Расчет радиатора отопления по площади

Чтобы выполнить наиболее простой расчет требуемого помещению количества тепла, выделяемого радиатором отопления, используют его площадь как основной параметр. Ее легко определить, а потребность в теплоте можно найти по СНиП.

К примеру, при умеренном климате на 1 квадратный метр помещения требуется от 60 до 100 Вт теплоты. Если объект находится на широте выше 60 градусов, норма возрастает до 150-200 Вт.

Обычно при расчете радиаторов закладывают небольшой запас мощности, а чем выше ее значение, тем больше число секций прибора. Увеличение их числа приводит к увеличению объема теплоносителя в системе, как следствие – росту затрат теплоресурсов.

Сама система становится более инерционной (менее чувствительной к регулировке). Если система подключена к централизованному отоплению, параметр не является критичным, при индивидуальном отоплении рекомендуется выбор оптимального числа радиаторов.

У каждого отопительного прибора в паспорте указана его основная характеристика – количество выделяемой теплоты, полученную потребность теплоты для помещения необходимо разделить на мощность радиатора. Так можно определить требуемое число секций.


Данный способ расчета имеет существенный недостаток – они не учитывает высоту потолка, которая бывает разной. Таким образом расчет радиатора по площади комнаты является приблизительным и требует внесения коэффициентов для уточнения результата.

Расчет на основании объема отапливаемого пространства

Данный расчет предусматривает использование еще одного параметра – высоты от пола до потолка. Методика является аналогичной описанной выше. Определить объем также не составит труда. Он равен произведению длины, ширины и высоты (для прямоугольных комнат). Немного усложняется расчет объема, если она имеет не прямоугольную форму.

Таблица расчета радиатора на основании объема отапливаемого пространства

Для числа радиаторов используют 3 величины:

  • Объем помещения (воздуха);
  • Количество теплоты, выделяемое одной секцией отопительного прибора;
  • Затраты количества теплоты по установленным нормам.

По СНиП можно узнать требуемое количество тепла для 1 кубического метра пространства, в зависимости от типа здания, в котором оно находится:

  • Если дом панельные – 41 Вт на 1 м3;
  • Если дом из кирпича – 34 Вт на 1 м3.

Поскольку в процессе выделения радиатором тепла нагревается весь объем воздуха, наиболее рациональным считается подбор по объему.

Как самостоятельно определить тепловые потери

В зависимости от типа помещения для определения количества секций радиатора используют различные формулы.

К примеру, формулы, применимые к системе отопления в квартире многоэтажного дома существенно отличаются от тех, которые применяют для больших частных домов. Рассмотрим оба вида отдельно.

Теплопотери дома

Расчет для квартиры

Приведенные выше расчеты подходят для проведения расчетов требуемого числа секций в квартире. Алгоритм следующий:

  1. Определяется объем комнаты;
  2. Определяется необходимое количество теплоты для кубического метра жилой площади в соответствии с нормами СНиП (с учетом типа здания: панельное или кирпичное);
  3. Определение требуемого количества тепла для всего помещения произведением нормированного количества теплоты на 1 куб метр и объема пространства;
  4. Рассчитывается количество секций радиатора, которое является частным от деления требуемого количества теплоты для помещения на количество теплоты, выделяемое одной секцией.

Расчет для частного дома

Данный метод подойдет также для больших современных квартир, поскольку он учитывает все нюансы и дает точный результат.

Формула имеет следующий вид:

Q=P*S*N1*N2*N3*N4*N5*N6*N7

Как видно, в ней используется семь коэффициентов, которые вводят для уточнения.

  • Q – необходимое для отопления помещения определенной площади количество теплоты,
  • S – площадь помещения,
  • P – стандартное количество теплоты, требуемое для обогрева 1 кв. метра пространства.

Каждый из коэффициентов учитывает следующие нюансы:

  1. N1 – зависит от характера остекления окон (коэффициент может быть равен 1.27, 1.0 и 0.85 для обычных, с двойным и тройным стеклопакетом соответственно).
  2. N2 – учитывает теплоизоляцию стен. В зависимости от качества теплоизоляции может принимать следующие значения: 1.27, 1.0 и 0.85.
  3. N3 – позволяет учесть среднюю температуру воздуха на улице при наиболее сильных холодах.
  4. N4 – учитывает отношение площади пола и окон.
  5. N5 – вводят для корректировки расчетов в зависимости от высоты помещения над уровнем земли.
  6. N6 – необходим для корректировки расчетов в зависимости от числа стен, контактирующих с внешней средой.
  7. N7 – учитывает высоту потолка.

