Каждый вид кабелей и проводов имеет свои специфические, первичные и вторичные электрические параметры, которыми эта продукция характеризуется. К одному из основных параметров кабельной продукции относится сопротивление изоляции.

Нормы сопротивления изоляции — это те данные, на которые опираются все виды работ по строительству, эксплуатации и обслуживанию кабелей.

Две металлических жилы, по которым передаются электрические сигналы (токи), почти всегда подвергаются разнообразному мешающему или опасному влиянию со стороны окружающей среды. Соответственно, и сами эти жилы тоже являются своеобразным влияющим фактором, в первую очередь они оказывают влияние друг на друга. Таким образом, ничем не защищенные металлические провода несут потери за счет всевозможных паразитных утечек, вплоть до создания аварийных ситуаций.

Изоляция токопроводящих жил


Для того чтобы свести к минимуму или существенно уменьшить появление подобного рода негативных ситуаций, токопроводящие жилы в кабелях защищают изолирующим покрытием из диэлектрического, не проводящего электрического тока, материала. Для создания изоляционных оболочек и покровов используют такие материалы, как резина, бумага и пластические массы, отдельно или в разных комбинациях. Изоляция для разных марок и видов кабелей существенно отличается как по применяемым материалам, так и по принципам использования изолирующих покровов. В настоящее время выпускается огромное количество кабельной продукции для всевозможного применения.

Разнообразие кабельной продукции

Различаются кабели связи, общего применения, силовые, контрольные, распределительные, радиочастотные и множества других типов и марок. Такая продукция может различаться не только по функциям, но и по своим конструктивным и физическим характеристикам, разработанным применительно к средам, в которых предполагается ее использование. Разнообразные потребности в проводных материалах для всевозможных нужд привели к созданию различных модификаций существующих и уже востребованных типов кабелей. К примеру, для строительства подземных распределительных телефонных сетей непосредственно в грунте конструкцию применяемых в телефонной канализации кабелей дополнительно усиливают, заключая их сердечник в металлические ленты брони. Или для защиты жил кабеля от внешних токов помещают его сердечник в алюминиевую оболочку.

Изолирующие материалы и сопротивление изоляции


Применяемые для создания проводной продукции материалы, в том числе изолирующие, не в последнюю очередь зависят от того, для использования в каких условиях и в каких средах изготавливается конкретный вид и марка изделия. К примеру, для изолирования токопроводящих жил в условиях высоких температур больше подходит резина, устойчивая к температурным воздействиям, чем другие материалы типа обычной пластмассы.

Таким образом, изолирование составных элементов кабельной продукции — это конструктивная защита его токопроводящих жил от взаимных и внешних электрических влияний, от появления наводок и утечек до короткого замыкания. Величину этого параметра для каждой жилы и всего сердечника в целом характеризует величина сопротивления постоянному току в цепи между жилой (жилами) и возможным источником влияния, например, землей. Поэтому для определения защищенности, работоспособности кабельной продукции применяется термин «сопротивление изоляции». Для контроля исправности кабельных пар используются такие понятия, как сопротивление изоляции между жилами и металлическим экраном кабеля.

Диэлектрические материалы, используемые в кабелях для создания изоляционных покрытий, с течением времени теряют свои свойства за счет старения. Кроме того, от физического воздействия они могут просто разрушиться. Чтобы определить, изменились ли параметры изоляционного покрытия и в каких пределах, необходима для сравнения некоторая отправная точка — норма на параметр изделия, установленная изготовителем.

Нормирование сопротивления изоляции постоянному току


Сопротивление изоляции для различных марок кабеля как определенная величина одного из основных параметров изделия закладывается в ТУ или ГОСТ на изготовление конкретной кабельной продукции. На отгружаемую к реализации продукцию должен прилагаться паспорт с ее электрическими параметрами. К примеру, норма сопротивления изоляции для кабелей связи дается в приведении к 1 км длины, причем данные указываются для температуры окружающей среды +20°C.

