что такой уровнемер позволяет его устанавливать на баке любой конфигурации — в том числе плоском, где максимальный перепад уровней незначителен. Конструкция проверена автором в течение летнего сезона на горизонтальном накопительном баке с перепадом уровней в тридцать пять сантиметров, и ни одного нарекания за весь сезон не последовало. Правда, за простоту и надежность приходится платить — точным предварительным расчетом геометрических размеров и тщательностью изготовления.
Электрическая схема уровнемера предельно проста, и приведена на рис. 1:


Электрическая схема уровнемера

Главная деталь – переменное сопротивление, включенное по схеме потенциометра. Оно управляет перераспределением тока через плечи двухцветного светодиода. При нахождении ползунка в крайних положениях горит практически только один из светодиодов (либо красный, либо зеленый), в промежуточном состоянии цвет свечения меняется от красного к зеленому через оттенки желтого и розового.
Двухцветный красно-зеленый светодиод VD1 трехвыводной, любого типа (автор использовал большой 10-миллиметровый, купленный в «Чипе-Дипе»). Общим выводом он присоединен к источнику питания, двумя остальными — к крайним выводам потенциометра R2. Ползунок потенциометра соединяется с другим выводом источника питания через резистор R1, ограничивающий ток при нахождении ползунка в крайних положениях. Резистор Rд, показанный на схеме пунктиром, необязательный и служит для выравнивания яркостей, если одно из плечей (обычно — красное) горит сильнее другого, и изменение цвета при вращении ползунка происходит неравномерно. Номинал резистора R1 и переменного R2 должны находиться примерно в соотношении R1/R2 = 1/4 — 1/5. При этом яркость в крайних положениях ползунка максимальна, а к середине диапазона, когда светятся оба светодиода примерно одинаково, падает, но зрительно это почти незаметно – меняется лишь оттенок свечения.
Полярность подключения источника питания такая, как на рисунке, годится для светодиода с общим анодом (положительным выводом), для светодиода с общим катодом она, соответственно, будет противоположной.
м источник питания может быть любым низковольтным (вплоть до батареек), напряжением от 5 до 18 вольт. От напряжения источника зависит подбор номиналов резисторов – такие номиналы, как на схеме, годятся для питающего напряжения 5 В, для 12 вольт их надо увеличить примерно втрое-вчетверо. Автор использовал стабилизированный источник, встроенный в вилку, разобрав его и поместив в общий с постоянными резисторами и светодиодом корпус. Можно, разумеется, применить и простейший нестабилизованный (они продаются на рынках и стоят не более сотни-другой рублей), только учтите, что указанное номинальное напряжение на нем может быть много ниже реального. При использовании батареек можно обойтись тремя штуками типоразмера АА (не меняя номиналов, указанных на схеме), только тогда целесообразно встроить в схему выключатель или кнопку – при непрерывном горении щелочных АА-батареек хватит всего примерно на неделю.
Вся электрическая часть, исключая потенциометр, смонтирована в герметичном пластиковом корпусе, в котором делается отверстие, куда должен изнутри плотно входить светодиод (для надежности все стыки стоит проклеить «алюминиевым» скотчем, а место стыка светодиода с крышкой и отверстия для вывода проводов промазать герметиком).
тенциометр, который устанавливается на баке, может соединяться со схемой трехжильным гибким проводом в двойной изоляции (тем, на который обычно вешают подвесные светильники). Для надежности не стоит распаивать такой толстый провод непосредственно к потенциометру – стоит сделать промежуточную колодку с винтовыми соединениями.

Теперь о конструкции механической части, которая схематически приведена на рис.2:

