Емкостное наблюдение или отслеживание – это метод бесконтактного наблюдения, который может работать с множеством различных приложений, таких как распознавание жестов, автомобильные датчики дождя, дистанционное измерение уровня жидкости при обработке различных материалов и других приложений.

Датчиком в системе емкостного наблюдения может быть любой проводник или металл, все будет зависеть от требований к гибкости системы. Благодаря низкому энергопотреблению, высоким разрешениям и низкой стоимости, емкостные датчики активно заменяют индуктивные, оптические и ультразвуковые во многих системах и устройствах. Емкостные датчики расстояния
Содержание:

  • Измерение без прикосновения
  • Принцип емкостного измерения
  • Срабатывание емкостного датчика
  • Экранирование и емкостные измерения
  • Блок диаграмма работы емкостного датчика
  • LC фильтры как основа емкостного измерения
  • Вывод

Измерение без прикосновения

Емкостное измерение это не емкостной сенсор (похожая технология, оптимизированная для выполнения функций цифрового коммутатора)! Емкостная сенсорная система использует множества каналов в строке и столбце расположения (как на сенсорном экране телефона или планшете). Сенсорный экран требует непосредственного контакта и работает в течении очень короткого диапазона – в большинстве случаев это несколько миллиметров.

В отличии от похожей системы – сенсорного экрана, емкостной датчик является аналоговой системой и работает на расстоянии до 70 см. Он имеет гораздо большую чувствительность и точность, поскольку происходит изменение емкости всего в несколько пикофарад.

Принцип емкостного измерения

Емкость системы – это ее способность хранить электрический заряд, который является одним из основных электрических параметров. Самая простая модель конденсатора (устройство для хранения электрического заряда) будет состоять из двух электрических проводников или пластин, разделенных диэлектриком:

Простая модель емкостного датчика

Для модели конденсатора представленной выше емкость (в фарадах)  определяется по формуле:


Формула емкости конденсатора

Где: А – площадь пластины (WxL); εr – диэлектрическая проницаемость межпластинного материала; ε0 – электрическая постоянная 8,85х10-12 Ф/м; d – расстояние между пластинами в метрах;

Когда датчик заряжен, он создает электрическое поле:

Электрическое поле между пластинами емкостного датчика

Срабатывание емкостного датчика

Как превращается конденсатор в емкостной датчик? Смотрите ниже:

Принцип работы емкостных датчиков приближения, измерения жидкости, анализа материала

На рисунке а) показан датчик приближения, использующий палец в качестве «земли», на рисунке б) показано измерение уровня жидкости с параллельным датчиком и землей, а на рисунке с) показан датчик обнаружения и анализа материала.

Бесконтактный датчик формируется путем построения изолированного датчика пластины из проводящей области печатной платы и зарядки. Конденсатор будет формироваться в любое время в заземленном проводящем элементе или же в любом другом объекте, имеющем диэлектрическую проницаемость отличную от воздуха. Из рисунка а) видно, что такой принцип будет работать и в случае приближение части человеческого тела (в нашем случае пальца), так как, по сути, человеческое тело будет представлять собой потенциал земли.


По мере приближения пальца будет изменятся емкость. Даже с учетом того, что эта система нелинейна, обнаружение приближения не составит большого труда.

Для расширения возможностей данного измерительного устройства могут использовать несколько независимых датчиков – вниз/вверх и  влево/вправо:

Емкостной датчик измерения перемещения в нескольких координатных осях

По мере перемещения пальца изменяется емкость всех четырех датчиков. Многоканальный детектор считывает эти показания и передает в микроконтроллер, который проводит вычисления скорости и направления перемещения.

Во многих системах, таких как хранения химических веществ, промышленные системы контроля и автоматизации или коммерческие машины необходимо измерять уровень жидкости. В этом случае пластины датчика могут располагаться рядом друг с другом (см. рисунок б)), в результате чего получается повышенная чувствительность вдоль вертикальной оси.


По мере изменения уровня жидкости будет меняться и диэлектрическое значение, соответственно изменится и емкость. Такая конфигурация позволяет использовать края силовых линий. Соответственно и расчеты изменения емкости в данном случае будут значительно сложнее, чем в случае простой пластины.

Датчик анализа материалов состоит из основной пластины, показанной на рисунке с). Для анализа материала используется эффект изменения проницаемости между пластинами при добавлении или удалении материала. Незагруженный датчик использует в качестве диэлектрика воздух. При попадании в этот воздушный зазор материала, например бумаги, электрическая емкость полученного таким образом конденсатора увеличится, соответственно изменение отслеживаются и передаются в контроллер, который и обрабатывает данные значения, вычисляя, таким образом, тип и свойства материала.

Экранирование и емкостные измерения

Одной из проблем емкостных приборов измерения приближений является то, что силовые линии будут распространятся  на любые соседние ячейки с потенциалом земли. Многие паразитные явление (например, ground traces (путь на поверхности Земли оставленный самолетом или спутником )) влияют на чувствительность и расстояние обнаружения датчиком. Данное явление представляет собой проблему для чувствительных к шуму систем.