Норма для кабелей связи городских низкочастотных — не менее 5000 МОм/км. Для коаксиальных и магистральных симметричных кабелей норма сопротивления изоляции достигает 10000 МОм/км. Практически использовать паспортные данные сопротивления изоляции при оценке состояния проверяемого кабеля можно только в пересчете их к длине реального куска кабеля. Если участок кабеля больше километра, то норматив делится на эту длину. Если меньше, то, наоборот, умножается. Полученные таким путем расчетные цифры могут применяться для оценки кабельной линии.

Однако не стоит забывать о том, что паспортные данные приводятся для температуры +20°C, поэтому следует учитывать поправки при проведении контрольных измерений на температуру и влажность. К примеру, при проведении контрольных измерений в сырую, дождливую погоду можно получить данные, которые будут ниже действительного сопротивления изоляции кабеля только за счет влажной поверхности контактных колодок или распределительных (оконечных) устройств. В таких случаях имеет смысл просушить поверхности с клеммами, на которые распаяны жилы измеряемого кабеля.


Для некоторых марок кабелей, имеющих алюминиевую оболочку и шланговое полиэтиленовое покрытие, нормируется сопротивление изоляции между оболочкой и землей. Норма на такое сопротивление изоляции — не менее 20 МОм/км. Для использования в реальной работе указанного норматива его также следует пересчитывать под действительную длину участка.

Для силовой кабельной продукции действуют следующие положения по сопротивлению изоляции постоянному току:

  1. Для силовых кабелей, применяемых в сетях с напряжением более 1000 В, величина указанного параметра не нормируется, но не может быть менее 10 МОм.
  2. Для силовых кабелей, применяемых в сетях с напряжением менее 1000 В, величина параметра не должна быть менее 0,5 МОм.

Для контрольных кабелей величина норматива не должна принимать значения менее 1 МОм.

Контроль над изоляцией кабелей

Сопротивление изоляции кабеля является одним из основных показателей его работоспособного состояния, поэтому проверочные измерения изоляции электрических и электротехнических сетей являются обязательными. Для каждой отрасли директивными материалами определены периодичность и порядок проведения таких контрольных измерений.


К примеру, измерения сопротивления изоляции электрического оборудования, электрических сетей различного уровня и применения проводят специальными приборами, называемыми мегаомметрами, а измерения сопротивления изоляции линий связи проводят предназначенными для этого кабельными мостами. Указанные приборы имеют высокое выходное напряжение (до 2500 В), что предъявляет особые требования к обеспечению выполнения правил охраны труда и техники безопасности при производстве подобных измерений.

В соответствии с действующими регламентными документами, измерения изоляции должны проводиться:

  • для мобильных электроустановок не реже одного раза в 6 месяцев;
  • для наружных электроустановок, кабелей и проводов в особо опасных помещениях не реже одного раза в 12 месяцев;
  • для остальных видов оборудования и сетей не реже одного раза в 36 месяцев.

Иными словами, измерение сопротивления изоляции электропроводки в магазине или в офисе должно проводиться не реже одного раза в 3 года.

По результатам проведенных измерений составляют соответствующий акт, в котором фиксируют полученные данные.

Сравнивая известную норму на сопротивление изоляции электрической сети с полученными результатами измерений, делают вывод о ее работоспособности. Если измеренное сопротивление изоляции постоянному току не соответствует норме, то проверяемая сеть выводится в ремонт до восстановления ее рабочих параметров. Подтверждением окончания ремонтных работ и правомерности ввода сети в эксплуатацию будет являться протокол итоговых послеремонтных измерений сопротивления изоляции.


В связи с тем, что сопротивление изоляции по постоянному току для линий связи нормируется более жестко, то и алгоритм контроля над его состоянием несколько иной. Контрольные измерения этого параметра для линий, не стоящих под избыточным воздушным давлением, проводятся весной, перед началом ремонтного сезона, с тем, чтобы можно было спланировать соответствующие ремонтные работы, если состояние кабельной линии не нормальное.

Ремонт считается законченным, а кабельная линия работоспособной, если итоговые измерения ее параметров подтверждают соответствие сопротивления изоляции участка сети установленной норме (в пересчете на реальную длину).