Конструкция механической части уровнемера

Ползунок переменного резистора жестко закреплен на одном валу с вращающимся шкивом, через который перекинута капроновая нитка с поплавком на одной стороне и грузом-противовесом на другой. Поплавок тоже подгружен дополнительным грузом так, чтобы сила натяжения нити на воздухе была достаточно большой и нить не пыталась размотаться со шкива (в реальности эти грузы могут быть в районе нескольких сотен грамм). Поплавок делается из пенопласта и разность между его весом в воздухе (вместе с весом груза) и весом груза-противовеса должна быть меньше плавучести поплавка (последняя по закону Архимеда равна в граммах объему вытесненной поплавком воды, выраженной в кубических сантиметрах).
узы могут быть изготовлены из свинца, латуни, бронзы и даже алюминия – в общем, из любого материала, не подверженного воздействию воды.
Угол поворота подвижной системы φ у разных типов переменных резисторов несколько различается, и обычно находится в пределах 240-260° (если не найдете данных по справочнику, придется измерить). Длина окружности шкива должна быть такой, чтобы обеспечить полный поворот ползунка на эту величину, и одновременно движение поплавка от самого дна до поверхности. То есть диаметр шкива рассчитывается по формуле: (360/φ×H)/π, где φ — максимальный угол поворота подвижной системы потенциометра, H – максимальный перепад уровней. Диаметр шкива, измеренный по месту прилегания нити, должен быть подогнан под эту величину максимально точно.
Нить несколько раз оборачивается вокруг шкива, чтобы она не скользила по нему. Самое сложное в этой конструкции – смонтировать систему так, чтобы длина нити точно соответствовала перепаду уровней и одновременно при нахождении поплавка в верхнем положении, движок потенциометра находился также в крайнем положении (соответствующем зеленому свечению светодиода). Автор делал это «насухую», разместив всю конструкцию со шкивом и поплавком на возвышении, точно соответствующем по высоте перепаду уровней воды в баке, и установив для удобства подгонки в одном из грузов винтовой зажим для нитки. Затем отлаженную и проверенную конструкцию аккуратно переносят, закрепляют на баке и проверяют с водой.
ли над баком нет крыши, то всю конструкцию стоит накрыть отдельным колпаком для защиты от дождя и любопытных птиц.
Пару слов о подборе переменного резистора, от которого в значительной степени зависит надежность конструкции. Для наших целей категорически не подходят современные резисторы для аудиоаппаратуры, особенно с открытым резистивным слоем. Идеально для этой цели подходят старинные отечественные герметичные резисторы типа СПО-1, но сегодня их можно разыскать только случайно на развалах или разобрав какой-нибудь старый прибор военной приемки. Если вы их не найдете, попробуйте разыскать отечественные герметизированные СП3-9а или аналогичные – они меньше по размерам, но тоже очень надежные. Для глубоких емкостей заманчиво попробовать приспособить многооборотные потенциометры, но автор так и не смог найти типа, достаточно надежного для работы в этой конструкции. Разумеется, характеристика резистора предпочтительно должна быть линейной (то есть типа А), нелинейные (Б или В) дадут неравномерную зависимость цвета свечения от уровня. Если все указанные операции выполнить аккуратно, то уровнемер подстройки больше не потребует и будет надежно служить годами, не требуя никакого обслуживания.


radio-stv.ru

Метод измерения

Уровнемеров в продаже великое множество. Но мне как-то даже и мысль в голову не пришла искать что-то готовое, не спортивно это, не по «нашему». Вот и решил сделать прибор сам. Более того, мне недостаточно было знать, верхний и нижний уровень, я хотел знать, сколько точно литров в баке. Конечно, для данной цели – контроль уровня воды в баке, эта информация избыточна, но так солидней. Поскольку моя нынешняя работа связана с ультразвуковой дефектоскопией, то выбор способа измерения был нетрудным. В продаже есть много предложений ультразвуковых датчиков расстояния. Есть дорогие с цифровым интерфейсом и на большое расстояние, есть дешевые с более простым интерфейсом, на меньшее расстояние. Выбор пал на самый простой и дешевый датчик HC-SR04.

Датчик

Датчик представляет из себя печатную плату. На которой установлены передающий и приёмные пьезоэлементы. На плате собрана схема формирования зондирующей пачки импульсов с частотой 40кГц, которая подается на драйвер, выполненный на преобразователе уровня TTL в RS232.
Да-да, вот такое необычное применение. Не совсем правильное, но дешевое и работоспособное решение позволяющее обойтись без дополнительного высокого напряжения для раскачки излучающего пьезоэелемента. Также плата содержит усилитель для приемного пьезоэлемента и небольшой управляющий микроконтроллер. У датчика четыре ножки управления: питание +5 Вольт (VCC), вход запуска (Trig), выход (Echo), и земля (GND).