Данный расчет позволяет получить точное значение требуемой теплоты для нестандартной квартиры и частного дома. Как и в описанных выше расчетах, остается лишь определить требуемое количество секций, делением полученного параметра на количество выделяемого тепла одной секцией прибора.

Расчет числа секций по квадратуре на каждое помещение

Для каждого помещения требуется отдельный расчет, даже если их площади совпадают. Как видно из информации, предоставленной выше, каждая комната может имеет свои характерные особенности:

  • Различную площадь окон и их тип;
  • Различную по типу теплоизоляцию (может отсутствовать);
  • Разное количество стен, контактирующих с окружающей средой и т. д.

Поэтому коэффициенты N1-N7 могут приобретать различные значения применимо к каждой комнате. Таким образом радиаторы отопления для каждого помещения с учетом его особенностей подбирают в индивидуальном порядке.

Особенности расчета разных типов радиаторов

Внимание следует обратить на тип устройства, который будет использоваться в качестве отопительного прибора. Они бывают трех видов: биметаллические, алюминиевые и стальные (чугунные). Каждый из типов радиаторов обладает своими параметрами.

Алюминиевые батареи

При изготовлении радиаторов этого типа могут использовать первичное или более дешевое вторичное сырье. Они обладают следующими характеристиками:


  1. Высоким коэффициентом теплоотдачи;
  2. Небольшой массой и габаритами;
  3. Простотой устройства и использования;
  4. Невысокой инертностью (позволяют производить быструю регулировку температуры в помещении).

Алюминиевые радиаторы

С целью увеличения срока службы производители покрывают сердечник устройства полимерным слоем.
При расчетах отопительной системы учитывают особенность алюминиевых радиаторов – высокую теплоотдачу за малый промежуток времени. Они возвращают более холодную воду обратно в систему.

Биметаллические батареи

Для производства такого типа радиаторов используют трубы из меди, которые скрываются за алюминиевым кожухом. Им характерна низкая инертность, устойчивость к воздействию примесей щелочи и высокого давления, высокая мощность и коэффициент теплоотдачи.

Биметаллические радиаторы

Теплообмен с окружающим воздухом в помещении происходит несколько медленней, это следует учесть при расчетах системы.

Стальные батареи

Недостатками таких радиаторов является большая масса прибора и сложность монтажа, а среди преимуществ стальных батарей можно выделить следующие:


  • Более длительный срок службы без засорения труб радиатора благодаря их большему сечению.
  • Дольше сохраняют полученное от теплоносителя тепло.
  • Выдерживают высокое давление жидкости;
  • Обладают привлекательным дизайном в стиле «ретро».

Еще один недостаток таких приборов – большая инертность, которую следует учесть при расчетах.

Стальные батареи

Из приведенной выше информации можно сформулировать вывод: при проведении расчетов материал радиатора имеет второстепенную важность.

Важнейшей характеристикой отопительной батареи является установленная производителем выделяемая мощность, по которой определяют требуемое число секций. Учитывают также нюансы работы каждого из приборов для правильного проектирования всей системы отопления в целом.

Источник: ProRadiatory.ru

Расчеты учитывая объем помещения.


Расчет секций радиаторов отопления будет более точным, если их рассчитывать, основываясь на высоте потолка, то есть исходя из объема помещения. Принцип расчета в этом случае аналогичный предыдущему варианту.

Вначале нужно вычислить общую потребность в тепле, а уже потом рассчитать количество секций в радиаторах. Когда радиатор скрывают за экраном, то потребность помещения в тепловой энергии увеличивают минимум на 15-20%. Если брать во внимание рекомендации СНИП, то для того, чтобы обогреть один кубический метр жилой комнаты в стандартном панельном доме необходимо потратить 41 Вт тепловой мощности.

Для расчета берем площадь комнаты и умножаем на высоту потолка, получится общий объем, его нужно умножить на нормативное значение, то есть на 41. Если квартира с хорошими современными стеклопакетами, на стенах есть утепление из пенопласта, то тепла понадобится меньшее значение – 34 Вт на м3. Например, если комната с площадью 20 кв. метров имеет потолки с высотой 3 метра, то объем помещения будет составлять всего 60 м3, то есть 20Х3. При расчете тепловой мощности комнаты получаем 2460 Вт, то есть 60Х41.

Таблица расчетов необходимого теплоснабжения.


Расчет радиаторов отопления

 

Приступаем к расчету: Чтобы рассчитать необходимое количество радиаторов отопления необходимо полученные данные разделить на теплоотдачу одной секции, которую указывает производитель. Например, если взять за пример: одна секция выдает 170 Вт, берем площадь комнаты, для которой нужно 2460 Вт и делим его на 170 Вт, получаем 14,47. Далее округляем и получаем 15 секций отопления на одну комнату. Однако следует учитывать тот факт, что многие производители намеренно указывают завышенные показатели по теплоотдаче для своих секций, основываясь на том, что температура в батареях будет максимальной. В реальной жизни такие требования не выполняются, а трубы иногда чуть теплые, вместо горячих. Поэтому нужно исходить из минимальных показателей теплоотдачи на одну секцию, которые указывают в паспорте товара. Благодаря этому полученные расчеты будут более точными.