Влияние паразитных явлений на точность измерения емкостных датчиков


Паразитные эффекты на печатных платах (а), влияющие на качество работы устройства уменьшают с помощью защитных электродов. Драйверы защитного экрана включают в интерфейсные устройства емкостных датчиков и специализированных микроконтроллеров.

Добавление активного экрана может помочь избавится от паразитных влияний на окружающую среду и позволит использовать максимальный потенциал устройства. Хорошо спроектированный активный экран будет направлен на выход датчика и будет направлять его сигнал в нужном направлении.

Драйвер защиты является активным выходом, который работает от того же напряжения что и само устройство. Таким образом, не будет возникать никакой разности потенциалов между экраном и входом устройства. Любое внешнее вмешательство вызовет минимальное взаимодействие между экранированным электродом и измерительным электродом.

Блок диаграмма работы емкостного датчика

Специализированный аналоговый интерфейс преобразует сигнал от емкостного датчика в цифровую форму, которая пригодна для дальнейшей обработки:

Блок-схема интерфейса преобразующего сигнал от емкостного датчика к микроконтроллеру

Интерфейс периодически опрашивает измерительное устройство и подает сигнал, необходимый для зарядки сенсорной пластины. Частота дискретизации выходного сигнала относительно медленная, около 500 выборок в секунду, но с высоким разрешением. Это необходимо для определения небольших различий емкости. 16-разрядный сигма-дельта АЦП обеспечивает хороший компромисс между скоростью, разрешением и низким энергопотреблением.


Многоканальные устройства могут проводить дифференциальные измерения для точного представления разности емкости между двумя датчиками. Например, если на емкость оказывают существенное влияние погодные условия, то один канал может быть посвящен погодным условиям и отслеживать изменения в диэлектриках, вызванные температурой, влажностью, типом материала и так далее. Дифференциальное измерение способно повышать точность благодаря внесению правок, связанных с работой какого-то канала.

При измерении уровня жидкости один канал измеряет емкость, связанную с уровнем жидкости, а второй канал для опорного датчика, который измеряет электрическую емкость нулевого уровня. Так как емкость пропорциональна высоте уровня жидкости, то измеряемый уровень жидкости будет равен разности или отношению между датчиком уровня и датчиком нулевого уровня.

LC фильтры как основа емкостного измерения

Одной из главных проблем емкостного измерения является наличие паразитных шумов. Модификация измерительного устройства включающего в себя частотно-чувствительный компонент позволяет повысить помехоустойчивость. Дополнительно к датчику добавляется конденсатор и катушка индуктивности для формирования резонансного колебательного контура.


Резонансный колебательный контур, добавленный для улучшения помехозащищенности емкостных датчиков

Где: а) схема фильтра; б) его характеристика.

Хотя архитектура LC фильтра проста, он имеет несколько существенных преимуществ при интеграции в состав емкостного измерительного устройства.

Применение LC фильтров для улучшения характеристик работы емкостных датчиков

Во-первых, LC резонатор обеспечивает отличную устойчивость к электромагнитным помехам, а во-вторых, работающий на определенных частотах источник шума вполне может быть отфильтрована LC резонатором без использования внешних схем. Это уменьшает сложность системы и уменьшает ее стоимость.

Изменение емкости LC контура приведет к сдвигу резонансной частоты. Этот принцип использует FDC2214 в емкостно-цифровом преобразователе, который измеряет частоту колебаний LC фильтра. Устройство выдает цифровое значение, пропорциональное этой частоте. Данные измерения могут быть преобразованы в эквивалентную емкость нижестоящему микроконтроллеру.

Вывод

Емкостное измерение является гибкой технологией, которая становится все более популярна. Его низкая стоимость и низкое энергопотребление делают его идеальным выбором для широкого круга приложений, как в бытовой сфере, так и в промышленной.

Источник: elenergi.ru

Принцип работы емкостного датчика


Вот что такое емкостные датчики. Принцип работы их не так сложен, но для его понимания нужно кое-что знать. Для начала вспомним принцип определения емкости конденсатора. Выражается это действие при помощи следующей формулы:

С= εεₒS/δ.

Данное выражение многим известно из школьного курса физики, но не мешало бы освежить память и вспомнить, что подразумевает каждая из переменных:

  • S – площадь конденсаторной пластины.
  • Ε – относительная проницаемость диэлектрического материала, использованного в конструкции конденсатора.
  • εₒ — так в физике принято обозначать диэлектрическую проницаемость вакуума.
  • δ – так может обозначаться или толщина пластины диэлектрика, или же расстояние между несколькими слоями материала.

Таким образом, из приведенной формулы следует, что изменить емкость конденсатора легко. Достаточно как-то подействовать на площадь пластины диэлектрического материала, на расстояние между пластинами или непосредственно на проницаемость использованного при производстве материала. Соответственно, выбор конкретной величины зависит исключительно от перечня задач, которые конструкторы поставили перед прибором.