На вход Trig мы подаем импульс 10 мкС, на выходе Echo, при получении датчиком эхо-сигнала (отражения), будет сформирован импульс длительностью пропорциональной времени прохождения звука от датчика до отражателя и обратно. Это время мы делим на два и умножаем на скорость звука в воздухе, среднее значение 340 м/с – получаем расстояние до отражателя (объекта). Ниже диаграмма работы датчика.

Схема

Прототип был собран на макетной плате на микроконтроллере ATmega16 и индикаторе TIC3321. Для дополнительной визуализации есть линейка из десяти светодиодов. Схему прототипа я не привожу, кому будет нужно, в приложенном архиве проект для Протеус.
В конечном варианте я решил поставить светодиодный индикатор вместо TIC3321 – лучше подходил по габаритам к корпусу, четыре против трех разрядов и лучше видно в темноте. Микроконтроллер поставил ATmega32, давно валявшийся у меня на полке.
Две кнопки, для включения наполнения и слива. Эти же кнопки используются при процедуре калибровки, пара транзисторов и реле для включения электромагнитных клапанов или насоса.

Конструктив

Некоторое время назад, мой бывший коллега принес мне три сломанных теплосчетчика мол: сделаешь что-нибудь полезное.

Из полезного — отрезал от теплосчетчиков термодатчики, пока лежат на полке. Понравился конструктив теплосчетчика. Корпус состоит из двух половинок. В нижней половинке, устанавливаемой стационарно, стоят две платы с клемниками для внешних подключений и колодка для соединения с платой в верхней части корпуса. А в верхней части корпуса стоит основная плата счетчика. Вот этот корпус и будем использовать с такой же идеологией.

Для верхней части корпуса была изготовлена печатная плата, в нижнюю часть, плату делать я не стал – собрал все на монтажной плате.

Питается устройство от импульсного блока питания некогда служившим для питания ADSL-роутера. После был списан на пенсию за слабость свою, после ремонта вновь введен в строй, но уже для питания моего устройства.

Передняя панель

Для передней панели была изготовлена наклейка. Приятным бонусом для меня оказалось то, что при печати на прозрачном полимере краски получаются полупрозрачными, это позволило мне отказаться от светофильтра индикатора, я просто сделал прямоугольную заливку красного цвета.

Поскольку минимальный формат печати оказался А3, то наклеек я заказал три варианта в двух экземплярах. Мне больше понравился темный. Ну, или если надоест, то всегда можно заказать новую наклейку.

Монтаж датчика

Датчик, я установил в корпус от елочной гирлянды.

Корпус закрепил на крышке бака.

Просверлил отверстия для установки датчика.

Припаял кабель, электролитический конденсатор и залил все термоклеем.

Описание работы

При подаче питания на схему сначала проходит тестирование семисегментного индикатора и линейки светодиодов. Если прибор не калиброван, то на индикаторе мы увидим, лишь измеренную дистанцию. Линейка светодиодов не работает, так же не доступна функция управления наполнения и слива бака. Больше про работу не калиброванного прибора рассказывать нечего.
Ну, так давайте откалибруем его!

Калибровка

Калибровка состоит из трех этапов:
1. Калибровка нуля. Показываем прибору нижний уровень бака – пустой бак.
2. Калибровка верхнего уровня. Показываем прибору максимальный уровень.
3. Ввод объема бака.

Вход в режим калибровки происходит после теста индикатора при удерживании обеих кнопок. После отпускания кнопок на индикаторе отображается дистанция до дна в миллиметрах, а на линейке светодиодов горит нижний светодиод, символизируя режим калибровки нуля.

Для калибровки параметра на пустом баке нажимаем кнопку «Слить», переходим к следующему этапу – калибровке максимального уровня. На индикаторе так же отображается дистанция в миллиметрах. На линейке горят все светодиоды, символизируя режим калибровки максимального уровня. Дальше возможны варианты – либо мы наполняем бак на сто процентов и после этого жмем кнопку «Наполнить» для установки верхнего уровня. Или можно просто поднести отражатель к датчику на предполагаемый максимальный уровень.