Методики производства указанных выше измерений имеют некоторые специфические особенности, характерные для силовых сетей и для линий связи. К примеру, при измерении сопротивления изоляции электросети офиса или магазина прибор мегаомметр подключают к измеряемой сети в точках «жила» и «земля», не отсоединяя от нее отводы к розеткам и переключателям.

Сопротивление изоляции линейных элементов линий связи измеряют по схемам «жила-жила» и «жила (все жилы)-земля», предварительно отключив полностью все жилы измеряемой кабельной продукции от любых контактов с аппаратурой. То есть измерение проводят в режиме холостого хода.


Однако перед проведением любых измерений обязательно следует убедиться в отсутствии на измеряемой линии мешающего или опасного напряжения и принять соответствующие меры по защите как измерителя, так и других людей, имеющих доступ к измеряемым цепям. После окончания измерений необходимо снять с измеренных жил остаточный электрический заряд.

В итоге для содержания в исправном состоянии проводного линейного хозяйства и электроустановок достаточно выполнять установленные регламенты и вовремя контролировать такой важный параметр, как сопротивление изоляции постоянному току. Применяя соответствующие нормы, следует помнить о соотношении величины сопротивления изоляции и длины участка. То есть чем длиннее участок проводной линии, тем меньше для него норма по изоляции.


vsyaizolyatsiya.ru

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий документ разработан для электротехнического персонала электролабораторий, электротехнических участков промышленных объектов, проводящих работы по измерению сопротивления изоляции электрооборудования, проводов и кабелей в действующих и реконструируемых электроустановках для всех потребителей электроэнергии независимо от их ведомственной принадлежности.

2. НО  РМАТИВНЫЕ ССЫЛКИ

В настоящем документе используются ссылки на следующие нормативные документы:


  • Правила технической эксплуатации электроустановок потребителей 1992 г.;
  • Правила техники безопасности при эксплуатации электроустановок потребителей 1994 г.;
  • Правила устройства электроустановок 1986 г.;
  • Нормы испытания электрооборудования и аппаратов электроустановок потребителей 1982 г.;
  • Нормы испытания электрооборудования 1978 г.;
  • ГОСТ 26567-85. Преобразователи электроэнергии полупроводниковые. Методы испытаний;
  • ГОСТ 3345-76. Кабели, провода и шнуры. Метод определения электрического сопротивления изоляции;
  • ГОСТ 3484-88. Трансформаторы силовые. Методы электромагнитных испытаний;
  • ГОСТ 3484.3-83. Трансформаторы силовые. Методы измерений диэлектрических параметров изоляции.

 

3.ОПРЕ ДЕЛЕНИЯ

3.1. В настоящей методике используются термины, установленные в ГОСТ 3345-76, ГОСТ 3484.3-83, ГОСТ 3484.1-88, ГОСТ 16504, ГОСТ 23875.

Распр е  дел ительное устройство — распределительное устройство генераторного напряжения электростанции или вторичного напряжения понизительной подстанции района (предприятия), к которому присоединены сети района (предприятия).

Обозн а  чения и сокращения:


  • ВН — обмотки высшего напряжения;
  • СН — обмотки среднего напряжения;
  • НН — обмотки низкого напряжения;
  • НН1, НН2 — обмотки низшего напряжения трансформаторов с расщепленной обмоткой;
  • R15 — пятнадцатисекундное значение сопротивление изоляции в МОм;
  • R60 — одноминутное значение сопротивление изоляции в МОм;
  • ПЭЭП — правила эксплуатации электроустановок потребителей;
  • ПТБЭЭП — правила техники безопасности при эксплуатации электроустановок потребителей;
  • ПУЭ — Правила устройства электроустановок.

4. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

4.1 Измеряемые показатели

Сопротивление изоляции измеряют мегомметрами (100-2500В) со значениями измеренных показателей в Ом, кОм и МОм.