 

Как получить максимально точный расчет.

Расчет секций радиаторов отопления с максимальной точностью получить довольно трудно, ведь не все квартиры считаются стандартными. И особенно это касается частных строений. Поэтому у многих хозяев возникает вопрос: как сделать расчет секций радиаторов отопления по индивидуальным условиям эксплуатации? В этом случае учитывается высота потолка, размеры и количество окон, утепление стен и другие параметры. По этому методу расчетов необходимо использовать целый перечень коэффициентов, которые будут учитывать особенности определенного помещения, именно они могут повлиять на способность отдавать или сохранять тепловую энергию.


 

Вот как выглядит формула расчета секций радиаторов отопления: КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7, показатель КТ — это количество тепла, которое нужно для индивидуального помещения.

1. где П — общая площадь комнаты, указана в кв.м.;

2. К1 — коэффициент, который учитывает остекление оконных проемов: если окно с обычным двойным остеклением, то показатель — 1,27;

  • Если окно с двойным стеклопакетом — 1,0;
  • Если окно с тройным стеклопакетом — 0,85.

 

3. К2 — коэффициент теплоизоляции стен:

  • Очень низкая степень теплоизоляции — 1,27;
  • Отличная теплоизоляция (кладка стен на два кирпича или же утеплитель) — 1,0;
  • Высокая степень теплоизоляции — 0,85.

 

4. К3 — соотношение площади окон и пола в комнате:

  • 50% — 1,2;
  • 40% — 1,1;
  • 30% — 1,0;
  • 20% — 0,9;
  • 10% — 0,8.

 

5. К4 — коэффициент, который позволяет учитывать среднюю температуру воздуха в самое холодное время:

  • Для -35 градусов — 1,5;
  • Для -25 градусов — 1,3;
  • Для -20 градусов — 1,1;
  • Для -15 градусов — 0,9;
  • Для -10 градусов — 0,7.

 

6. К5 — корректирует потребность в тепле, учитывая количество наружных стен:

  • 1 стена— 1,1;
  • 2 стены— 1,2;
  • 3 стены— 1,3;
  • 4 стены— 1,4.

 

7. К6 — учитывает тип помещения, которое находится выше:

  • Очень холодный чердак — 1,0;
  • Чердак с отоплением — 0,9;
  • Отапливаемое помещение — 0,8

 

8. К7 — коэффициент, который учитывает высоту потолков:

  • 2,5 м — 1,0;
  • 3,0 м — 1,05;
  • 3,5 м — 1,1;
  • 4,0 м — 1,15;
  • 4,5 м — 1,2.

 

Представленный расчет секций радиаторов отопления учитывает все нюансы комнаты и расположения квартиры, поэтому достаточно точно определяет потребность помещения в тепловой энергии. Полученный результат нужно только разделить на значение теплоотдачи от одной секции, готовый результат округляет. Есть и такие производители, которые предлагают воспользоваться более простым способом расчета. На их сайтах представлен точный калькулятор расчетов, необходимый для вычислений. Для работы с этой программой, пользователь вводит нужные значения в поля и получает готовый результат. Кроме этого, он может использовать специальный софт.

Источник: www.calc.ru

Расчет исходя из площади помещения

Разберемся, как рассчитать батареи отопления. Ориентируясь на такие параметры, как общая площадь помещения, можно осуществить предварительный расчет батарей отопления на площадь. Данное вычисление довольно простое. Однако если у вас в помещении высокие потолки, то его за основу брать нельзя. На каждый квадратный метр площади потребуется около 100 ватт мощности в час. Таким образом, расчет секций батарей отопления позволит вычислить, какое количество тепла понадобится для обогрева всего помещения.

Как рассчитать количество радиаторов отопления? К примеру, площадь нашего помещения составляет 25 кв. метров. Умножаем общую площадь помещения на 100 ватт и получаем мощность батареи отопления в 2500 ватт. То есть 2,5 кВатт в час необходимо для обогрева помещения с площадью в 25 кв. метров. Полученный результат делим на значение тепла, которое способна выделить одна секция отопительного радиатора. К примеру, в документации отопительного прибора указано, что одна секция выделяет в час 180 Ватт тепла.