Таким образом, можно даже сделать емкостной датчик своими руками, так как с конструктивной точки зрения это – обычный плоский или цилиндрический конденсатор, одна из пластин которого постоянно испытывает контролируемое перемещение в пространстве, что приводит к изменению емкости. Следует помнить, что приведенная выше формула верна только в том случае, если вы полностью пренебрегаете краевыми эффектами. Мы еще поговорим об этом в заключительной части нашей статьи.

Следует знать, что такого рода электронные приборы интенсивно используются для измерения угловых и линейных перемещений предметов, вычисления размеров, прикладываемой работы, влажности, концентрации действующего вещества и прочих характеристик. Что касается конструктивной стороны вопроса, то упомянутые КИПы изготавливают плоскопараллельными, в цилиндрических корпусах, со штыревыми электродами, с прокладкой из диэлектрического материала и вовсе без него.

Вот как функционируют емкостные датчики. Принцип работы некоторых из них нужно знать особенно подробно. В рамках этой статьи мы приведем несколько формул, которые могут оказаться для вас полезными.

Формулы для описания принципа действия некоторых видов датчиков

Датчик уровня с возможным изменением площади диэлектрических пластин может быть довольно легко описан при помощи следующего уравнения:


С= εεₒаХ/δ.

Под «Х» в данном случае понимается длина перекрытия используемых электродов. Соответственно, «а» обозначает ширину пластин самого конденсатора. Нужно заметить, что такие приборы нашли свое применение в самых различных областях промышленности, где их используют для точнейшего измерения угловых величин. Емкость преобразователя в таком случае находят посредством следующего выражения:

С= εεₒ(r₂- r₁)/2δ * (φₒ-φ).

Дабы точно измерить чувствительность, следует применять несколько иную формулу:

K= εεₒ(r₂- r₁)/2δ.

Давайте разберемся, что подразумевается под теми переменными, которые входят в состав данных уравнений:

  • r₁ — внутренний радиус пластины конденсатора;
  • r₂ — наружный радиус все той же пластины;
  • φ – измеряемое в данный момент (текущее) значение угла перекрытия;
  • φₒ — начальное значение угла перекрытия.

Наконец, разберем математическое выражение, которое описывает принцип работы емкостного измерителя с изменяемым воздушным зазором:

С= εεₒS/(δₒ-Х).

Нетрудно догадаться, что под δₒ понимается первичный зазор, литерой же Х обозначают величину перемещения пластины. Обратите внимание! Так как статические характеристики сугубо не линейны, обычно датчик уровня такого типа применяют для измерения чрезвычайно малых перемещений, величина которых не превышает 0,1δₒ. Естественно, эти приборы крайне востребованы в точном машиностроении, где даже меньшая погрешность может привести к возникновению достаточно серьезных проблем.

Где они могут быть использованы?

Области их возможного применения чрезвычайно разнообразны. Так, практически во всех отраслях промышленности можно встретить операции, которые контролируются именно этими приборами. Их применяют для контроля над заполнением различных резервуаров, причем их содержимое может быть жидким, сыпучим или же газообразным (датчик газа).

Распространенность их в промышленности и обычной производственной деятельности человека тем выше, чем надежнее и проще конструкция таких приборов. По совокупности этих признаков они настолько хороши, что их можно использовать даже в невероятно агрессивных условиях трюмов нефтеналивных танкеров.

Кроме того, емкостной датчик может быть использован в качестве конечного выключателя на конвейерной линии или станке производственного цеха. Необходим он и для наиболее точного позиционирования различных механизмов.

Датчики приближения

Но в настоящее время особым спросом пользуются датчики приближения, которые выполнены по точно такому же принципу. Спектр их использования еще шире. Связано это с копеечной стоимостью устройств и возможностью работы практически во всех видах промышленности. Впрочем, имеются типичные отрасли, где приборы этого типа являются наиболее востребованными:

  • Контроль над заполнением жидкостью прозрачных емкостей из пластика или стекла.
  • Аналогичная функция выполняется ими на производстве продуктов питания (в том числе и детских), где готовый товар расфасовывается в емкости из прозрачных материалов. На этом же принципе основана и работа такого КИПа, как емкостной датчик топлива.
  • Для контроля опасных участков, где возможен обрыв обмоточного провода.
  • Контроль аналогичных мест, где может быть повреждена несущая лента конвейера.
  • Поштучный контроль выпускаемого типа продукции (пересчет банок, бутылок, упаковок).

Неудивительно, что эти электронные приборы являются наиболее распространенной в точном машиностроении, энергетике и многих других отраслях разновидностью датчиков.

Инклинометры

Приборами, которые стали сравнительно распространенными только в последние годы, являются малогабаритные емкостные инклинометры, обеспечивающие передачу электрического выходного сигнала, величина которого прямо пропорциональна углу наклона используемого датчика.