4.2 Средства измерений

К средствам измерения изоляции относятся мегомметры: ЭСО 202, Ф4100, М4100/1-М4100/5, М4107/1, М4107/2, Ф4101. Ф4102/1, Ф4102/2, BM200/G и другие, выпускаемые отечественными и зарубежными фирмами.

4.3 Требования к квалификации

К выполнению измерений сопротивления изоляции допускается обученный электротехнический персонал, имеющий удостоверение о проверке знаний и квалификационную группу по электробезопасности не ниже 3-й, при выполнении измерений в установках до 1000 В, и не ниже 4-й, при измерении в установках выше 1000 В.

К обработке результатов измерений могут быть допущены лица из электротехнического персонала со средним или высшим специальным образованием.

Анализ результатов измерений должен проводить персонал, занимающийся вопросами изоляции электрооборудования, кабелей и проводов.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ


  1. При выполнении измерений сопротивления изоляции должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019.80, ГОСТ 12.2.007-75, Правилами эксплуатации электроустановок потребителей и Правилами техники безопасности при эксплуатации электроустановок потребителей.
  2. Помещения, используемые для измерения изоляции, должны удовлетворять требованиям взрыво- и пожарной безопасности по ГОСТ 12.01.004-91.
  3. Средства измерений должны удовлетворять требованиям безопасности по ГОСТ 2226182.
  4. Измерения мегомметром разрешается выполнять обученным лицам из электротехнического персонала. В установках напряжением выше 1000 В измерения производят по наряду два лица, одно из которых должно иметь по электробезопасности не ниже IV группы. Проведение измерений в процессе монтажа или ремонта оговаривается в наряде в строке "Поручается". В установках напряжением до 1000 В измерения выполняют по распоряжению два лица, одно из которых должно иметь группу не ниже III. Исключение составляют испытания, указанные в п. БЗ.7.20.
  5. Измерение изоляции линии, могущей получить напряжение с двух сторон, разрешается проводить только в том случае, если от ответственного лица электроустановки, которая присоединена к другому концу этой линии, получено сообщение по телефону, с нарочным и т.п. (с обратной проверкой) о том, что линейные разъединители и выключатель отключены и вывешен плакат "Не включать. Работают люди".
  6. Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.
  7. Для контроля состояния изоляции электрических машин в соответствии с методическими указаниями или программами измерения мегомметром на остановленной или вращающейся, но не возбужденной машине, могут проводиться оперативным персоналом или, по его распоряжению, в порядке текущей эксплуатации работниками электролаборатории. Под наблюдением оперативного персонала эти измерения могут выполняться и ремонтным персоналом. Испытания изоляции роторов, якорей и цепей возбуждения может проводить одно лицо с группой по электробезопасности не ниже III, испытания изоляции статора — не менее чем два лица, одно из которых должно иметь группу не ниже IV, а второе — не ниже III.
  8. При работе с мегомметром прикасаться к токоведущим частям, к которым он присоединен, запрещается. После окончания работы необходимо снять остаточный заряд с проверяемого оборудования посредством его кратковременного заземления. Лицо, производящее снятие остаточного заряда, должно пользоваться диэлектрическими перчатками и стоять на изолированном основании.
  9. Производство измерений мегомметром запрещается: на одной цепи двухцепных линий напряжением выше 1000 В, в то время когда другая цепь находится под напряжением; на одноцепной линии, если она идет параллельно с работающей линией напряжением выше 1000 В; во время грозы или при ее приближении.
  10. Измерение сопротивления изоляции мегомметром осуществляется на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегомметра. При снятии заземления необходимо пользоваться диэлектрическими перчатками.

6. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

  1. Измерения изоляции должны проводиться в нормальных климатических условиях по ГОСТ 15150-85 и при нормальном режиме питающей сети или оговоренных в заводском паспорте — техническом описании на мегомметры.
  2. Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допускаемое значение электрического сопротивления изоляции испытуемого изделия.
  3. Измерение проводят в помещениях при температуре 25±10 °С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия.

7. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

 

  1. Проверяют климатические условия в месте измерения сопротивления изоляции с измерением температуры и влажности и соответствие помещения по взрыво- пожароопасности для подбора, к соответствующим условиям, мегомметра.
  2. Проверяют по внешнему осмотру состояние выбираемого мегомметра, соединительных проводников, работоспособность мегаомметра согласно техническому описанию на мегомметр.
  3. Проверяют срок действия госповерки на мегомметр.
  4. Подготовку измерений образцов кабелей и проводов выполняют согласно ГОСТ 3345-76.
  5. При выполнении периодических профилактических работ в электроустановках, а также при выполнении работ на реконструируемых объектах в электроустановках подготовку рабочего места выполняет электротехнический персонал предприятия, где выполняется работа согласно правилам ПТБЭЭП и ПЭЭП.

8. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

Отсчет значений электрического сопротивления изоляции при измерении проводят по истечении 1 мин с момента приложения измерительного напряжения к образцу, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования.

Перед повторным измерением все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин.

Электрическое сопротивление изоляции отдельных жил одножильных кабелей, проводов и шнуров должно быть измерено:

  • для изделий без металлической оболочки, экрана и брони — между токопроводящей жилой и металлическим стержнем или между жилой и заземлением;
  • для изделий с металлической оболочкой, экраном и броней — между токопроводящей жилой и металлической оболочкой или экраном, или броней.

Электрическое сопротивление изоляции многожильных кабелей, проводов и шнуров должно быть измерено:

  • для изделий без металлической оболочки, экрана и брони — между каждой токопроводящей жилой и остальными жилами, соединенными между собой или между каждой токопроводящей; жилой и остальными жилами, соединенными между собой и заземлением;
  • для изделий с металлической оболочкой, экраном и броней — между каждой токопроводящей жилой и остальными жилами, соединенными между собой и с металлической оболочкой или экраном, или броней.

При по ниженном сопротивлении изоляции кабелей проводов и шнуров, отличной от нормативных правил ПУЭ, ПЭЭП, ГОСТ, необходимо выполнить повторные измерения с отсоединением кабелей, проводов и шнуров от зажимов потребителей и разведением токоведущих жил.

При измерении сопротивления изоляции отдельных образцов кабелей, проводов и шнуров, они должны быть отобраны на строительные длины, намотанные на барабаны или в бухты, или образцы длиной не менее 10 м, исключая длину концевых разделок, если в стандартах или технических условиях на кабели, провода и шнуры не оговорена другая длина. Число строительных длин и образ цов для измерения должно быть указано в стандартах или технических условиях на кабели, провода и шнуры.

9. ИЗМЕРЕНИЕ ИЗОЛЯЦИИ ПРЕОБРАЗОВАТЕЛЕЙ

9.1. Измерение электрического сопротивления, изоляции преобразователей проводят в соответствии с требованиями настоящего стандарта, а при воздействии климатических факторов измерение сопротивления изоляции проводят с учетом ГОСТ/16962-71.

Средства измерений: мегомметры и омметры по ГОСТ 16862-71.

Измерение электрического сопротивления изоляции проводят:

  • в нормальных климатических условиях; при верхнем значении температуры окружающей среды после установления в преобразователе теплового равновесия;
  • при верхнем значении относительной влажности.

Сопротивление изоляции измеряют между электрически не соединенными между собой цепями, электрическими цепями и корпусом. В ТУ или конструкторской документации на преобразователи конкретных серий и типов указывают выводы, между которыми должно быть измерено сопротивление и значение постоянного напряжения, при котором проводится это измерение. Если один из выводов или элементов по схеме соединен с корпусом, то эта цепь на время испытаний должна быть разъединена.
При измерении сопротивления изоляции преобразователей должны выполняться следующие условия:

Таблица 1.