Таким образом, расчет мощности радиаторов отопления будет выглядеть так: 2500 Вт / 180 Вт = 13,88. Полученный результат округляем и получаем цифру 14. Значит, для обогрева помещения в 25 кв. метров потребуется радиатор с 14 секциями.

Также потребуется учесть различные тепловые потери. Комната, которая находится в углу дома, или комната с балконом будет нагреваться медленнее, а также быстрее отдавать тепло. В таком случае, расчет теплоотдачи радиатора батарей отопления должен производиться с некоторым запасом. Желательно, чтобы такой запас составлял около 20%.

Расчет батарей отопления может быть произведен и с учетом объема помещения. В таком случае, не только общая площадь помещения играет роль, но также и высота потолков. Как рассчитать радиаторы отопления? Расчет производится примерно по такому же принципу, как и в предыдущей ситуации. Для начала необходимо выявить, какое количество тепла понадобится, а также — как рассчитать количество батарей отопления и их секций.

Например, необходимо вычислить нужно количество тепла для комнаты, которая обладает площадью в 20 кв. метров, а высота потолков в ней составляет 3 метра. Умножаем 20 кв. метров на 3 метра высоты и получим 60 кубических метров общего объема помещения. На каждый кубометр необходимо около 41 Вт тепла – так говорят данные и рекомендации СНИП.

Производим расчет мощности батарей отопления дальше. Умножаем 60 кв. метров на 41 Вт и получаем 2460 Вт. Также делим эту цифру на ту тепловую мощность, которую излучает одна секция радиатора отопления. Например, в документации отопительного прибора указано, что одна секция выделяет в час около 170 Вт тепла.

2460 Вт делим на 170 Вт и получим цифру 14,47. Ее мы тоже округляем, таким образом, для обогрева помещения с объемом в 60 кубометров, понадобится 15-секционный радиатор отопления.

Можно сделать наиболее точный расчет количества радиаторов отопления. Такое может понадобиться для частных домов с нестандартными помещениями и комнатами.

Подобный способ, как рассчитать мощность радиатора отопления, требует соблюдения многих факторов, а также содержит ряд различных коэффициентов, которые учитывают все нюансы и особенности помещения.

Как рассчитать батарею отопления? Вот таким образом выглядит формула для наиболее точного расчета:

КТ = 100Вт/кв.м. х П х К1 х К2 х К3 х К4 х К5 х К6 х К7

Где:

Кт – это количество тепла, которое необходимо для определенного помещения;

П – общая площадь помещения;

К1 – это коэффициент, который учитывает, насколько остеклены проемы для окон.

Если окно с простым остеклением двойного типа, то кф. составляет 1.27.

Для окна со стеклопакетом двойного типа – 1.00.

Для тройного стеклопакета кф. составляет 0.87.

К2 – это кф. стеновой теплоизоляции.

Если теплоизоляция довольно низкая, то берется кф. в 1.27.

Для хорошей теплоизоляции – кф. = 1.0.

Для отличной теплоизоляции кф. равен 0.85.

К3 – это соотношение площади пола и площади окон в комнате.

Для 50% он будет равен 1,2.

Для 40% — 1,1.

Для 30% — 1.0.

Для 20% — 0.9.

Для 10% — 0.8.

К4 – это кф., учитывающий среднюю температуру в помещении во время самой холодной недели в году.

Для температуры в -35 градусов он будет равен значению 1,5.

Для -25 – кф. = 1.3.

Для -20 – 1.1.

Для -15 – 0.9.

Для -10 – 0.7.

К5 – это коэффициент, который поможет выявить потребность тепла с учетом того, сколько наружных стен есть у помещения.

Для помещения с одной стеной кф. составляет 1.1.

Две стены – 1.2.

Три стены 1.3.

К6 – учитывает тип помещений, которые расположены над нашим помещением.

Если чердак не отапливается, то он составляет 1.0.

Если чердак отапливается, то кф. равен 0.9.

Если выше расположено жилое помещение, которое отапливается, то за основу берется кф. в 0.7.

К7 – это учет высоты потолков в помещении.

Для высоты потолков в 2,5м, кф. будет равен 1,0.

При высоте потолков в 3 метра кф. равен 1,05.

Если высота потолков составляет 3,5 метра, то берется за основу кф. в 1,1.

При 4 метрах – 1,15.

Результат, вычисленный по данной формуле, необходимо разделить на тепло, которое выдает одна секция радиатора отопления, и округлить результат, который мы получили.

Теперь мы знаем, как посчитать количество радиаторов отопления, как рассчитать мощность батареи отопления и площадь радиатора отопления. Такие расчеты позволят вам правильно и эффективно обустроить свою систему отопления.