Наиболее распространенные основные области использования данных приборов: системы выравнивания платформ, определение величины прогиба и технической деформации разного рода опорных балок, а также точнейший контроль уклона автомобильных, железнодорожных путей еще на этапе их строительства.

Кроме того, с помощью таких устройств определяют крен большегрузных автомобилей и прочего транспорта, подъемников и промышленных экскаваторов, а также выясняют степень углового перемещения в отношении сельскохозяйственных и промышленных машин особо большого размера.

Очень важны емкостные датчики уровня топлива в нефтяной промышленности. Они используются даже на супертанкерах, которые за один рейс перевозят десятки и сотни тысяч тонн переработанных нефтепродуктов. Чрезвычайно эффективны эти приборы даже в условиях образования крайне обильного конденсата и высокой степени запыленности производственного помещения (тот же датчик газа).

Находят они свое применение и при измерении величины абсолютного и относительного уровня давления, а также толщины диэлектрического материала, что чрезвычайно важно практически во всех отраслях промышленности, где используются действительно мощные конденсаторы.

Основные преимущества емкостных датчиков

Необходимо заметить, что емкостной датчик обладает большим количеством преимуществ, если сравнивать его с аналогичными приборами, которые выполнены по несколько иным принципам. Давайте перечислим основные достоинства этих КИПов:

  • В изготовлении они чрезвычайно просты. Кроме того, в их производстве могут быть использованы самые простые и дешевые материалы. Даже емкостные датчики уровня топлива, используемые на важных объектах нефтяной промышленности, имеют крайне скромные габариты, обладают минимально возможным уровнем потребления электрической энергии. При всех этих характеристиках они отличаются превосходным уровнем чувствительности, который нередко недостижим и для более дорогих приборов.
  • В принципе, можно сделать емкостной датчик своими руками, используя в качестве его основы любой более-менее надежный и качественный промышленный конденсатор.
  • Контактов у них нет (очень редко используется один токосъемник), что крайне благоприятно сказывается на работе в условиях высокой запыленности и влажности в помещении.
  • Срок эксплуатации чрезвычайно долог, прибор многократно успевает «отбить» свою невысокую стоимость. Соответственно, датчик емкостной (цена которого находится в пределах 1200-1700 рублей) является чрезвычайно выгодным приобретением.
  • Для перемещения подвижной части прибора требуется приложить удивительно мало усилий.
  • Устройство очень легко сочетается практически со всеми категориями оборудования, которое только используется в промышленной деятельности.

Отрицательные моменты

К сожалению, каждый емкостной датчик имеет определенные недостатки, которые в той или иной мере затрудняют повсеместное использование данного типа оборудования. Перечислим их более подробно:

  • Коэффициент преобразования (то есть передачи) сравнительно невысок.
  • Малые размеры и простота конструкции способствуют тому, что выдвигаются довольно высокие требования к качеству экранирования приборов.
  • Хороший емкостной датчик уровня (и прочие подобные измерительные приборы) может эффективно работать только на частоте, намного превышающей стандартное значение в 50 Гц.

Важные замечания

Впрочем, все не так плохо. Многие производители добиваются прекрасных характеристик экранировки датчиков за счет внесения минимальных изменений в их конструкцию. Что же касается частоты использования, то на практике они показывают прекрасные результаты при широко распространенном в промышленности значении в 400 Гц.

Мы уже говорили о верности основной формулы только при условии игнорирования краевого эффекта. Но при этом полезно знать, что он действительно может оказать негативное влияние только лишь в том случае, если расстояние между пластинами диэлектрика сопоставимо с их собственными размерами. Кроме того, негативный эффект можно в значительной степени нивелировать, попросту использовав защитное кольцо. В этом случае границы влияния эффекта удается перенести далеко за пределы используемых обкладок.

Еще раз заметим, что те же датчики давления отличаются замечательной простотой, которая позволяет создавать на диво устойчивые, прочные и дешевые конструкции. Если правильно подобрать геометрические размеры используемого диэлектрика, то об используемых в производстве такого конденсатора материалах можно особо не беспокоиться.

Таким образом, правильно подобрав марку металла для изготовления корпуса датчика, можно практически пренебречь даже сильными температурными колебаниями, которые бы могли привести у изменению емкости прибора и неадекватности его показаний. Конечно же, это вовсе не отменяет необходимости максимально тщательно изолировать датчики давления и прочие подобные индикаторы от агрессивных факторов внешней среды. Несмотря на их простоту, высокая влажность и повышенный уровень радиации могут крайне негативно сказаться на надежности прибора.

Классификация датчиков

Используемые в промышленности способы их производства позволяют поделить все выпускаемые типы датчиков на две большие группы: одноемкостные и двухъемкостные. Последняя разновидность подразделяется на дифференциальные и полудифференциальные. Расмотрим их более подробно.