После калибровки уровней переходим к вводу объема бака. Кнопкой «Наполнить» меняем значение разряда, а кнопкой «Слить» меняем разряд и так все четыре разряда по очереди. В калибровке предусмотрены две блокировки. Не критическая – если объем не введен, то устанавливается объем 100, соответственно отображение будет в процентах или в литрах, если бак при этом на сто литров. Вторая — критическая блокировка, поскольку расположение датчика у нас верхнее, то значение верхнего уровня не может быть больше нижнего.
В этом случае прибор калибровку не проходит, а просто отображает дистанцию.

Описание работы и видео в действии

После успешной калибровки прибор отображает объем воды в литрах и уровень в десятках процентов на линейке светодиодов. Также становятся доступными функции наполнения и слива бака. В приборе предусмотрено автоматическое наполнение, которое неактивно после подачи питания. Для активации автоматического наполнения необходимо нажать кнопку «Наполнить» после чего бак наполнится на 90%.

При наполнении бака, уровень на светодиодной линейке будет отображаться как при зарядке аккумулятора в телефоне. Повторное наполнение включиться автоматически при отпускании уровня ниже 10%. Наполнение бака можно запускать в любой момент. Для остановки наполнения нужно нажать кнопку «Слить» во время наполнения. Функция слива предусмотрена для вывода бака из эксплуатации на зимний период. Может быть, и не очень нужная функция, прибор опытный трудно вот так все сразу продумать, пускай пока будет.

Для активации слива нажимаем кнопку «Слить», включается реле включения клапана слива. Реле выключается при достижении нулевого уровня после задержки необходимой для слива воды с трубопровода. Теперь, во время слива, батарейка — бак будет уже не заряжаться, а разряжаться. После активации слива, режим автоматического наполнения выключается, повторно включить его можно нажав на кнопку «Наполнить».

Вот собственно и все, смотрим демо-видео.

Видео прототипа:

Файлы (обновлено 05-04-2014):

Схема, плата, даташиты: ▼ Shema-plata-datashity.7z ? 06/04/14 ⚖️ 467,61 Kb ⇣ 217
Файл прошивки для варианта на led-индикаторах: ▼ TankControl-led-hex-05042014.7z ? 06/04/14 ⚖️ 4,28 Kb ⇣ 174

Устройство для контроля уровня воды – уровнемер, бакомер: ультразвуковой датчик + микроконтроллерВнимание!
Описанное устройство с усовершенствованиями
доступно в виде нового датагорского кита —
набор для сборки или как готовое изделие!

Заключение

Хотя на дворе уже весна, но дачный сезон еще не наступил, поэтому придется подождать, пока можно будет начать пользоваться баком. Более того, мне еще долго не придется использовать прибор в полном объеме, так как в старой бане нет постоянно подключенного водоснабжения, а новую я еще не достроил.
Но смотреть уровень уже можно!!!
yahoo

datagor.ru

Похожие записи:

Датчик уровня воды своими руками может сделать практически каждый, кто хоть немного умеет держать в руках паяльник. А эта статья поможет вам поэтапно, при помощи фотографий, изготовить индикатор уровня воды в баке своими руками из простых и распространённых деталей. Данное устройство работает очень хорошо и весьма надёжно в эксплуатации. При правильной сборке из исправных деталей, указанных на схеме номиналов, в дальнейшей настройке не нуждается, и будет работать сразу при подключении питания 12 вольт.
Для начала нужно разобраться со схемой уровня воды, которую мы будем изготавливать.
Индикатор уровня воды в баке
Схема уровень воды своими руками
Индикатор уровня воды в баке
Первым делом, после ознакомления с фотографией: схема уровня воды в баке своими руками, является заготовка деталей и материалов. Нам потребуется микросхема ULN2004, её можно купить в радиомагазине или в Китае, на Алиэкспресс. Цена за одну микросхему в радиомагазине и за десять на Алиэкспресс примерно равны, так что выбирайте подходящее, единственное неудобство — это то, что посылку из Китая нужно ждать около месяца или больше.
Детали собраны
Индикатор уровня воды в баке
Светодиоды можно использовать сигнальные любого цвета, какой Вам понравится, диаметром 4 – 5 миллиметров. Цоколёвка светодиодов и микросхемы есть на схеме.
Конденсатор C1 нужен полярный 100 микрофарад 25 вольт, или больших параметров (какой есть).
Резисторы (сопротивления) мощностью от 0.125 до 0.5 ватта или больше (чем больше мощность, тем больше габариты и будет не очень красиво, это относится и к конденсатору).
Резисторы R1 – R7 сопротивлением 47 ком (немного меньше или немного больше – не критично).
Резисторы R 8 – R14 сопротивлением 1 ком (примерно). Чем больше сопротивление, тем слабее будет светиться светодиод и наоборот, но слишком маленькое сопротивление может привести к выходу светодиода из строя.
Печатную плату можно не изготавливать, а применить макетную, как у меня, стоит копейки, особенно в Китае. Соотношение цены в радиомагазине и Китае 5 – 10 к одному.
Кабель к датчикам уровня воды можно применить любой восьми жильный сигнальный (в магазинах, где продают устройства сигнализации, есть всякий). Концы кабеля, помещаемые в воду как датчик уровня, освободить от изоляции на длину 5 – 10 миллиметров и зачищенные концы залудить (покрыть оловом при помощи паяльника) для уменьшения окисляющего действия воды на металл. Плюсовой электрод нужно изготовить из нержавейки (например, чайная ложка), а место соединения её к проводу защитить от воды при помощи клеевого пистолета. Если место контакта не защитить, то через короткое время электрохимическая реакция сожрёт. Шаг между датчиками нужно рассчитать исходя из глубины ёмкости. Если нужно измерять большую глубину воды и хочется разместить датчики чаще, то можно изготовить ещё одну или даже несколько подобных схем контроля уровня воды и разместить их последовательно в ёмкости. Конструкция датчиков может быть самой разнообразной и зависит только от Вашей фантазии, главное соблюдать общие принципы.
Индикатор уровня воды в баке
Индикатор уровня воды в баке
Клеммные колодки любые, но важно удобство подключения и использования.
Для микросхемы лучше всего применить разъём для беспаечного размещения. Это гнездо можно паять и не бояться, что перегреешь ножки, или подействует статическое электричество. Если микросхема вышла из строя, по каким – то причинам, то заменить её можно за пару секунд. Стоит такая панелька копейки.
Олово (проволока с канифолью) лучше использовать Российское. Китайское олово хорошее не встречал.
После сбора деталей нужно подумать о размещении деталей на плате. Я сделал, так как на фото, а Вы вольны расположить их по своему вкусу. Главное, чтобы расположение деталей отвечало задачам уменьшения количества перемычек и пайки, а главное удобству эксплуатации. Аккуратность в сборке схемы не последнее дело, не нужно торопиться как я и будет всё красиво. Итак, приступим.
Индикатор уровня воды в баке
Индикатор уровня воды в баке
Индикатор уровня воды в баке
Индикатор уровня воды в баке
Индикатор уровня воды в баке
Индикатор уровня воды в баке
Индикатор уровня воды в баке
Индикатор уровня воды в баке
Индикатор уровня воды в баке
Питание указателя уровня воды в баке можно сделать от любого аккумулятора 12 вольт (даже старого, лишь бы он давал не меньше чем 10 вольт), например, от компьютерного блока бесперебойного питания, да и продают сейчас их много всяких маломощных. Или можно на даче использовать обычные батарейки. Если их соединить последовательно 8 штук по 1.5 вольта = 12 вольт. Вполне достаточно. А если батарейки подключить через кнопку, чтобы схема работала только при нажатии на кнопку, то такого питания хватит на много лет.
Осталось только испытать указатель уровня воды в баке и тут главное не перепутать плюс с минусом. Провода питания лучше подключать разного цвета. Плюс всегда обозначается красным цветом, а минус чёрным, если к этому привыкнуть, то уже не перепутаете.
Индикатор уровня воды в баке
Источник

sam-sdelay.ru

Общая классификация приборов

Датчик уровня воды используется для следующих целей:

  • Для восприятия изменения количества жидкости и передачи дискретного сигнала в случае завышения максимально допустимой отметки в резервуаре на реле;
  • Для включения реле сигнализации (световой или звуковой) в главном корпусе управления;
  • Для передачи показателей уровня жидкости на табло пульта управления с отображением конкретных резервуаров;
  • Для организации замкнутой схемы системы автоматического контроля воды в резервуаре. Для этого дополнительно потребуется контроллер, электродвигатель насоса.