Источник: otoplenie-doma.org

Упрощенный расчет компенсации теплопотерь

Любые вычисления базируются на определенных принципах. В основу расчетов требуемой тепловой мощности батарей закладывается понимание того, что хорошо работающие нагревательные приборы должны полностью компенсировать потери тепла, возникающие при их работе из-за особенностей отапливаемых помещений.

Для жилых комнат, находящихся в хорошо утепленном доме, расположенном, в свою очередь, в умеренном климатическом поясе, в некоторых случаях подойдет упрощенный расчет компенсации тепловых утечек.

Для таких помещений вычисления основываются на нормативной мощности 41 Вт, требующейся для обогрева 1 куб.м. жилого пространства.

Формула для определения тепловой мощности радиаторов, необходимой для поддержания в помещении оптимальных условий проживания такова:

Q = 41 х V,

где V – объем отапливаемой комнаты в кубических метрах.

Полученный четырехзначный результат можно выразить в киловаттах, сократив его из расчета 1 кВт = 1000 Вт.

Подробная формула вычисления тепловой мощности

При подробных расчетах количества и размеров батарей отопления принято отталкиваться от относительной мощности 100 Вт, нужной для нормального обогрева 1 м² некоего нормативного помещения.

Формула для определения требуемой от отопительных приборов тепловой мощности такова:

Q = ( 100 x S ) x R x K x U x T x H x W x G x X x Y x Z

Множитель S в вычислениях не что иное, как площадь отапливаемого помещения, выраженная в квадратных метрах.

Остальные буквы – это различные поправочные коэффициенты, без которых расчет будет ограниченным.

Но даже добавочные расчетные параметры не всегда могут отразить всю специфику того или другого помещения. Рекомендуется при сомнениях в подсчетах отдавать предпочтение показателям с большими значениями.

Легче потом снизить температуру радиаторов с помощью терморегулирующих приборов, чем замерзать при недостатке их тепловой мощности.

Далее подробно разбирается каждый из участвующих в формуле расчета тепловой мощности батарей коэффициентов.

В конце статьи дается информация по характеристикам разборных радиаторов из разных материалов, и рассматривается порядок вычислений необходимого количества секций и самих батарей на базе основного расчета.

Ориентация комнат по сторонам света

И в самые морозные дни энергия солнца все же влияет на тепловое равновесие внутри жилища.

От направленности комнат в ту или иную сторону зависит коэффициент «R» формулы расчета тепловой мощности.

  1. Комната с окном на юг – R = 1,0. В течение светового дня она будет получать максимальное добавочное внешнее тепло по сравнению с другими помещениями. Такая ориентация принимается за базовую, и добавочный параметр в данном случае минимальный.
  2. Окно выходит на запад – R = 1,0 или R = 1,05 (для районов с коротким зимним днем). Эта комната тоже успеет получить свою порцию солнечного света. Солнце хоть и заглянет туда ближе к вечеру, но все же расположение такого помещение более выгодное, чем восточное и северное.
  3. Комната ориентирована на восток – R = 1,1. Восходящее зимнее светило вряд ли успеет как следует извне подогреть такое помещение. Для мощности батарей потребуются дополнительные Ватты. Соответственно добавляем к расчету ощутимую поправку в 10%.
  4. За окном находится только север – R = 1,1 или R = 1,15 (не ошибется житель северных широт, который возьмет дополнительно 15%). Зимой такое помещение прямых солнечных лучей не видит совсем. Поэтому рекомендуется вычисления требуемой от радиаторов тепловой отдачи также скорректировать на 10% в большую сторону.

Если в районе проживания преобладают ветры определенного направления, желательно для комнат с наветренными сторонами произвести увеличение R еще до 20% в зависимости от силы дуновения (х1,1÷1,2), а для помещений со стенами, параллельными холодным потокам, приподнять значение R на 10% (х1,1).

Учет влияния внешних стен

Кроме стены со встроенным в него окном или окнами, другие стены комнаты также могут иметь контакт с уличным холодом.

Внешние стены помещения определяют коэффициент «K» расчетной формулы тепловой мощности радиаторов:

  • Наличие у помещения одной уличной стены является типовым случаем. Здесь с коэффициентом все просто – K = 1,0.
  • Две внешних стены запросят для обогрева комнаты на 20% больше тепла – K = 1,2.
  • Каждая следующая наружная стена добавляет вычислениям по 10 % требуемой теплоотдачи. Для трех уличных стен – K = 1,3.
  • Наличие у помещения четырех внешних стен также добавляет 10% – K = 1,4.

В зависимости от особенностей помещения, для которого выполняется расчет, предстоит взять соответствующий коэффициент.

Зависимость радиаторов от теплоизоляции

Снизить бюджет на обогрев внутреннего пространства позволяет грамотно и надежно изолированное от зимней стужи жилье, причем существенно.