Одноемкостный прибор. В этом случае схемы емкостных датчиков просты до крайности, так как основной их частью является самый обычный конденсатор с переменной емкостью. К сожалению, даже слегка повышенная влажность и температура оказывают на точность показаний весьма ощутимое влияние. Из-за этого нередко возникают различные неисправности датчиков. Чтобы нивелировать величины таких погрешностей, приходится использовать дифференцированные конструкции.

Двухъемкостный датчик. Собственно, он-то и является такой дифференцированной структурой. Очень часто можно встретить емкостной датчик уровня, изготовленный именно по такой схеме. Эти приборы избавлены от основных недостатков предыдущей модели, но имеют собственные слабые стороны. Наиболее значимым их недостатком является необходимость использования двух-трех экранированных проводов между самим устройством и поверхностью, так как только таким способом можно подавить так называемые паразитные емкости.

Впрочем, на довольно сложные схемы емкостных датчиков в этом случае легко не обращать внимания, так как взамен вы получаете чрезвычайно точный и чувствительный прибор.

Специфика конструирования датчиков

Во многих случаях (с конструкторской точки зрения) создание таких приборов является довольно проблематичным. Особенно это актуально тогда, когда требуется создать датчик с переменным уровнем емкости. Впрочем, практика показывает, что многие проблемы практически полностью решаются точной калибровкой и высокими характеристиками используемых в производстве материалов. Чаще всего с этими затруднениями приходится сталкиваться производителям двухъемкостных датчиков.

Вообще специфика этого типа измерительных приборов заключается в том, что их можно представить в виде безразмерного соотношения двух физических величин (емкостей), которые имеют точное физическое выражение и значение. Так что их можно смело именовать «датчиками отношения». Преимущество этих приборов (огромный их плюс!) состоит в том, что они вообще могут не иметь в своей конструкции каких-то эталонных мер, что здорово повышает их надежность в действительно экстремальных ситуациях и условиях.

Характеристика датчиков линейных перемещений

Все неэлектрические величины, которые часто требуется контролировать в промышленных условиях, чрезвычайно разнообразны и многогранны. Значительную часть мер, которые подлежат строгому контролю, составляют угловые и даже линейные перемещения разного рода поверхностей в пространстве. Если использовать конденсатор, у которого абсолютно равномерное электрическое поле в рабочем зазоре, то не так уж и трудно сделать электронные датчики двух следующих типов:

  • У которых площадь электродов будет переменной.
  • Те, которые имеют переменный зазор между этими электродами.

Нетрудно понять, что первый тип наиболее подходит для фиксации действительно больших перемещений, в то время как при помощи второй разновидности можно замечать даже такие передвижения тела в пространстве, величина которых равна всего лишь нескольким микронам!

Датчики для определения угловых перемещений

В общем-то, по конструкции и назначению они практически полностью идентичны только что рассмотренному нами типу. Схожесть проявляется и в том, что датчики с переменной площадью электродов также следует использовать для больших измерений, а с переменным расстоянием между самими электродами – для малых. Как правило, такие приборы делаются многосекционными, с возможностью изменения площади обкладок конденсатора.

Чтобы достичь этого, первый электрод крепится к подвижному валу, при вращении которого он меняет свое положение относительно второго, что обеспечивает изменение площади перекрытия пластин диэлектрика в конденсаторе. Естественно, что при этом фиксируется изменение емкости.

Выводы

Вот мы и рассмотрели основные характеристики приборов такого уровня, узнали о сферах их применения, об особенностях конструкции, принципе действия и возможных технических решениях. Как вы могли понять из статьи, распространенность емкостных датчиков и их крайне высокая популярность основываются на весьма привлекательной цене таких устройств и долгом сроке эксплуатации даже в сложных условиях внешней среды.

Все это возможно благодаря тому, что, с конструктивной точки зрения, все эти измерители являются всего лишь стандартными конденсаторами, которые характеризуются несколько необычным способом их применения. Впрочем, вы и сами можете это выяснить, еще раз взглянув на математические формулы, которые в общих чертах отражают принципы работы КИПов.

Источник: FB.ru

По принципу действия датчики уровня могут быть:

  • Емкостными
  • Поплавковыми
  • Радарного типа
  • Ультразвуковыми
  • Гидростатическими

Ниже кратко рассмотрены основные виды.

Емкостной датчик уровня

В основу работы данного типа датчика положено свойство конденсатора изменять свою ёмкость при изменении состава и распределения материала диэлектрика, разделяющего пластины конденсатора. Это свойство применяется во многих емкостных детекторах например в емкостных датчиках влажности.

Предположим, имеется коаксиальный конденсатор, помещённый в жидкость (Рисунок 1), которая может свободно проникать в пространство между пластинами. Если известна диэлектрическая проницаемость жидкости, то можно составить следующее равенство:

С=С0l0*G0l*Gl       (1)

С – Общая ёмкость конденсатора
С0 – Ёмкость участка конденсатора, не содержащего жидкость
Сl – Ёмкость участка конденсатора, содержащего жидкость
ε0 – Диэлектрическая проницаемость газовой среды
εl – Диэлектрическая проницаемость жидкой среды
G0 – Геометрический коэффициент участка конденсатора, не содержащего жидкость
Gl – Геометрический коэффициент участка конденсатора, содержащего жидкость

При изменении уровня жидкости величина суммарной ёмкости конденсатора также изменятся. Если конденсатор включен в электрическую цепь, не составляет труда отследить изменение ёмкости, по которому можно однозначно судить об изменении уровня жидкости.