Номинальное напряжение цепи, В Напряжение измерительного прибора, В
До 100 включительно
Свыше 100 до 500 включительно
Свыше 500 до 1000 включительно
Свыше 1000
100
250-1000
500-1000
2500
  • перед испытаниями преобразователь должен быть отсоединен от внешних питающих сетей и нагрузки;
  • входные (выходные) выводы преобразователя, конденсаторы, связанные с силовыми цепями, а также анодные, катодные и выводы управления силовых полупроводниковых приборов должны быть соединены между собой или зашунтированы;
  • контакты коммутационной аппаратуры силовых цепей должны быть замкнуты или зашунтированы;
  • электрические цепи, содержащие полупроводниковые приборы и микросхемы, необходимо отключить и, при необходимости, подвергнуть испытаниям отдельно;
  • напряжение измерительного прибора при измерении сопротивления изоляции в зависимости от номинального (амплитудного) значения напряжения цепи выбирают по табл. 1.

При необходимости сопротивление изоляции измеряют при более высоких напряжениях, но не превышающих испытательное напряжение цепи.

Измерение сопротивления изоляции преобразователей, состоящих из нескольких шкафов, допускается проводить отдельно по каждому шкафу.

Если измеряют сопротивление изоляции каждого шкафа и (или) конструктивного узла преобразователя, то значение сопротивления изоляции каждого шкафа и (или) конструктивного узла должно быть указано в ТУ на преобразователи конкретных серий и типов.

Величины минимально-допустимых сопротивлений изоляции для силовых кабелей, выключателей, выключателей нагрузки, разъединителей, вентильных разрядников, сухих реакторов, измерительных трансформаторов, КРУ 6-10 кВ внутренней установки, электродвигателей переменного тока, стационарных, передвижных и комплектных испытательных устройств приведены в табл. 2.

10. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

10.1. Если измерение для кабельных изделий проводилось при температуре, отличающейся от 20 °С, а требуемое стандартами или техническими условиями на конкретные кабельные изделия, значение электрического сопротивления изоляции нормировано при температуре 20 °С, то измеренное значение электрического сопротивления изоляции пересчитывают на температуру 20°С по формуле:

R20=KRt,

где R20 — электрическое сопротивление изоляции при температуре 20 °С, МОм;
Rt — электрическое сопротивление изоляции при температуре измерения, МОм;
К — коэффициент для приведения электрического сопротивления изоляции к температуре 20 °С, значения которого приведены в приложении к настоящему стандарту.

При отсутствии переводных коэффициентов арбитражным методом является измерение электрического сопротивления изоляции при температуре (20±1)°С.

10.2. Пересчет электрического сопротивления изоляции R на длину 1 км должен быть проведен по формуле:

R=R20L,
где R20 — электрическое сопротивление изоляции при температуре 20 °С, МОм;
L — длина испытуемого изделия без учета концевых участков, км.

Коэффициент К приведения электрического сопротивления изоляции к температуре 20 °С.

Погрешность величины сопротивления изоляции подсчитывают по рекомендациям, указанным в технических описаниях и инструкциях по эксплуатации на мегомметры с учетом внешних влияющих факторов.

11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Результаты измерений вносятся в протоколы испытания кабелей до и свыше 1000 В, а также в протоколы по профилактическим наладочным работам по устройствам РЗА и электрооборудования.

Таблица 2.