Степени утепления уличных стен подчиняется коэффициент «U», уменьшающий или увеличивающий расчетную тепловую мощность нагревательных приборов:

  • U = 1,0 – для стандартных внешних стен.
  • U = 0,85 – если утепление уличных стен производилось по специальному расчету.
  • U = 1,27 – если внешние стены недостаточно холодоустойчивы.

Стандартными считаются стены из соответствующих климату материалов и толщины. А также уменьшенной толщины, но с оштукатуренной наружной поверхностью или с поверхностной наружной теплоизоляцией.

Если разрешает площадь помещения, то можно произвести утепление стен изнутри. А оградить стены от холода снаружи способ найдется всегда.

Климат – важный фактор арифметики

Разные климатические зоны имеют различные показатели минимально низких уличных температур.

При расчете мощности теплоотдачи радиаторов для учета температурных отличий предусмотрен коэффициент «T».

Рассмотрим значения этого коэффициента для различных климатических условий:

  • T = 1,0 до -20 °С.
  • T = 0,9 для зим с морозцем до -15 °С
  • T = 0,7 – до -10 °С.
  • T = 1,1 для морозов до -25 °С,
  • T = 1,3 – до -35 °С,
  • T = 1,5 – ниже -35 °С.

Как видим из перечня, приведенного выше, нормальной считается зимняя погода до -20 °С. Для районов с таким наименьшим холодом берут значение, равное 1.

Для более теплых регионов этот расчетный коэффициент понизит общий результат вычислений. А вот для областей сурового климата требуемое от отопительных приборов количество теплоэнергии возрастет.

Особенности обсчета высоких помещений

Понятно, что из двух комнат с одинаковой площадью больше тепла потребуется той, у которой потолок выше. Учесть в вычислениях тепловой мощности поправку на объем отапливаемого пространства помогает коэффициент «H».

В начале статьи было упомянуто про некое нормативное помещение. Таковым считается комната с потолком на уровне 2,7 метра и ниже. Для нее берут значение коэффициента, равное 1.

Рассмотрим зависимость коэффициента Н от высоты потолков:

  • H = 1,0 – для потолков в 2,7 метра высотой.
  • H = 1,05 – для помещения высотой до 3 метров.
  • H = 1,1 – для комнаты с потолком до 3,5 метра.
  • H = 1,15 – до 4 метров.
  • H = 1,2 – потребность в тепле для более высокого помещения.

Как видим, для комнат с высокими потолками в расчет следует добавлять по 5% на каждые полметра высоты, начиная с 3,5 м.

По закону природы теплый нагретый воздух устремляется вверх. Чтобы перемешать весь его объем отопительным приборам придется потрудиться как следует.

Расчетная роль потолка и пола

К уменьшению тепловой мощности батарей ведут не только хорошо изолированные внешние стены. Соприкасающийся с теплым помещением потолок также позволяет минимизировать потери при обогреве комнаты.

Коэффициент «W» в формуле расчета как раз для того, чтобы предусмотреть это:

  • W = 1,0 – если наверху расположен, например, неотапливаемый неутепленный чердак.
  • W = 0,9 – для неотапливаемого, но утепленного чердака или другого утепленного помещения сверху.
  • W = 0,8 – если этажом выше комната отапливаемая.

Показатель W можно поправлять в сторону увеличения для помещений первого этажа, если они располагаются на грунте, над неотапливаемым подвалом или цокольным пространством. Тогда цифры будут такие: пол утеплен +20% (х1,2); пол не утеплен +40% (х1,4).

Качество рам – залог тепла

Окна – когда-то слабое место в теплоизоляции жилого пространства. Современные рамы со стеклопакетами позволили существенно улучшить защиту комнат от уличного холода.

Степень качества окон в формуле подсчета тепловой мощности описывает коэффициент «G».

За основу расчета взята стандартная рама с однокамерным стеклопакетом, у которой коэффициент равен 1.

Рассмотрим другие варианты применения коэффициента:

  • G = 1,0 – рама с однокамерным стеклопакетом.
  • G = 0,85 – если рама оснащена двух- или трехкамерным стеклопакетом.
  • G = 1,27 – если у окна старая деревянная рама.

Так, если в доме старые рамы, то потери тепла будут значительными. Поэтому потребуются более мощные батареи. В идеале такие рамы желательно заменить, ведь это дополнительные расходы на отопление.

Размер окна имеет значение

Следуя логике, можно утверждать, что чем больше количество окон в комнате и чем обширней их обзор, тем чувствительней утечки тепла через них. Коэффициент «X» из формулы расчета тепловой мощности, требующегося от батарей, как раз отражает это.

Нормой является итог деления площади оконных проемов на площадь комнаты равный от 0,2 до 0,3.