Общая схема емкостного датчика уровня
Рисунок 1. Общая схема емкостного датчика уровня

Емкостные датчики лишены подвижных элементов, поэтому достаточно надёжны и долговечны. К их недостаткам следует отнести значительную температурную зависимость (которая, впрочем, может быть скомпенсирована), а также необходимость погружения в жидкость.

Поплавковый датчик уровня

Датчики данного типа имеют достаточно простое устройство. Существует несколько конфигураций, выдающих на выход как дискретный, так и непрерывный сигнал, последние можно разделить на две категории – механические и магнитострикционные. В магнитострикционных датчиках в качестве одного из элементов также используется поплавок, в остальном же они довольно сильно отличаются от обычных механических поплавковых датчиков.

Дискретные поплавковые датчики уровня

В реализации датчика, выдающего дискретный сигнал, обычно используется набор поплавков, расположенных на различных уровнях резервуара. При достижении жидкостью уровня, на котором располагается поплавок, он выталкивается за счёт силы Архимеда, направленной вверх. Это приводит в движение механическую систему или электромеханическую систему, и выходной сигнал появляется, например, при замыкании электрических контактов герконового реле.

В альтернативной конфигурации присутствует направляющая, содержащая набор реле. Вдоль направляющей вслед за уровнем жидкости перемещается поплавок, содержащий постоянный магнит. Приближение поплавка к реле вызывает его срабатывание (Рисунок 2).

Общая схема поплавкового датчика уровня с дискретным выходом
Рисунок 2. Общая схема поплавкового датчика уровня с дискретным выходом

Дискретный выходной сигнал может быть использован для «пошагового» мониторинга уровня жидкости в резервуаре — датчик просто сообщает, достиг ли уровень жидкости конкретной отметки или нет. Также датчик уровня с дискретным выходным сигналом может служить элементом автономного регулятора в случае, например, когда необходимо поддерживать постоянный уровень жидкости в резервуаре – для реализации данной схемы выходной сигнал может непосредственно управлять силовым реле, открывающим/закрывающим входной/выходной клапан резервуара.

Дискретные поплавковые датчики дёшевы, просты и достаточно надёжны, однако требуют погружения в жидкость и имеют подвижную механику.

Магнитострикционные поплавковые датчики

Поплавковые датчики, выдающие непрерывный сигнал, обычно относятся к датчикам магнитострикционного типа и имеют довольно сложное устройство (Рисунок 3). Основным элементом конструкции по-прежнему является поплавок, в данном случае он содержит постоянный магнит. Поплавок может свободно передвигаться вдоль направляющей, внутри которой располагается волновод из магнитострикционного материала. С определённой периодичностью блок электроники датчика генерирует импульс тока, который распространяется вдоль волновода. Когда импульс достигает области, где располагается поплавок, магнитное поле поплавка и магнитное поле импульса взаимодействуют, что приводит к возникновению механических колебаний, которые распространяются обратно по волноводу и фиксируются чувствительным пьезоэлементом. По временной задержке между отправкой импульса тока и получением механического импульса можно судить о расстоянии до поплавка, а значит и об уровне жидкости в резервуаре.

Общая схема магнитострикционного датчика уровня
Рисунок 3. Общая схема магнитострикционного датчика уровня

Магнитострикционные датчики очень точны, выдают непрерывный сигнал, а также могут использоваться с гибким волноводом, что расширяет сферу их применения. К их недостаткам можно отнести их стоимость, техническую сложность и необходимость погружения в жидкость.

Радарный датчик уровня

Главным элементом данного датчика является радиолокатор, частота излучения которого изменяется по линейному закону. Предполагается, что жидкость отражает излучение локатора, поэтому если расположить излучатель-приёмник внутри резервуара согласно схеме (Рисунок 4) и фиксировать задержку отражённого сигнала относительно сигнала источника – можно определить уровень жидкости по величине задержки. Для определения задержки используется линейная модуляция частоты источника. Если частота исходного сигнала изменяется по линейному закону (например, непрерывно возрастает), то отражённый сигнал, имеющий временной сдвиг относительно исходного, будет иметь также и меньшую частоту. По величине частотного сдвига можно однозначно судить о величине временной задержки между двумя сигналами, а значит и о расстоянии до поверхности жидкости.

Дальнейшая обработка полученного сигнала осуществляется в цифровом тракте, и на этом этапе возможна, например, нейтрализация шумовых сигналов, возникающих в результате волнений на поверхности жидкости или поглощения радиоизлучения.