Возможные методы определения загруженности резервуара

Существует несколько методов измерения уровня жидкости:

  1. Бесконтактный – зачастую приборы такого типа используются для контроля уровня вязких, токсичных, жидких либо твердых, сыпучих веществ. Это емкостные (дискретные) приборы, ультразвуковые модели;
  2. Контактный – устройство располагается непосредственно в резервуаре, на его стенке, на определенном уровне. По достижению водой этого показателя датчик срабатывает. Это поплавковые, гидростатические модели.

По принципу действия различают следующие виды датчиков:

  • Поплавкового типа;
  • Гидростатические;
  • Емкостные;
  • Радарные;
  • Ультразвуковые.

Кратко о каждом виде приборов

  1. Датчик уровня жидкости поплавковый – отличается простотой конструкции, зачастую используется в сочетании с электрическим реле. Система действует просто: при достижении определенного уровня вода воздействует на поплавок. Он в свою очередь изменяет положение, замыкает контакт реле, к которому прикреплен одним концом.

Поплавковые модели бывают дискретные и магнитострикционные. Первый вариант — дешевый, надежный, а второй – дорогой, сложной конструкции, но гарантирует точное показание уровня. Однако общий недостаток поплавковых приборов – это необходимость погружения в жидкость.

Поплавковый датчик определения уровня жидкости в баке

  1. Гидростатические устройства – в них все внимание обращено на гидростатическое давление столба жидкости в резервуаре. Чувствительный элемент прибора воспринимает давление над собой, отображает его по схеме для определения высоты столба воды.

Главные преимущества таких агрегатов – компактность, непрерывность действия и доступность по ценовой категории. Но использовать их в агрессивных условиях нельзя, потому как без контакта с жидкостью не обойтись.

Гидростатический датчик уровня жидкости

  1. Емкостные приборы – для контроля уровня воды в баке предусмотрены пластины. По изменению показателей емкости можно судить о количестве жидкости. Отсутствие подвижных конструкций и элементов, простая схема устройства гарантируют долговечность, надежность работы прибора. Но нельзя не отметить недостатки — это обязательность погружения в жидкость, требовательность к температурному режиму.
  2. Радарные устройства – определяют степень повышения воды путем сравнения частотного сдвига, задержки между излучением и достижением отраженного сигнала. Таким образом, датчик действует как излучатель и улавливатель отражения.

Подобные модели считаются лучшими, точными, надежными устройствами. Они обладают рядом достоинств:

  • Не имеют подвижных деталей;
  • Не контактируют с жидкой средой;
  • Не привередливы к среде, условиям функционирования;
  • Точность показателей.

К недостаткам модели можно отнести только их высокую стоимость.

Радарный датчик уровня жидкости в резервуаре

  1. Ультразвуковые датчики – принцип функционирования, схема устройства аналогичны радарным приборам, только используется ультразвук. Генератор создает ультразвуковое излучение, которое по достижению поверхности жидкости отражается и попадает через некоторое время на приемник датчика.  После небольших математических вычислений, зная временную задержку и скорость движения ультразвука, определяют расстояние до поверхности воды.

Плюсы радарного датчика присущи и ультразвуковому варианту. Единственное, менее точные показатели, более простая схема работы.

Тонкости выбора подобных устройств

При покупке агрегата обратите внимание на функциональность прибора, некоторые его показатели. Крайне важные вопросы при покупке прибора – это:

  1. Для каких веществ может использоваться прибор, условия работы, схема устройства;
  2. Влияет ли материал резервуара на точность показаний, принцип действия устройства;
  3. Используется встроенная схема обработки, преобразования сигнала, либо датчик работает как реле;
  4. Точность показаний, в том числе при быстром понижении или повышении уровня жидкости;
  5. Входит ли в комплектацию дисплей для отображения действительных показателей, регулирования заданных параметров, изменения настроек;
  6. Наличие сертификатов на продукцию;
  7. Реагирование системы на температурные перепады;
  8. Как на прибор и его точность могут влиять внешние факторы, например, вибрация, агрессивность среды или электромагнитные волны;
  9. Материал исполнения устройства и возможность его работы в заданных условиях;
  10. Собственно отзывы об агрегате, гарантии срока службы.