Приведем основные значения коэффициента Х для различных ситуаций:

  • X = 1,0 – при соотношении от 0,2 до 0,3.
  • X = 0,9 – для отношения площадей от 0,1 до 0,2.
  • X = 0,8 – при соотношении до 0,1.
  • X = 1,1 – если отношение площадей от 0,3 до 0,4.
  • X = 1,2 – когда оно от 0,4 до 0,5.

Если же метраж оконных проемов (например, в помещениях с панорамными окнами) выходит за рамки предложенных соотношений, разумно добавлять к значению X еще по 10% при росте отношения площадей на 0,1.

Находящаяся в комнате дверь, которой зимой регулярно пользуются для выхода на открытый балкон или лоджию, вносит свои поправки в баланс тепла. Для такого помещения будет правильным увеличить X еще на 30% (х1,3).

Потери тепловой энергии легко компенсируются компактной установкой под балконным входом канального водяного или электрического конвектора.

Влияние закрытости батареи

Конечно же, лучше отдаст тепло тот радиатор, который меньше огражден различными искусственными и естественными препятствиями. На этот случай формула расчета его тепловой мощности расширена за счет коэффициента «Y», учитывающего условия работы батареи.

Самое распространенное место расположения отопительных приборов – под подоконником. При таком их положении значение коэффициента равно 1.

Рассмотрим типичные ситуации размещения радиаторов:

  • Y = 1,0 – сразу под подоконником.
  • Y = 0,9 – если батарея оказывается вдруг полностью открытой со всех сторон.
  • Y = 1,07 – когда радиатор заслонен горизонтальным выступом стены
  • Y = 1,12 – если расположенная под подоконником батарея прикрыта фронтальным кожухом.
  • Y = 1,2 – когда отопительный прибор загражден со всех сторон.

Сдвинутые длинные плотные шторы также становятся причиной похолодания в комнате.

Эффективность подключения радиаторов

От способа присоединения радиатора к внутрикомнатной отопительной разводке напрямую зависит эффективность его работы. Часто хозяева жилья жертвуют этим показателем в угоду красоте помещения. Формула расчета требуемой тепловой мощности учитывает все это через коэффициент «Z».

Приведем значения этого показателя для различных ситуаций:

  • Z = 1,0 – включение радиатора в общую цепь отопительной системы приемом «по диагонали», что является самым оправданным.
  • Z = 1,03 – другой, самый распространенный из-за малой протяженности подводки, вариант присоединения «с боковой стороны».
  • Z = 1,13 – третий метод «снизу с двух сторон». Благодаря пластиковым трубам, это он быстро прижился в новом строительстве, несмотря на гораздо меньшую эффективность.
  • Z = 1,28 – еще один, очень низкоэффективный способ «снизу с одной стороны». Он заслуживает рассмотрения только потому, что некоторые конструкции радиаторов снабжаются готовыми узлами с подключением к одной точке труб и подачи, и обратки.

Увеличить коэффициент полезного действия отопительных приборов помогут вмонтированные в них воздухоотводчики, которые своевременно спасут систему от «завоздушивания».

Принцип работы любого водяного отопительного прибора опирается на физические свойства горячей жидкости подниматься вверх, а после охлаждения перемещаться вниз.

Поэтому настоятельно не рекомендуется использовать присоединения систем отопления к радиаторам, при которых труба подачи оказывается внизу, а обратки – вверху.

Практический пример расчета тепловой мощности

Исходные данные:

  1. Угловая комната без балкона на втором этаже двухэтажного шлакоблочного оштукатуренного дома в безветренном районе Западной Сибири.
  2. Длина комнаты 5,30 м Х ширина 4,30 м = площадь 22,79 кв.м.
  3. Ширина окна 1,30 м Х высота 1,70 м = площадь 2,21 кв.м.
  4. Высота помещения = 2,95 м.

Последовательность расчета:

Ниже приводится описание расчета количества секций радиаторов и требуемого числа батарей. Он основывается на полученных результатах тепловых мощностей с учетом габаритов предполагаемых мест установки отопительных приборов.

Независимо от итогов, рекомендуется в угловых комнатах оснащать радиаторами не только подоконные ниши. Батареи следует устанавливать у «слепых» внешних стен или возле углов, которые подвергаются наибольшему промерзанию под воздействием уличного холода.

Удельная тепловая мощность секций батарей

Еще до выполнения общего расчета требуемой теплоотдачи отопительных приборов, необходимо решить, разборные батареи из какого материала будут устанавливаться в помещениях.

Выбор должен основываться на характеристиках системы отопления (внутреннее давление, температура теплоносителя). При этом не стоит забывать о сильно разнящейся стоимости покупаемых изделий.