Наименование измерений сопротивления изоляций Нормируемое значение, Мом, не менее Напряжения мегомметра, В Указания
Кабели силовые выше 1000 В Не нормируется 2500 При испытании повышенным напряжением сопротивление изоляции R60 должно быть одинаковым до и после испытаний
Кабели силовые до 1000В 1 1000  
Масляные выключатели:      
1. Подвижных и направляющих      
частей выполненных из органического материала. 3-10кВ, 300 2500  
15-150кВ 1000    
220кВ 3000    
2. Вторичных цепей, в том числе
включающих и отключающих катушек.
1 1000  
З.Выключатели нагрузки: измерение сопротивления изоляции включающей и отключающей катушек 1 500-1000 Сопротивление изоляции силовой части не измеряется, а испытывается повышенным напряжением промышленной частоты
4. Разъединители, короткозамыкатели и отделители:     Производится только при положительных температурах окружающего воздуха
1 .Поводков тяг, выполненным      
из органических материалов      
3-10кВ 300 2500  
15-150кВ 1000 2500  
220кВ 3000 2500  
Измерение сопротивления элемента
вентильного разрядника на напряжение:
    Сопротивление разрядника или
его элемента должно
отличаться не более чем на
30% от результатов измерения
выше 3 кВ и выше   2500
менее 3 кВ   1000 на заводе-изготовителе или предыдущих измерений при эксплуатации
Сухие реакторы. Измерение сопротивления обмоток относительно
болтов крепления
0,5 1000-500 После капитального ремонта.
0,1 1000-500 В эксплуатации
Измерительные трансформаторы
напряжения выше 1000В:
Не нормируется. 2 500 При оценке состояния вторичных обмоток можно ориентироваться на следующие средние значения сопротивления исправной обмотки: у встроенных ТТ — 10 МОм,
у выносных ТТ- 50 МОм
первичных обмоток,
вторичных обмоток
Не ниже 1 вместе с под- соединенными
цепями
1000
КРУ 3-10кВ: первичны е цепи
вторичны е цепи
300 2 500 Измерение выполняется при
полностью собранных цепях
1 500-1000 В
Э лектродвигатели переменного
тока вы ше 660 В
Не   Должны учитываться при необходимости сушки.
нормируется 2500
обм. статора. до 660 В 1 1000
Обмотки статора у эл. двигателей
на напряжение вы ше 3000 В
или мощность более 3000 кВТ
R60/R15 2500 Производится у синхронны х
двигателей и асинхронных двигателей с фазным ротором напряжением 3000 В и выше или
мощностью выше 1000 кВт
Не нормиру- 1000В
Обмотки ротора ется  
Стационарные, передвижные, переносные комплектные испытательные установки. Не нормируется 2500
Измерение изоляции цепей и
аппаратуры напр. выше 1000В.
   
Цепей и аппаратуры на напряжение
до 1000 В
1 1000
Машины постоянного тока:     Сопротивление изоляции обмоток
измерение изоляции обмоток и бандажей до 500В, 0,5 500 измеряется относительно корпуса, а бандажей — относительно корпуса и
выше 500В   1 000 удерживаемых им обмоток вместе с соединенными с ними цепями и кабелями
Силовые и осветительные электропроводки 0,5 1000  
Распределительные устройства,
щиты и токопроводы
0,5 1000  
Вторичны е цепи управления,
защиты и автоматики
Шинки постоянного тока
1 500-1000  
10 500-1000  
Каждое присоединение вторичных
цепей и цепей питания приводов
выключателей
1 500-1000  
Цепи управления, защиты, автоматики, телемеханики, возбуждения
машин пост. тока на напряжение
500-1000В, присоединенным к цепям главных РУ
1 500-1000 Сопротивление изоляции цепей
напряжением до 60 В, нормаль
но питающихся от отдельных
источников, измеряется мегом-
метром на 500 В и должно быть не менее 0,5 МОм
Цепи, содержащие устройства с
микроэлектронными элементами:
     
выше 60 В 0,5 500  
60 и ниже 0,5 100  

 

energoboard.ru

Что такое изоляция жил, проводящих ток

Чтобы подобного рода негативные ситуации свелись к минимуму или значительно уменьшились, токопроводящие жилы в кабелях следует защитить при помощи изолирующего покрытия из материала, не проводящего электрический ток.

Материалом для создания изоляционных оболочек считается:

  • пластические массы;
  • бумага;
  • резина.

Также эти материалы можно комбинировать. Изоляция, которая используется для разных видов кабелей, имеет довольно значительное отличие как по используемым материалам, так и по принципам применения изолирующих покровов. На сегодняшний день выпускают большое количество кабельной продукции, которую используют для разнообразных нужд.

Разнообразие кабельной продукции

Различают кабели:

  • Разнообразные кабелисвязи;
  • силовые;
  • распределительные;
  • общего применения;
  • контрольные;
  • радиочастотные и другие марки.