Варианты датчиков определения уровня воды или твердых сыпучих веществ

prokommunikacii.ru

Конструкция выходного дня ставшая неожиданно востребованной. Несмотря на обилие подобных схемотехнических решений в данном устройстве микроконтроллер используется намеренно – стоит копейки и есть у каждого радиолюбителя и в каждом магазине радиодеталей. Чего не скажешь о теряющей популярность КМОП “логике” и пр. “рассыпухе”. Дело в том, что авторы подобных схем зачастую просто “выкручиваются из ситуации”, когда нужно во что бы то ни стало сделать индикатор уровня из того, что под рукой. Таким образом, интернет завален схемами подобных устройств на различных “диковинных” микросхемах и специализированных транзисторах, которые имеются только у того, кто их (схемы) придумал. Именно с такой ситуацией в свое время столкнулся я сам, когда не нашел нужные микросхемы для повторения схемы с интересующим меня функционалом. Поэтому пришлось самостоятельно разработать схему на самом “народном” микроконтроллере.

Особенности устройства и краткие характеристики:

Дешевый и доступный микроконтроллер ATtiny13A в DIP-корпусе;
Индикация 3-уровней воды 2-мя светодиодами;
Измерение 3-уровней воды 2-мя электродами;
Звуковое сопровождение индикации “высокого” уровня;
Низкий уровень (внимание) – мигает красный светодиод:
Средний уровень (норма) – горит зеленый светодиод;
Высокий уровень (авария) мигает красный светодиод и сопровождается звуковым сигналом;
Высокая чувствительность устройства позволяет использовать его для контроля даже грязной воды, влажности почвы и пара;
Потребляемый ток не более тока потребляемого примененным светодиодом (т.е. около 20мА);
Напряжение питания 3-30В;
Текущий уровень воды индицируется соответствующим светодиодом (другие не горят);
Защита от переполюсовки.

Схема. Классическая для подключения такого типа МК. Защита от переполюсовки сделана на диоде включенном последовательно с “питанием”. Помимо основного входа “питания” (через стабилизатор напряжения) имеется вход 5V для питания устройства от 5-вольтового блока питания, например “зарядника” от сот. телефона. Пищалка-зуммер 5-вольтовая, включается транзистором, поэтому может быть любой.
Настройка схемы не требуется, устройство начинает работать сразу после прошивки МК.

При необходимости уменьшить (“загрубить”) чувствительность входов нужно уменьшить сопротивление подтягивающих резисторов входов электродов HI и MID. В одном случае, из-за обильного парообразования в расширительном баке, мне пришлось уменьшить сопротивление этих резисторов до 4.7кОм.

Низкий уровень индицируется когда ни один электрод не касается воды. Подразумевается, что рашир. бак металлический и “общий” провод прикручивается непосредственно к баку. Иначе (как на фото ниже) потребуется 3 электрода. Когда электрод MID касается воды индикация переключается в реж. “норма”. Так будет до тех пор пока электрод MID в воде или пока воды не коснется еще и электрод HI – тогда индицируется высокий уровень.

Плата. Односторонняя, разведена в DipTrace 3.0. Все компоненты для поверхностного монтажа. Светодиоды и зуммер припаиваются с торца платы – для удобства вывода индикации из корпуса готового устройства. Платы готовых устройств покрыты тонированным цапон-лаком. Шелкография на верхней стороне платы выполнена ЛУТ, как, впрочем, и вся плата.

В последнее время на Драйве стало "модно" выкладывать свои ваяния без схемы или без прошивки. Модератор сообщества упорно это поощряет. Но, нужно отдать должное, поощряет он и возможность заработать на том, что сделано своими руками. За что — спасибо. Скачать исходники к статье можно здесь. Всем спасибо, нападайте — я готов к критике. Заранее прошу не умничать "диванных экспертов" — я с вами разговаривать не буду. Конструктивная критика "по делу" приветствуется.

www.drive2.ru



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.