О том, как правильно рассчитать нужное количество различных батарей для отопления, и пойдет речь дальше.

При теплоносителе в 70 °С стандартные 500-миллиметровые секции радиаторов из разнородных материалов обладают неодинаковой удельной тепловой мощностью «q».

  1. Чугун – q = 160 Ватт (удельная мощность одной чугунной секции). Радиаторы из этого металла подойдут для любой системы отопления.
  2. Сталь – q = 85 Ватт. Стальные трубчатые радиаторы могут работать в самых жестких условиях эксплуатации. Их секции красивы в своем металлическом блеске, но имеют наименьшую теплоотдачу.
  3. Алюминий – q = 200 Ватт. Легкие, эстетичные алюминиевые радиаторы надо устанавливать лишь в автономные отопительные системы, в которых давление меньше 7 атмосфер. Но по отдаче тепла их секциям нет равных.
  4. Биметалл – q = 180 Ватт. Внутренности биметаллических радиаторов сделаны из стали, а теплоотводящая поверхность – из алюминия. Эти батареи выдержат всякие режимы давлений и температур. Удельная тепловая мощность секций из биметалла тоже на высоте.

Приведенные значения q довольно условны и применяются для предварительного расчета. Более точные цифры содержатся в паспортах приобретаемых отопительных приборов.

Расчет количества секций радиаторов

Разборные радиаторы из любого материала хороши тем, что для достижения их расчетной тепловой мощности можно добавлять или убавлять отдельные секции.

Для определения нужного количества «N» секций батарей из выбранного материала придерживаются формулы:

N = Q / q,

Где:

  • Q = рассчитанная ранее требуемая тепловая мощность устройств для обогрева комнаты,
  • q = мощность тепловая удельная отдельной секции предполагаемых для установки батарей.

Вычислив общее необходимое число секций радиаторов в помещении, надо понять, сколько всего батарей нужно установить. Этот расчет основывается на сравнении габаритов предполагаемых мест установки отопительных приборов и размеров батарей с учетом подводки.

Для предварительных подсчетов можно вооружиться данными о ширине секций разных радиаторов:

  • чугунных = 93 мм,
  • алюминиевых = 80 мм,
  • биметаллических = 82 мм.

При изготовлении разборных радиаторов из стальных труб, производители не держатся за определенные стандарты. При желании поставить такие батареи, следует подходить к вопросу индивидуально.

Также можете воспользоваться нашим бесплатным онлайн калькулятором для расчета количества секций:

Повышение эффективности теплоотдачи

При обогреве радиатором внутреннего воздуха помещения происходит также интенсивный нагрев внешней стены в области за батареей. Это ведет к дополнительным неоправданным потерям тепла.

Предлагается для повышения эффективности теплоотдачи радиатора отгораживать отопительный прибор от наружной стены теплоотражающим экраном.

Рынок предлагает множество современных изоляционных материалов с отражающей тепло фольгированной поверхностью. Фольга защищает согретый батареей теплый воздух от контакта с холодной стеной и направляет его внутрь комнаты.

Для правильной работы границы установленного отражателя должны превышать габариты радиатора и с каждой стороны на 2-3 см выступать. Промежуток между отопительным прибором и поверхностью тепловой защиты следует оставлять величиной 3-5 см.

Для изготовления теплоотражающего экрана можно посоветовать изоспан, пенофол, алюфом. Из приобретенного рулона вырезается прямоугольник необходимых размеров и закрепляется на стене в месте установки радиатора.

Рекомендуется отделять лист изоляции от внешней стены небольшой воздушной прослойкой, например, с помощью тонкой пластиковой решетки.

Если отражатель стыкуется из нескольких частей изоляционного материала, места соединений со стороны фольги необходимо проклеивать металлизированной клейкой лентой.

Выводы и полезное видео по теме

Небольшие фильмы представят практическое воплощение некоторых инженерных советов в быту. В следующем ролике можно увидеть практический пример расчета радиаторов отопления:

Изменение количества секций радиаторов рассмотрено в этом видео:

Следующий ролик поведает о том, как монтировать отражатель под батарею:

Приобретенные навыки расчёта тепловой мощности разных видов радиаторов отопления помогут домашнему мастеру в грамотном устройстве отопительной системы. А домашние хозяйки смогут проконтролировать правильность процесса установки батарей сторонними специалистами.

Вы занимались самостоятельным расчетом мощности батарей отопления для своего дома? Или столкнулись с проблемами, возникшими в результате монтажа маломощных отопительных приборов? Расскажите о своем опыте нашим читателям – оставляйте, пожалуйста, комментарии ниже.

Источник: sovet-ingenera.com


Categories: Радиаторы

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.