Общий принцип функционирования датчика уровня радарного типа
Рисунок 4. Общий принцип функционирования датчика уровня радарного типа

Данный метод на сегодняшний день является наиболее технологичным и совершенным, к числу достоинств датчика на его основе следует отнести:

  1. Отсутствие подвижных элементов
  2. Отсутствие контакта с жидкой средой
  3. Универсальность – возможность работать практически с любой средой при различных условиях
  4. Высокая точность
  5. Возможность адаптировать алгоритм обработки данных для конкретных применений

Основным недостатком радарных датчиков является их цена.

Ультразвуковой датчик уровня

В датчиках данного типа используется схема, во многом сходная со схемой датчика радарного типа. В резервуаре устанавливается блок, состоящий из генератора и приёмника ультразвуковых волн (точно также как например в    ультразвуковых расходомерах и  ультразвуковых дефектоскопах). Излучение генератора УВ проходит газовую среду, отражается от поверхности жидкости и попадает на приёмник. Определив временную задержку между излучением и приёмом и зная скорость распространения ультразвука в данной газовой среде, можно вычислить расстояние до поверхности жидкости – то есть определить её уровень.

Ультразвуковым датчикам уровня свойственны практически все достоинства датчиков радарного типа, однако УД обычно имеют более низкую точность, хотя и более просты по внутреннему устройству.

Источник: www.DeviceSearch.ru.com

Конструкция и принцип действия

Конструктивное исполнение измерительных устройств данного типа определяется следующими параметрами:

  • Функциональностью, в зависимости от этого устройства принято делить на сигнализаторы и уровнемеры. Первые отслеживают конкретную точку заполнения резервуара (минимальную или максимальную), вторые осуществляют беспрерывный мониторинг уровня.
  • Принципом действия, в его основу может быть положены: гидростатика, электропроводность, магнетизм, оптика, акустика и т.д. Собственно, это основной параметр, определяющий сферу применения.
  • Методом измерения (контактный или бесконтактный).

Помимо этого, особенности конструкции определяет характер технологической среды. Одно дело — измерять высоту питьевой воды в баке, другое — проверять наполнение резервуаров для промышленных стоков. В последнем случае необходима соответствующая защита.

Виды датчиков уровня

В зависимости от принципа действия, сигнализаторы принято делить на следующие виды:

  • поплавочного типа;
  • использующие ультразвуковые волны;
  • устройства с емкостным принципом определения уровня;
  • электродные;
  • радарного типа;
  • работающие по гидростатическому принципу.

Поскольку эти типы наиболее распространены, рассмотрим каждый из них в отдельности.

Поплавковый

Это наиболее простой, но, тем не менее, действенный и надежный способ измерения жидкости в баке или другой емкости. С примером реализации можно ознакомиться на рисунке 2.

Поплавковый датчик для управления насосом
Рис. 2. Поплавковый датчик для управления насосом

Конструкция состоит из поплавка с магнитом и двух герконов, установленных в контрольных точках. Кратко опишем принцип действия:

  • Емкость опустошается до критического минимума (А на рис. 2), при этом поплавок опускается до уровня, где расположен геркон 2, он включает реле, подающее питание на насос, закачивающий воду из скважины.
  • Вода доходит до максимальной отметки, поплавок поднимается до места расположения геркона 1, он срабатывает и реле отключается, соответственно, двигатель насоса прекращает работать.

Такой герконовый сигнализатор сделать самостоятельно довольно просто, а его настройка сводится к установке уровней включения-выключения.

Заметим, что если правильно выбрать материал для поплавка, датчик уровня воды будет работать, даже при наличии слоя пены в резервуаре.

Ультразвуковой

Этот тип измерителей может использоваться как для жидкой, так и сухой среды, при этом у него может быть аналоговый или дискретный выход. То есть, датчик может ограничивать заполнение по достижению определенной точки или отслеживать его постоянно. Устройство включает в себя ультразвуковой излучатель, приемник и контроллер обработки сигнала. Принцип работы сигнализатора продемонстрирован на рисунке 3.

Принцип работы ультразвукового датчика уровня
Рис. 3. Принцип работы ультразвукового датчика уровня

Работает система следующим образом:

  • излучается ультразвуковой импульс;
  • принимается отраженный сигнал;
  • анализируется длительность затухания сигнала. Если бак полный, она будет короткой (А рис. 3), а по мере опустошения начнет увеличиваться (В рис. 3).

Ультразвуковой сигнализатор бесконтактный и беспроводной, поэтому он может использоваться даже в агрессивных и взрывоопасных средах. После первичной настройки, такой датчик не требует никакого специализированного обслуживания, а отсутствие подвижных частей существенно продлевает срок эксплуатации.

Электродный

Электродные (кондуктометрические) сигнализаторы позволяют контролировать один или несколько уровней электропроводящей среды (то есть, для измерения наполнения бака дистиллированной водой они не подходят). Пример использования устройства приведен на рисунке 4.