Эта продукция может отличаться друг от друга не только своими функциями, но и конструктивными и физическими характеристиками, разработанные применительно для той среды, в которой она будет использоваться. Большая потребность в проводных материалах, необходимых для разнообразных нужд, привела к тому, что были созданы различные модификации существующих на данный момент типов кабелей. Например, если подземные распределительные телефонные сети прокладываются непосредственно в грунте, применяемую в телефонной канализации конструкцию кабелей дополнительно усиливают, облачая их сердечник в металлические ленты брони. А также чтобы защитить жилы кабеля от внешних токов, его сердечник облачают в алюминиевую оболочку.

Что такое сопротивление изоляции

От того, в какой среде и в каких условиях будет использоваться изготавливаемая проводниковая продукция, зависит вид изолирующего материала. Например, чтобы изолировать при высоких температурах токопроводящие жилы, лучше всего использовать резину, чем другие материалы. Резина устойчива к таким температурным воздействиям, чем, например, обычная пластмасса.

Таким образом, использование изолирующих материалов кабельной продукции необходимо для защиты его токопроводящих жил от внешних и взаимных электрических влияний. Величину такого параметра для отдельно взятой жилы и всего сердечника в целом определяет величина сопротивления постоянному току, возникающей в цепи между жилами и каким-либо источником, к примеру, землей. Чтобы определить работоспособность и защищенность кабельной продукции используется термин «сопротивление изоляции».

Материалы, которые используются в кабелях в качестве изоляции, со временем стареют и начинают терять свои свойства. Поэтому даже от любого физического воздействия они могут разрушиться. Чтобы уточнить, как и в каких пределах могли измениться параметры изоляционного материала, требуется для сравнения знать норму на параметр изделия, которая устанавливается изготовителем.

Норма сопротивления изоляции

Как измеряется сопротивление кабеляКак конкретная величина изделия сопротивление изоляции для разных марок кабеля закладывается в ГОСТ или ТУ на изготовление определенной кабельной продукции. Такая продукция, поставляемая для реализации, должна иметь паспорт с электрическими параметрами. Например, норма сопротивления изоляции для кабеля связи приводится к 1 км длины, причем температура окружающей среды для этих данных должна составлять +20 градусов.

Для городских низкочастотных кабелей связи норма сопротивления должна составлять не меньше 5000 Мом/км, для коаксиальных и магистральных симметричных кабелей норма сопротивления может достигать 10000 Мом/км. Оценивая состояние проверяемого кабеля, паспортные данные сопротивления изоляции используют только тогда, когда необходим пересчет их к длине действительного куска кабеля. При участке кабеля больше километра норму следует делить на эту длину. Если она меньше километра, то, соответственно, умножать.

Норма сопротивление кабеля

Полученные в результате этого расчетные цифры часто используются для оценки кабельной линии. Следует помнить, что паспортные данные учитываются для температуры +20 градусов, поэтому необходимо делать поправки, проводя контрольные измерения на влажность и температуру.

Существуют такие марки кабельной продукции, у которых алюминиевая оболочка и шланговое полиэтиленовое покрытие. Для них определяют норму сопротивления изоляции между землей и оболочкой. Она обычно составляет 20 Мом/км. Чтобы использовать в работе этот норматив его необходимо пересчитать под действительную длину участка.

Для силового кабеля предусмотрены следующие положения по сопротивлению изоляции постоянному току:

  • у применяемых в сетях с напряжением более 1000 В силовых кабелях величина такого параметра не нормируется, но не может быть меньше 10 ОМ;
  • у применяемых в сетях с напряжением менее 1000 В силовых кабелях величина параметра не должна быть выше 0,5 Ом.

Для контрольных кабелей норма не может быть меньше 1 Ом.

Заключение

Чтобы содержать в исправном состоянии электроустановки, необходимо держать под строгим контролем такой параметр, как сопротивление изоляции постоянному току. Используя такие нормы, необходимо помнить о соотношении длины участка и величины сопротивления изоляции. Таким образом, чем длиннее участок проводной линии, тем меньше будет для него изоляционная норма.

elektro.guru



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.