Измерение уровня жидкости кондуктометрическими датчиками
Рисунок 4. Измерение уровня жидкости кондуктометрическими датчиками

В приведенном примере задействован трехуровневый сигнализатор, в котором два электрода контролируют заполнение емкости, а третий является аварийным, для включения режима интенсивной откачки.

Емкостной

При помощи этих сигнализаторов можно определять максимальное заполнение емкости, причем, в качестве технологической среды могут выступать как жидкость, так и сыпучие вещества смешанного состава (см. рис. 5).

Емкостной датчик уровня
Рис. 5. Емкостной датчик уровня

Принцип работы сигнализатора такой же, как у конденсатора: проводится измерение емкости между пластинами чувствительного элемента. Когда она достигнет порогового значения, подается сигнал на контроллер. В некоторых случаях задействовано исполнение «сухой контакт», то есть уровнемер работает через стенку бака в изоляции от технологической среды.

Данные устройства могут функционировать в широком температурном диапазоне, на них не влияют электромагнитные поля, а срабатывание возможно на большом расстоянии. Такие характеристики существенно расширяют сферу применения вплоть до тяжелых условий эксплуатации.

Радарный

Этот вид сигнализаторов можно действительно назвать универсальным, поскольку он может работать с любой технологической средой, включая агрессивную и взрывоопасную, причем, давление и температура не будут влиять на показания. Пример работы устройства приведен на рисунке ниже.

Измерение уровня радарным датчиком
Измерение уровня радарным датчиком

Устройство излучает радиоволны в узком диапазоне (несколько гигагерц), приемник ловит отраженный сигнал и по времени его задержки определяет наполняемость емкости. На измеряющий датчик не влияет давление, температура или характер технологической среды. Запыленность также не отражается на показаниях, чего не скажешь о лазерных сигнализаторах. Также необходимо отметить высокую точность приборов данного типа, их погрешность составляет не более одного миллиметра.

Гидростатический

Эти сигнализаторы могут измерять как предельное, так и текущее заполнение резервуаров. Их принцип действия продемонстрирован на рисунке 7.

Измерение заполнения гиростатическим датчиком
Рисунок 7. Измерение заполнения гиростатическим датчиком

Устройство построено по принципу измерения уровня давления, произведенного столбом жидкости. Приемлемая точность и небольшая стоимость сделали данный вид довольно популярным.

В рамках статьи мы не можем осмотреть все типы сигнализаторов, например, ротационно-флажковых, для определения сыпучих веществ (идет сигнал, когда лепесток вентилятора застрянет в сыпучей среде, предварительно вырыв приямок). Так же нет смысла рассматривать принцип действия радиоизотопных измерителей, тем более рекомендовать их для проверки уровня питьевой воды.

Как выбрать?

Выбор датчика уровня воды в резервуаре зависит от многих факторов, основные из них:

  • Состав жидкости. В зависимости от содержания в воде посторонних примесей может меняться плотность и электропроводность раствора, что с большой вероятностью отразится на показаниях.
  • Объем резервуара и материал, из которого он изготовлен.
  • Функциональное назначение емкости для накопления жидкости.
  • Необходимость контролировать минимальный и максимальный уровень, или требуется мониторинг текущего состояния.
  • Допустимость интеграции в систему автоматизированного управления.
  • Коммутационные возможности устройства.

Это далеко не полный список для выбора измерительных приборов данного типа. Естественно, что для бытового назначения можно существенно сократить критерии отбора, ограничив их объемом резервуара, типом срабатывания и схемой управления. Существенное сокращение требований делает возможным самостоятельное изготовление подобного устройства.

Делаем датчик уровня воды в резервуаре своими руками

Допустим, есть задача автоматизировать работу погружного насоса для водоснабжения дачи. Как правило, вода поступает в накопительную емкость, следовательно, нам необходимо сделать так, чтобы насос автоматически выключался при ее заполнении. Совсем не обязательно для этой цели покупать лазерный или радиолокационный сигнализатор уровня, собственно, никакой приобретать не нужно. Несложная задача требует простого решения, оно показано на рисунке 8.

Схема управления водозабоным насосом
Схема управления водозабоным насосом

Для решения задачи понадобится магнитный пускатель с катушкой на 220 вольт и два геркона: минимального уровня — на замыкание, максимального — на размыкание. Схема подключения насоса проста и, что немаловажно, безопасна. Принцип работы был описан выше, но повторим его:

  • По мере набора воды поплавок с магнитом постепенно поднимается, пока не дойдет до геркона максимального уровня.
  • Магнитное поле размыкает геркон, отключая катушку пускателя, что приводит к обесточиванию двигателя.
  • По мере расхода воды, поплавок опускается, пока не достигнет минимальной отметки напротив нижнего геркона, его контакты замыкаются, и поступает напряжение на катушку пускателя, подающего напряжение на насос. Такой датчик уровня воды в резервуаре может работать десятилетиями, в отличие от электронной системы управления.

Источник: www.asutpp.ru



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.